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A Multiobjective Perspective for the Design of
Frequency Selective Surfaces

Nikolas N. Aguilar Levy Boccato Cynthia C. M. Junqueira Mauricio W. B. Silva

Abstract— The design of a frequency selective surface usually
involves several aspects, as the geometry of the array element,
the thickness of the substrate and the incidence angle, which
must be adequately defined so that the multiple requirements
for the specific task are fulfilled. In this work, we investigate
the application of a multiobjective approach to the design of a
microwave absorber in the X-band, considering the simultaneous
optimization of the bandwidth and the attenuation in the chosen
frequency band. The obtained results encourage the use of this
approach, as the algorithm was capable of finding adequate
trade-offs between the objectives.

Keywords— Frequency selective surfaces, Band-stop filter, Mul-
tiobjective optimization, Meta-heuristics, NSGA-II.

I. INTRODUCTION

In the field of applied electromagnetism, the study of
frequency selective surfaces (FSSs) can be safely regarded as
a most relevant topic, with more than 40 years of research.
In simple terms, a FSS corresponds to a periodic structure
containing planar array elements arranged on a dielectric
substrate, which may either pass (transmit) or block, partially
or completely, incoming electromagnetic waves at certain fre-
quency bands. These structures have been explored in several
applications, such as Radomes for aviation, invisible cloak and
microwave absorbers in anechoic chambers [1], [2].

The exact frequency response of a FSS depends on several
aspects, such as the geometry of the array element, the type
and the thickness of the substrate, and the incidence angle
of the plane wave [2], [3]. For a given application, these
characteristics must be carefully defined having in view the
requirements or the objectives to be attained. For example,
in the context of an absorber surface, the attenuation, which
is related to the transmission coefficient (|S21|), should be
maximized around the resonance frequency. Moreover, it is
also desired to obtain a sufficiently large bandwidth for the task
at hand, as well as an adequate high frequency interference.

The existence of multiple and potentially conflicting objec-
tives poses an additional challenge to the design of a FSS. In
this sense, the task of defining the characteristics of a FSS
can be seen as a multiobjective optimization (MOO) problem,
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where there is no longer a single solution which simultane-
ously optimize all the objectives. Instead, there are multiple
solutions, which compose the so-called Pareto set, offering
distinct, albeit optimal, trade-offs among the objectives.

Even though there is a myriad of methods tailored to cope
with MOO problems, evolutionary algorithms stand out in
the literature due to their ability of approximating the Pareto
front, i.e., of obtaining actual non-dominated solutions, and
of finding a diversified set of these solutions, thus adequately
covering the Pareto front [4], [5], [6]. An emblematic example
of a successful MOO evolutionary algorithm is the NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [7].

Having these aspects in mind, in this work we investigate
the application of a MOO algorithm, more specifically, the
NSGA-II, to the problem of designing the parameters of a FSS.
In particular, we consider a dual-layer square loop periodic
element, which shall play the role of a microwave absorber
for the X-band (8 GHz to 12 GHz). The chosen objectives
to be optimized are related to the bandwidth and the average
attenuation of −10 dB in the X-band.

The main motivation for this approach is that by adapting
the parameters of the FSS with the aid of a robust search
algorithm, we shall obtain a set of alternative configurations
for the periodic element, each presenting a different optimal
compromise between bandwidth and average attenuation.

From a manufacturing standpoint, the availability of such
repertoire of alternative solutions is certainly beneficial, since
it may be possible to select a posteriori the most adequate
configuration not only in terms of the objectives, but also
with respect to other aspects, like the involved cost and the
feasibility of the physical implementation.

This paper is organized as follows: Section II describes
general concepts related to FSS; additionally, in Subsection
II-A, we specify the structure of the periodic element to be
adjusted in this work, as well as the objectives involved in
the optimization process. Section III covers the fundamental
concepts related to multiobjective optimization and describes
the NSGA-II algorithm. The simulation results achieved by
NSGA-II in the FSS design are presented and analyzed in
Section IV and, finally, Section V brings the general conclu-
sions and perspectives for the continuity of this research.

