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XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2019, 29/09/2019–02/10/2019, PETRÓPOLIS, RJ

A semblance based TDOA algorithm for sound
source localization

Guilherme Seidyo Imai Aldeia, Alex Enrique Crispim, Guilherme Barreto, Kaleb Alves, Henrique Ferreira, Kenji
Nose-Filho

Abstract— In this paper we propose a new time difference
delay of arrival technique based on the semblance multichannel
coherency function for the problem of sound source localization.
The proposed algorithm was tested on recordings from an
Unmanned Aerial Vehicle (UAV) equipped with an array of 8
microphones, for estimating the azimuth and elevation angles of
a speech based source. Our results shown that the semblance
method has proven to have a good performance, obtaining good
results regardless of the ego noise even in cases where the signal-
to-noise ratio (SNR) was very low.

Keywords— time difference of arrival, semblance, sound source
localization

I. INTRODUCTION

The problem of estimating the Direction of Arrival (DOA)
of a propagating wave plays a fundamental role in many signal
processing applications. More recently it has been of great
interest for sound source localization, specially in search and
rescue scenarios [1].

For the sound source localization problem, one of the main
techniques employed is based on the time difference of arrival
(TDOA), i.e., the delay that the propagating wave (sound)
arrives at several microphones disposed in different locations
[2]–[5]. However, in applications involving Unmanned Aerial
Vehicle (UAV) the main problem arises from the ego noise and
the fact that the sound source location and the microphones
can be in movement [1].

Ego noise is the noise produced by the UAV itself. What
makes it challenging is that the ego noise is non-stationary [1],
changing with the velocities of the rotors, which are constantly
changed very quickly to maintain the drone stabilized and
allow it to move.

In this paper we propose a new time difference delay of
arrival technique based on a coherency measure for multi-
channel data widely used in seismic processing, the semblance
coherence function [6].

This paper is organized as follows. Section II presents in
details the proposed semblance based TDOA algorithm. Sec-
tion III reports the methodology used to adjust the parameters
and validate the algorithm. Section IV presents the results and
compare them to an algorithm found in [1]. Finally, Section
V summarizes the results and present future perspectives for
this work.

Guilherme Seidyo Imai Aldeia is with the Center of Mathematics, Com-
puting and Cognition, Federal University of ABC (UFABC), e-mail: guil-
herme.seidyo@gmail.com; Alex Enrique Crispim is with the Center of Natural
Sciences and Humanities, Federal University of ABC (UFABC); Guilherme
Barreto, Kaleb Alves, Henrique Ferreira and Kenji Nose-Filho are with
the Center of Engineering, Modeling and Applied Social Sciences, Federal
University of ABC (UFABC)

II. A SEMBLANCE BASED TDOA ALGORITHM

In this paper, we want to find the direction of a sound source
(azimuth, elevation) using the records from an 8-channel cube-
shaped microphone array embedded in a flying UAV [7].

The proposed algorithm is based on correcting the time-
delay that the propagating wave arrives in each of the 8-
channel microphones. Given a source at direction kd ∈ R3,
that point towards a source parametrized by azimuth Θd ∈
[−π, π] and elevation Φd ∈

[
−π2 ,

π
2

]
. The time delay of a

microphone at location mi and a reference point at the origin
0 = [0,0,0]T is given by [5]:

τ(mi) = −kd ·mi

v
, (1)

where v is the speed of sound and · denotes for the inner
product operation.

For each value of Θd and Φd in an equally spaced grid
with a distance given by the parameter ∆ we correct the time-
delay for each microphone and compute the semblance of the
8-channel array, given by:

Zd =

∑
n |
∑
k ŝk(n)|2

Nr
∑
n

∑
k |ŝk(n)|2

, (2)

where k denotes the microphones, n denotes the time samples,
Nr is the number of sensors and ŝk(n) = sk(n − τk) is
the signal at the time sample n of the k-th microphone after
correcting the delay, τk, for a given Θ and Φ.

The semblance measures the level of similarity between
the signals [8], so, by applying time corrections τk to each
pair (θ φ) of the equally spaced grid for each microphone,
the direction that maximizes the semblance value may be the
sound source direction.

This process is summarized by the Algorithm 1. The
algorithm returns a matrix z — called semblance panel —
containing the semblance correlation value for each pair of
angles (Θd,Φd) in the equally spaced grid, along with two
lists containing the azimuth and elevation values used to create
the semblance grid, as illustrated in Figure 1.

