
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’19, 29 DE SETEMBRO à 02 DE OUTUBRO DE 2019, RIO DE JANEIRO, RJ

RaspBed: a low cost experimentation platform based
on Raspberry Pi for wireless communication studies

João Francisco Nunes Pinheiro, Ezequias Márcio Silva de Santana Jr, Tarcisio Ferreira Maciel

Abstract— In this paper we propose a low cost platform for the
study and teaching of radio communications, making it possible
to reduce the gap between practice and theory in this area.
The platform is based on experimental testbeds that are already
functional in real world, allowing experimenters to test their
developed theory in real world hardware. But since those tend to
use expensive hardware, we aimed at using simpler but effective
hardware, making this platform more accessible for deployment.
We show here all components of the platform and what are their
roles and costs. Also we provide a few examples of usage of the
platform, guiding the user through its basic capabilities.

Keywords— Testbed, Raspberry Pi, USRP, Mobile Communi-
cations, GNU Radio, RTL-SDR

I. INTRODUCTION

Wireless communications have experienced huge advances

since the introduction of the 1st Generation (1G) of cellular

systems – mainly focused on analog voice services – until

the commercial deployment Internet Protocol (IP)-based fully

digital 4th Generation (4G) systems – centered around modern

multimedia services [1]. Moreover, with the popularization of

smartphones and the traffic growth forecasts for the upcoming

5th Generation (5G) systems in 2020 and beyond [2], wire-

less communications will solidify their already indisputable

position in the daily life of our modern connected society.

Along this evolution path, radio communication rose to a

new level of relevance in telecommunications careers, since it

is the fundamental basis of such wireless systems and their

newest technologies (such as massive MIMO and mmWave

communication) that play as pillars for the 5G wireless sys-

tems [1].

Consequently, many innovative solutions populated the liter-

ature of wireless communications, such as polar codes [3], hy-

brid beamforming, network-assisted Device-to-Device (D2D)

and Vehicle-to-Anything (V2X) communications [1]. Most of

these solutions are conceived, evaluated, and optimized fol-

lowing a theoretical approach of studies, mainly concentrated

in software simulations and analytical studies, and have their

physical concretization only in rare research platforms [4] or

later when they arrive at the industry as products.

While it is relatively accessible for telecommunication pro-

fessionals to get in contact with the theory of communications,

João F. N. Pinheiro, e-mail: joao@gtel.ufc.br, Ezequias M. S. de Santana Jr,
e-mail: ezequias@gtel.ufc.br, Tarcisio F. Maciel, email: maciel@gtel.ufc.br,
Wireless Telecommunications Research Group, Teleinformatics Engineering
Department, Center of Technology, Federal University of Ceará, Fortaleza,
Brazil. T. F. Maciel was supported by CNPq under the grants 426385/2016-0
and 308621/2018-2. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001.

the contact with hardware and study platforms is still quite

limited nowadays despite the efforts of many institutions that

made platforms available to the scientific community over the

Internet [5].

On the one hand, the importance of radio communications

is crescent and presses for improving the formation of future

telecommunications professionals in both theory and practice.

On the other hand, the costs of deploying radio platforms

for studies limits the opportunities of these professionals to

have a hands-on contact with radio communications, creating

a learning gap between theory and practice. In this context,

Software-Defined Radio (SDR) appears as a promising solu-

tion to reduce this gap, by offering the possibility of imple-

menting different radio systems in software (with close-enough

hardware limitation concerns such as real time sampling and

synchronization) which are coupled to a flexible radio front-

end that allows for real physical communication [6].

Despite cost reductions, SDR platforms for radio com-

munication studies are still relatively expensive in Brazilian

terms. Inspired by this problematic, in this paper we propose

an Open Source experimentation platform that combines low

cost SDR devices and computational resources and offers an

alternative to assist in the theoretical and practical studies

of telecommunications professionals. The remainder of this

paper is organized as follows: Section II presents the platform

components and specifications, for both hardware and software

components. Section III presents how the platform can be

used by an experimenter and show basic examples. Section IV

presents the achieved conclusions of this work.

II. PLATFORM DESIGN AND DESCRIPTION

Based on experimental testbed models such as [7], [8], this

platform uses a server to allocate resources linking virtual

machines and hardware resources, namely Universal Software

Radio Peripherals (USRPs) and Raspberry Pi (RPi) boards

equipped with RTL-SDR dongles, which enables practical

studies on radio communications, making it possible for stu-

dents and professors to demonstrate and implement practical

experiments. Thus, basic concepts of this area can be seen

and verified in the real world physical communications. The

proposed testbed architecture can be seen in Fig. 1.

The testbed is composed of a main server, responsible for

allocating virtual machines with or without USRPs attached to

them, according to the requirements of the experiments, and

RPi boards with RTL-SDR radios attached to them. Together,

these two main components of this system can implement

a complete radio transmission system, from the data source

SBrT 2019 1570559061

1

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’19, 29 DE SETEMBRO à 02 DE OUTUBRO DE 2019, RIO DE JANEIRO, RJ

Fig. 1. System Architecture

up to the transmission in a first device through the radio

channel and reception and data recovery in a second device.

The components of the system will be described in detail in

the sections in the sequel.