II. FREQUENCY SELECTIVE SURFACE

Frequency selective surfaces (FSSs) are resonant periodic
structures using the micro-strip technology well-established
in the literature. The numerous applications of FSSs have
a major importance in the electromagnetic context and are
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commonly related to microwave and optical filters [1]. In
recent years, these structures have been explored in different
applications, such as Radome for aviation [8], wave polarizers
[9], metamaterials invisible cloak [10], and absorbers [11].

In a general way, the elements of a FSS are designed with a
conductor material using lines or slots arranged according to a
predefined pattern or in an aperture complementary geometry
over a substrate [12]. With respect to the structure type, the
FSSs are usually divided in capacitive and inductive elements.
If the structure is arranged as conductor elements, it is consi-
dered as capacitive and acts as a band-stop filter; on the other
hand, if the structure is composed of slots in a metal surface,
it is inductive, with a behavior similar to a band-pass filter
[13]. When the FSS elements have resonant characteristics, the
inductive FSS presents total transmission around the resonant
frequency, while total reflection is observed in the case of
capacitive FSSs [1]. The FSS resonant frequency depends on
the inductive/capacitive character created by the thickness and
shape of the structure lines, the permittivity of the substrate
material and the dimensions of the array element. Additionally,
the behavior of the FSS is also influenced by the frequency,
the incidence angle and the polarization of incident wave.

Simple FSS geometries can be designed by means of an
approximation via equivalent circuit, which is composed of
resistors, inductors and capacitors. This method was used
by Marcuvitz [14] to represent waveguides as an equivalent
circuit. The analytical methods for the FSS calculation and
the design of simple geometric structures, such as square loop
and Jerusalem cross, are described in detail in [3].

The FSS specifications have several considerations, as the
definition of the geometrical shape of the periodic element, the
type and the thickness of substrate material, and the resonant
frequency. All these aspects need to be adequately managed
in order to satisfy the application constraints.

Among the various FSS applications, this work focuses
on the microwave absorber application. This class of device
is used to reduce the electromagnetic energy incident in a
certain material. In practical applications, the absorbers can
be attached to resonant cavities, along with antenna Radome,
in order to mitigate interference problems and signal coupling.

In this scenario, the effective configuration of the FSS has
to be determined taking into account several requirements,
such as bandwidth, operation frequency, angle of incidence
and |S21| level. Therefore, the FSS design is, in fact, an op-
timization problem with multiple performance criteria, which
need to be concomitantly optimized.

In Section II-A, we present the basic structure of the
periodic element considered in this work, as well as the set
of adjustable parameters and the objective functions related to
the underlying MOO problem.

A. Design and Configuration

We considered a double-layer FSS whose periodic element
is the square loop depicted in Fig. 1, similarly to the work
of [15]. The capacitive FSS was chosen since we intend to
build a band-stop filter with a significant |S21| in the X-band
(8 GHz – 12 GHz). The choice of the FSS stop-band as the

X-band was motivated by the possibility of future prototyping
and the availability of equipment capable of analyzing the
characteristics of the prototype up to this band. For similar
reasons, a commonly used substrate named FR4 was adopted,
with a thickness of 0.762 mm for each layer, a dielectric
constant of 4.4 and a dielectric loss tangent of 0.02.

Fig. 1. Unit cell optimization model. Orange indicates conductor area.

The behavior of a band-stop filter is achieved by incor-
porating a square loop on each side of the FR4 and by
separating them by a distance H , so that each square loop
is responsible for a resonant frequency, as discussed in [3],
and the distance between the layers of FR4 is responsible for
the electromagnetic coupling.

The adjustable parameters of the periodic element are
highlighted in Fig. 1: H – distance between the layers; LUP

– average perimeter of the up square loop divided by four;
LDW – average perimeter of the down square loop divided by
four; offIntUp – internal distance from LUP ; offExtUp –
external distance from LUP ; offIntDw – internal distance
from LDW ; offExtDw – external distance from LDW . For
each of these parameters, we established a minimum and a
maximum value in order to ensure that the frequency response
of the FSS is approximately concentrated around the X-band.

The parameter offsetPBC, which corresponds to the dis-
tance between the upper copper trail and the periodic boundary
condition, remained fixed, as well as the thickness of the
substrate (e).