In Figure 2 we illustrate a frame of an 8-channel audio
signal in a noiseless scenario before and after the alignment
performed by the algorithm by selecting the values of Θ and
Φ that maximizes the semblance.

Preliminary tests showed that our approach could be im-
proved by dividing the audio in several frames and applying
the Algorithm 1 for each frame, obtaining multiple semblance
panels, then combining the returned panels with a method
called Max pooling — by picking the highest value for each
pair of angles (θ, φ) in all panels — to obtain a final panel

SBrT 2019 1570559090
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0
42

1

2

21

3

C
o

rr
e

la
ti
o

n
 i
n

te
n

s
it
y

4

Azimuth Elevation 

00

5

6

-2-1

-4-2

Fig. 1
3D SURFACE REPRESENTATION OF THE SEMBLANCE FUNCTION RESULT.
THE HIGHER VALUES OF THE SIGNAL CORRELATION ARE REPRESENTED

BY THE HIGHEST PEAKS.

Fig. 2
FRAME OF AN 8-CHANNEL AUDIO SIGNAL IN A NOISELESS SCENARIO

BEFORE AND AFTER THE ALIGNMENT PERFORMED BY SELECTING Θ AND

Φ THAT PROVIDED THE MAXIMUM SEMBLANCE VALUE.

(Algorithm 2). This process is able to enhance the signal-
to-noise ratio in the frames that the sound source to be
localized is active, and consequently obtain better results than
the global approach (using only one frame), as shown in
the Section Results. The ego-noise can show high semblance
values, nevertheless when the speech signals are aligned they
present a stronger correlation, in a way that each frame that
contains speech signals will have peaks of higher values than
frames with pure ego-noise.

Finally, the local approach can be summarized as follows:
first, the data is divided into frames, according to Algorithm 2;
then, for each frame, is obtained a semblance panel, according
to Algorithm 1; these panels are combined into one by picking
the highest value for each pair of angles (θ, φ) in all panels
(Max pooling) and then the pair of angles that have the highest

Algorithm 1: Find semblance global (find global)
input : ∆: interval between angles to be tested

SoS: speed of sound on the medium
Fs: sampling rate
s: matrix containing the audio of the 8-channel

microphones
micPos: array with coordinates [x, y, z] of the

microphones positions
output: z: matrix mapping correlation with angles

Θ: tested values for elevation
Φ: tested values for azimuth

step = ∆ ∗ π/180;
Θ = [ θ | θ ← [−π,−π + step, ..., π]];
Φ = [ φ | φ← [−π/2,−π/2 + step, ..., π/2]];
τ = [ ];

for (i, θ) in (range(Θ), Θ) do
for (j, φ) in (range(Φ), Φ) do

kd = [cos(θ) ∗ cos(φ), sin(θ) ∗ cos(φ), sin(φ)];
for (k, mic) in (range(micPos),micPos) do

τ [i, j, k] = round(((kd ∗mic′)/SoS) ∗ Fs);

for i in range(Θ) do
for j in range(Φ) do

for k in range(numMic) do
ŝk(n) = sk(n− τ [i, j, k])

z[j, i] = semblance(ŝ)

return z,Θ,Φ;

semblance correlation value is the sound source direction,
being this pair the predicted direction.

III. METHODOLOGY

In order to validate the proposed method, we used three
clean speech audio files (recorded with the drone in a fixed
position) and a file with pure ego noise (recorded with the
drone fixed and with all motors at a speed of 70 rotations per
second). Then we combined those signal and noise files for
different SNR levels. The values for the SNR (dB) tested were
from 24 to -3dB with a step size of -3 dB and from -3dB to
-21dB with a step size of -1dB. This approach allow us to
have precise information about the SNR, making possible to
evaluate the performance in terms of the relation between the
noise and speech.

As a measure of performance, we compute the great circle
distance, given by Equation 3 [9], where θ1 and θ2 represents
the predicted and truth azimuth angles, φ1 and φ2 the predicted
and truth elevations angles, and ∆θ = θ2 − θ1.

All the files were provided by [7], with their respective
correct azimuth (θ) and elevation (φ) angles. However, since
the noise file provided is larger than the speech file, we took
out the beginning of the file (where the propellers are at a
transient phase) and took a cut of the same size as the speech
files.