As mentioned in Section I, we propose to use a
MOO algorithm to design the geometry of the periodic
element. Let x = [H,LDW,LUP,offIntDw,offExtUp,
offIntDw,offIntUp] be the parameter vector describing a
candidate structure for the FSS, which contains the values
for the seven aforementioned adjustable parameters. In this
work, we aim at obtaining the optimal solutions considering
two objectives: (1) maximum bandwidth and (2) maximum
average attenuation in the stop-band. The former objective
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was mathematically represented by the evaluation function
f1(x) = 1

bandwidth , which must be minimized. The bandwidth
is determined as the size of the band located between the
cutoff frequencies in the frequency response of the FSS, which
correspond to the frequencies at which the magnitude is −10
dB. The latter objective is associated with the evaluation
function f2(x), which must also be minimized and corres-
ponds to the average value of the magnitude of the frequency
response below −10 dB. Therefore, our goal is to minimize
both functions in order to find the Pareto Front, which means
obtaining alternative structures with large bandwidth and with
a good average attenuation.

III. MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization (MOO) problem is characte-
rized by the existence of several evaluation criteria for each
candidate solution, which must be simultaneously optimized.
As a rule, the objectives are conflicting, which means that
the goal in this task is to retrieve a set of optimum trade-offs
among the objectives.

A fundamental concept in MOO is known as dominance
[5], [6]. A solution x1 ∈ Ω, where Ω denotes the search space,
dominates a solution x2 (denoted as x1 � x2) if, and only if,
x1 is better than or equal to x2 considering all the objectives,
and there is at least one objective for which x1 is strictly
better than x2. In this case, x1 represents a better compromise
between the objectives when compared with x2.

Therefore, the challenge in MOO problems consists in
obtaining the set of all non-dominated solutions in the search
space, which corresponds to the Pareto set [5], [6].

Another peculiarity of MOO problems is the necessity of
dealing with two different spaces during the search: (i) the
search space Ω itself, where all candidate solutions x lie, and
(ii) the objective space F . Each solution in Ω can be mapped
to a point in the objective space F by computing the value of
each objective function fi(·), i = 1, . . . ,M for x ∈ Ω.

Having this aspect in mind, the search process in MOO can
be also visualized in the objective space, where we want to
find the region containing all the non-dominate solutions, i.e.,
the region in F associated with the Pareto set, which is the
so-called Pareto front [5], [6].

Any strategy designed to solve a MOO problem aims at
obtaining a diverse set of non-dominated solutions that are
adequately spread along the Pareto front, in order to attain a
rich set of trade-offs between the objectives. This perspective
is particularly interesting when the decision about which
solution will be effectively implemented is taken a posteriori,
i.e., after the search process is concluded.

In this context, meta-heuristics emerge as promising alter-
natives, since they are less sensitive to the shape of the Pareto
front (e.g., convex or non-convex), and can be readily applied
to different problems requiring a minimum amount of a priori
information. Additionally, since these methods typically work
with a population of candidate solutions, they are capable
of finding multiple solutions in the Pareto front in a single
execution [5], [6].

In particular, evolutionary algorithms occupy a prominent
position in the MOO literature. Among the well-established

methods, it is safe to affirm that the NSGA-II (Nondominated
Sorting Genetic Algorithm II) is one of the most famous
and most explored methods, especially when the number of
objectives is not large, achieving excellent results in several
applications [4], [5], [7].

In this work, we employed NSGA-II to perform the optimi-
zation of the parameters of the periodic element in a FSS. Even
though there are more recent MOO methods, including NSGA-
III [16], a more sophisticated version of NSGA-II designed to
cope with many-objective optimization, we decided to begin
our research by investigating the potential benefits of a MOO-
based design strategy for FSS considering a classical, yet
powerful, algorithm.

A. NSGA-II

The evolutionary method known as NSGA-II is an elitist
genetic algorithm specially-tailored for MOO, which presents
two main features: (i) a sorting mechanism of solutions based
on the level of non-dominance; and (ii) a selection criterion
based on a crowding distance for preserving diversity in
the objective space. Algorithm 1 presents the pseudocode of
NSGA-II. For more details about the implementation of each
step, we refer the reader to the work in [7].

At each iteration i, standard recombination and mutation
operators are used to create an offspring population Qi from
current population Pi (Lines 5 and 6). Next, the candidate
solutions in the combined population Pi ∪ Qi are evaluated
considering the objective functions of the problem (Line 7),
and, then, are ranked according to a non-dominance criterion
(Line 8).

More specifically, the algorithm separates the solutions in
subsets (or fronts) Sk, putting in the same subset individuals
that present the same level of non-dominance. The first front,
S1, contains the non-dominated solutions within the current
repertoire Pi ∪ Qi. Therefore, S1 corresponds to the subset
of the best solutions found, which potentially includes Pareto-
optimal solutions.

The second front, S2, contains the individuals that are
dominated by at least one solution from S1, but are mutually
non-dominated. In the general case, the individuals in front
Sk are dominated by at least one solution from the previous
fronts Sl, l < k, and are mutually non-dominated.

After the solutions are ranked, the algorithm progressively
tries to insert individuals in the next population Pi+1, starting
from the best front S1 (Lines 9 to 16). If the number of
individuals in the current front is larger than the number of
available spots in Pi+1, then a selection procedure is applied,
giving preference to the solutions that occupy less crowded
regions in the objective space. Otherwise, the entire front can
be included in Pi+1.

In order to select a subset of solutions from the same front, a
measure called crowding distance (CD) is computed. For each
solution xi, CDi corresponds to the volume of the hypercube
delimited by the solutions adjacent to xi in the objective space.
Hence, larger values of crowding distance indicate that the
individual lies in a less crowded region of the objective space.
Therefore, in order to increase diversity and, hopefully, achieve
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a good coverage of the Pareto front, solutions presenting large
values of crowding distance are preferred.

Algorithm 1 NSGA-II
1: Function [P] = NSGA-II(N ,pm,pc,T )
2: i⇐ 0; Pi ⇐ initialize(N )
3: while i < T do
4: Qi ⇐ crossover(Pi, pc)
5: Pi,Qi ⇐ mutation(Oi,Qi, pm)
6: FP ,FQ ⇐ evaluation(Pi,Qi)
7: S ⇐ non-dominated-sorting(Pi,Qi,FP ,FQ)
8: Pi+1 = ∅; k = 1
9: while |Pi+1|+ |Sk| ≤ N do

10: Pi+1 ⇐ Pi+1 ∪ Sk; k ⇐ k + 1
11: end while
12: S∗k ⇐ select-crowding-distance(Sk ,N − |Pi+1|)
13: Pi+1 ⇐ Pi+1 ∪ S∗k ; i⇐ i+ 1
14: end while

The user-defined parameters of NSGA-II are: the number of
individuals in the population (N ); the probabilities of mutation
and crossover (pm and pc, respectively) and the maximum
number of iterations (T ).

IV. ANALYSIS OF RESULTS

In this section, we present the results obtained with NSGA-
II when applied to the design of the dual-layer periodic
element described in Section II-A.

The simulations were carried out using Matlab R© and
FEKO R©, considering an AMD FX(tm) 8350 Eight-Core Pro-
cessor, with 4.00 GHz, 32 GB of memory and a 64-bits
operational system. The parameters of NSGA-II were defi-
ned according to preliminary experiments and assumed the
following values: N = 15, T = 21, pm = 0.6 and pc = 1.0.

It is important to remark that besides implementing the
MOO algorithm, we also had to establish a communication
mechanism between Matlab R© and FEKO R© in order to run the
electromagnetic simulation in the latter software each time a
candidate solution of NSGA-II needed to be evaluated. The
entire simulation took over than seven days to be completed,
even using a relatively small number of individuals and
iterations, which constitutes a very time-consuming process.

Fig. 2 exhibits the population Pi in the objective space
maintained by NSGA-II at different iterations i of the search
process. It is possible to observe that the algorithm tends to
move the individuals towards the regions of small values of
f1(·) and/or of f2(·), discovering more adequate trade-offs
between the objectives.

In fact, if we consider all the solutions displayed in Fig.
2, it is possible to identify six non-dominated individuals in
the final population. In order to facilitate the visualization,
we show in Fig. 3 the non-dominated solutions obtained
by NSGA-II. Interestingly, some of these non-dominated so-
lutions were discovered by NSGA-II in an early stage of
the search process, which means that the sorting mechanism
accompanied with the selection procedure adopted in NSGA-
II succeeded in preserving the non-dominated solutions found
during the search process.

The non-dominated solutions highlighted in Fig. 3 represent
a potential Pareto front for our problem, since we cannot
guarantee whether they are, indeed, Pareto-optimal solutions.