Since the proposed method has multiple hyper-parameters,
we performed a gridsearch, a common technique in machine

2
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DATA
GENERATION

The	clean	voice	audio	recordings	were
combined	with	pure	noise	audio	with
all	motors	at	70%	speed,	in	different

settings	of	SNR,	varying	from
-21	dB	to	24	dB.

IMPLEMENTATION
AND	TESTING

The	Semblaced	based	method	was
implemented	and	had	its	correctness
verified	by	using	the	generated	audios
with	the	truth	values	of	azimuth	and

elevation	for	each	of	them.

GENERATED
AUDIOS	WITH
DIFFERENT

SNR

HYPER-PARAMETERS
OPTIMIZATION

A	set	of	possible	values	was	defined
for	each	hyper-parameter,	then	a
gridsearch	was	applied	to	find	the

configuration	that	minimizes	the	most
the	mean	error	was	found.

POSSIBLE
CONFIGURATIONS

TEST
STAGE

Using	the	best	found	parameters,	the
results	were	compared	with	the	ones
obtained	with	the	GCC-PHAT	method.

BEST	FOUND
PARAMETERS

RESULTS
REPORT

VOICE	AUDIOS
+

NOISE	AUDIO

Fig. 3
METHODOLOGY FLOWCHART.

Algorithm 2: Find semblance local (find local)
input : frameSize: size of the frames

overlap: overlap between frames
∆: interval between angles to be tested
SoS: speed of sound on the medium
Fs: sampling rate
s: the data of the 8-channel
micPos: array with coordinates [x, y, z] of the

microphones positions
output: z: matrix mapping correlation with angles

Θ: tested values for elevation
Φ: tested values for azimuth

sTotal = length(x); // total samples

sSize = round(frameSize ∗ Fs); // sample size

sOverlap = round(overlap ∗ sSize); // sample overlap

nFrames =
ceil((sTotal − sSize)/(sSize− sOverlap)) + 1;
painels = [ ];
for i in range(nFrames) do

begFrame = i ∗ (sSize− sOverlap);
endFrame = begFrame+ sSize;
sFrame = s[begFrame : endFrame, :];
painels[i] = find global(∆, SoS, Fs, sFrame);

return pooling(painels),Θ,Φ;

learning field for hyper-parameter tuning, that consists on an
exhaustive search for all possible combinations for each hyper-
parameter in a given set. The search creates all combinations
of hyper-parameters, then executes the algorithm for the entire
dataset with different SNR configurations, returning the errors.
This way, the best values for the hyper-parameters obtained
are those who presented the smallest mean error for all audios
(3 audios with 26 different SNR configurations, totalizing 78
measures of error). To clarift the steps to obtain the results
shown in section IV, Figure 3 presents a simple flowchart

diagram of the methodology. The hyper-parameters to be tuned
are: (i) overlap between consecutive frames, (ii) the frameSize
and (iii) ∆, with the following possible values:

(i) overlap = [0, 0.1, 0.2, 0.3, 0.4, 0.5]
(ii) ∆ = [17.5, 15, 12.5, 10, 7.5, 5]

(iii) frameSize = [0.064, 0.128, 0.256, 0.512, 1.024]
It should be noticed that the gridsearch is not a step of the

proposed algorithm, but a technique used to adjust its hyper-
parameters, due to vast gamma of combinations that can be
made.

In order to illustrate the effect of the parameters (∆,
frameSize and overlap) we present some curves by fixing two
parameters and varying only one. The Figure 4 shows how
different hyper-parameters affects the error for the tested SNR
configurations, where each column represents one (out of the
three different hyper-parameters) varying for the tested values,
while the other two parameters used are fixed in the best value
found by the gridsearch. In this figure, we vary the parameter
∆ for a frameSize of 0.064s and an overlap of 20% (first
column); in the second column we vary the frameSize and set
∆ equal to 10 degree for an overlap of 20%; and finally, in
the third column, we vary the overlap and set ∆ equal to 10
degree and use a frame size of 0.064s.