Fig. 2. Distribution of the population evolved by NSGA-II in the objective
space, considering different iterations of the search process.

Fig. 3. The non-dominated solutions found by NSGA-II, representing a
potential Pareto front for the problem.

Nonetheless, each of them offers a different trade-off between
bandwidth and average transmission of |S21| below −10 dB,
being pertinent alternatives for the implementation of the
periodic element of the FSS.

Para, Tab. I presents the values of the bandwidth (and its
inverse) along with the average transmission of |S21| below
−10 dB associated with the non-dominated solutions found
by NSGA-II.

TABLE I
PERFORMANCE ACHIEVED BY NON-DOMINATED SOLUTIONS.

Pareto Front
Individuals

Bandwidth
(GHz) f1(·)

(
1

Hz

)
f2(·) (dB)

1 9.6228 1.0392e−10 −32.2272
2 9.6368 1.0377e−10 −31.6898
3 10.0920 9.9088e−11 −30.0712
4 9.6718 1.0339e−10 −31.4765
5 9.9519 1.0048e−10 −31.3235
6 9.9589 1.0041e−10 −30.2953

It is possible to notice in Tab. I that the bandwidth achieved
by the obtained solutions is quite large. Moreover, all the
solutions attained an adequate level of average transmission.
In other words, with a single execution of NSGA-II, we
were able to obtain six candidate solutions, each leading to
a different specification for the double-layer periodic element,
which achieved desirable performances for both objectives.
The possibility of obtaining a set of diverse solutions, each

4
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representing a different trade-off between the involved objec-
tives, is precisely the main advantage of exploring a multiob-
jective optimization approach for this problem.

In Fig. 4, we show the frequency responses associated
with three solutions selected from the non-dominated set. In
particular, the chosen solutions correspond to individuals 1,
3 and 5 from Fig. 3, which are indicated by blue, black and
red circles, respectively. Individuals 1 and 3 are the extreme
solutions at the potential Pareto front: while individual 3
has the largest bandwidth, individual 1 has the best average
transmission below −10 dB. On the other hand, individual
5 achieved an intermediate level of bandwidth and average
transmission.

Moreover, the obtained results reveal a good |S21| in the
X-band for all individuals on Fig. 4. Also, it is important to
point out that the relative bandwidths of 87.84%, 88.20% and
88.17% to individual 1, 3 and 5, respectively, are obtained with
a simple design and approximately 5.8 mm thickness structure
on average, which represents a thickness per lambda max of
0.1246 for individual 1, 0.1234 for individual 3 and 0.1241
for individual 5.

Fig. 4. Transmission coefficient (|S21|) associated with three individuals
from the potential Pareto Front.

V. CONCLUSION

In this work, we employed a multiobjective approach to the
design of the periodic element of a FSS acting as a microwave
absorber in the X-band. In particular, we explored the NSGA-
II algorithm to adapt the parameters of a dual-layer square
loop FSS in order to simultaneously optimize the bandwidth
and the attenuation in the stop-band.

The obtained results revealed that NSGA-II was capable of
finding some alternative non-dominated solutions belonging to
a potential Pareto front, each of them offering a different trade-
off between the desired objectives. It is interesting to remark
that the |S21| of −10 dB on X-band was successfully achieved
for all solutions in the potential Pareto Front. Moreover, we
also found structures with average transmission inferior to
−30 dB, which means a very good absorber. At the same
time, all the non-dominated solutions found by NSGA-II can
be considered as ultrawideband filters.

Therefore, the NSGA-II proved to be an effective strategy
for dealing with the multiple objectives related to the fre-
quency response of the FSS, discovering alternative confi-

gurations of a basic geometry with adequate bandwidth and
attenuation, without using different kind of materials (only
FR4), or more complex geometries.

Evidently, there are several aspects that need to be further
developed in future researches. It is certainly relevant to
seek for strategies to reduce the computational cost of the
optimization process, which is mainly due to the intensive
electromagnetic simulation involved in each evaluation. Addi-
tionally, this study has to be extended in several directions,
by considering more complex structures, or even additional
objective functions, as well as other scenarios considering dif-
ferent polarizations and incidence angles for the FSS. Finally,
a more thorough comparative analysis including other MOO
algorithms needs to be performed.
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