We defined a correctness guess threshold as having an error
smaller than 10°, represented by the dotted lines in the results.
This error leads to a solid angle of

4π sin2(θ/2) ≈ πθ2 ≈ 0.1 sr,

from which we obtain a relative error of

0.1 · r2

r
=

r

10
,

where r is the distance between the sound source and the
microphone array. This means that if r = 10 meters, an error
of 10° implicates in only one meter away from the original
source, which is pretty acceptable.

For the grid size (parameter ∆) it is possible to observe that
for almost all the cases a grid size smaller than 10 degree does

3
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∆σ = arctan

√
(cosφ2 sin(∆θ))2 + (cosφ1 sinφ2 − sinφ1 cosφ2 cos(∆θ))2

sinφ1 sinφ2 + cosφ1 cosφ2 cos(∆θ)
. (3)
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Fig. 4
ERROR VERSUS SNR FOR DIFFERENT CONFIGURATIONS. EACH COLUMN REPRESENTS THE VARIATIONS OF ONE HYPER-PARAMETER FOR THE THREE

AUDIOS SEPARATELY (THE FIRST BEING THE OVERLAP, THE SECOND BEING THE ∆ AND THE THIRD BEING THE frameSize), AND EACH LINE REPRESENTS

ONE AUDIO. THE DASHED LINES DENOTE A THRESHOLD FOR THE ERROR OF 10°

not significantly change the results. For the overlap we have
observed that a certain degree of overlap (e.g. 20%) may be
good and for the frame size, the smaller the better (except for
audio three).

In [1] the authors analyzed variations of state-of-art methods
on DOA task such as the GCC-PHAT and MUSIC-based
methods. However the authors pointed that the MUSIC-based
methods were about twenty times slower when compared with
the GCC-PHAT method. The reason why we compare our
results with the GCC-PHAT method only.

IV. RESULTS

The best results (for the three audios) were obtained for
∆ = 10, a frame size of 0.064s and 20% of overlap. We
compare it with the ones obtained by the so called generalized
cross correlation phase-transform method, namely GCC-PHAT
[1]–[3] with a grid space of 10°, a default FFT window of
0.064s, and two different pooling methods (Max and Sum).
These results are presented by the curves of Figure 5.

In Figure 5 we can see the errors for the proposed method
using the global and the local approach (with the best found
parameters) and the GCC-PHAT using the two available
pooling methods [1]. Our method outperforms the GCC-PHAT
for audios 1 and 2. The global approach has an intermediate
performance, between the GCC-PHAT with the Max and Sum

pooling methods. Even with the acceptable margin of error
defined as < 10°, in most of the cases the predicted azimuth
and elevation angles returned by the algorithm presented an
error of ≈ 2°.

This implementation was done in Python and the method
took about 6.8 seconds for an audio with duration of 5.0s to
run on a quad-core i7 processor @1.3GHz for ∆ = 10, a
frame size of 0.064s (the sampling rate was set in 44.100
kHz) and 20% of overlap. Even though Python is not the
fastest programming language for heavy processing, our code
relies on the numpy and scipy.signal libraries, which have
their back-end running in C. The time consumption and the
computational complexity is out of scope of this paper, but
this can be improved by implementing an heuristic based
on tree search algorithms, starting using higher ∆ values
and gradually decreasing them, applying the algorithm on
the subspace that showed higher correlation, until some stop
criteria is reached. While the global approach utilizes one
single core to find the semblance panel, the local approach
is parallelized into all available cores.

V. CONCLUSIONS

In this paper we present a new time difference delay of
arrival technique based on the semblance multichannel co-
herency function for the problem of sound source localization.
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Fig. 5
COMPARISON BETWEEN OUR METHOD AND THE BEST PROPOSED METHOD

IN [1]. THE DASHED LINES DENOTES A THRESHOLD OF 10° FOR THE

ERROR.

The algorithm was tested for estimating the direction of a
speech source (azimuth, elevation) using three audio records
from an 8-channel cube-shaped microphone array embedded in
a flying UAV [7] combined with an ego noise with different
SNR levels. Despite the performance with the audio 3, the
obtained results showed that the proposed method presents a
good performance, making able to retrieve the source location
(within an error of 10°) in cases where the signal-to-noise ratio
(SNR) was of -16 dB. This is aligned with the results obtained
in [10], where methods of state-of-art had their performance
reported.

The future perspectives for this work are: i) perform a
complexity analysis, ii) apply filtering methods, and iii) opti-
mize the search, to make this able to be applied in real-time
situations.
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