A. Hardware Components

1) Server: The server works as a central controller of the

testbed, being the main component of the testbed. It runs the

rolling release Arch Linux [9] distribution in order to ease

updates and maintenance.

Due to the high computational demand, the following

requirements are the minimum in order to accommodate at

least 2 experimenters using the platform at the same time,

maintaining good performance:

• Motherboard: Intel Desktop Board DH61BE

• CPU: Intel(R) Core(TM) i5-2310 CPU @ 2.90GHz

• SSD: Kingston A400 240GB

• Memory: 2x 4GB DDR3 1600MHz

• Power Supply: According to your hardware specifications

• USB 3.0 support is a must

Since it will be responsible for managing all allocation and

managing software and some of the hardware components of

the testbed, it can be said that this system is the main system

of our platform. The main softwares will be described over

the next sections, specially Section II-B

2) Universal Software Radio Peripherals: USRPs (see

Fig. 2 right image) are SDRs created for usage in low cost

experimentation, with support to a large number of open

source softwares, such as GNU Radio. For this platform, the

model used was the USRP B210 from Ettus Research, that

operates on frequencies from 70 MHz up to 5 GHz [10]. They

are equipped with USB 3.0, a Xilinx Spartan 6 FPGA and

AD9361 Analog transceptors, capable of handling full duplex

Multiple Input Multiple Output (MIMO) communications with

2 transmit or 2 receive antennas.

To manage these radios, we used the UHD drivers from

Ettus Research git repository available in [11].

An important aspect for the best operation of these radios is

the need for USB 3.0 controllers in the machines that will use

the radios. This is required due to the high sample rate that

they are capable of achieving, which goes up to 56 MHz for

Single Input Single Output (SISO) systems and 30.72 MHz

for 2× 2 MIMO systems [12]. Because of that, some further

configuration is required when allocating virtual machines

with attached USRPs, so that these machines have compatible

USB 3.0 controllers.
3) RTL-SDR: RTL-SDR are low cost SDRs that aim at the

reception of AM, FM and digital television signals (see Fig. 2

left image).

The model used in our testbed is the RTL2838, which

supports up to 3.2 MHz sample rate. This radio can be used

only as receptor. It has a Elonics E4000 tuner, which operates

in frequencies from 52 MHz to 1100 MHz and from 1250 MHz

to 2200 MHz [13].

To manage it, we need the librtlsdr, which is a library

with the necessary tools to manage RTL-SDR radios.

Fig. 2. RTL2838 device (left) and USRP B210 device (right).

4) Raspberry Pi: Raspberry Pi (RPi) (see Fig. 3) is a low

cost, credit card sized computer board intended to accessible

education in programming and computer skills. The main

operating system used in this platform is Raspbian, a Debian-

based Linux distribution. Nevertheless, other Ubuntu flavors

and Windows IoT core are also supported.

Fig. 3. RPi 3 board.

Among its specifications [14], it is worth mentioning its

ARM Cortex A53 processor, 1 GB of RAM and its 10/100
Ethernet, 802.11n, Bluetooth 4.1, 40-pin GPIO interfaces,

making it connectable and expansible to other technologies.

With these specifications, the RPi board has been chosen

to host our RTL-SDR dongles, since it has enough capacity

to handle the SDR resources, providing the users with the

capacity to collect real-world data or, for simple experiments,

processing it in real time. For more complex experiments,

we recommend that the data collection be done at the RPi

devices and that processing be done afterwards in a more

powerful computer, so that the experiment’s performance are

not affected.

Due to compatibility issues with some RTL-SDR libraries,

we opted to use the Ubuntu Mate linux distribution, in

which the graphical interface was disabled for performance

improvement, i.e., so we dedicate all available resources to

the tasks associated with the connected RTL-SDR device.

The experimenters can access the RPi computers using a

SSH terminal. In order allow them to use some graphical tools,

such as the GNU Radio Companion [15], we have enabled X

forwarding. Note that the use of the graphical interface is only

2

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’19, 29 DE SETEMBRO à 02 DE OUTUBRO DE 2019, RIO DE JANEIRO, RJ

recommended for simple experiments or during the design

phase of the studies due to the limited processing power of

the RPi boards.

B. Software Components

1) GNU Radio: GNU Radio is an Open Source tool aimed

at signal processing. This software allows the usage of Soft-

ware defined radios, like USRP and RTL-SDR, so that users

can have the experience of implementing their own simulated

or real radio systems.
It works on a block based IDE. These blocks implement

most of signal processing functionalities and are organized

in a “development” canvas that interconnects different blocks.

The connections will form a complete signal processing chain,

from the source of the data, like audio sinks or SDRs, passing

by filtering, data processing, data recovery or any other steps

required in a signal processing or radio transmission chain.
Due to its ease of use and completeness, we chose this

software as main development environment to be supported by

our platform. Its integration with available SDRs is supported

by different blocks that are pre installed in all resources in the

testbed. Finally, since this software is open source, it is open

to developers to create and implement new blocks, promoting

a larger variety of experiments to be executed.
2) Virtual Machines: In the testbed, all the computer re-

sources are allocated to the experimenters in a virtualized way.

In order to the users to have access to the USRPs, which

require more computing power that the RPi can offer, we

have created a Virtual Machine (VM) server. This server can

allocate virtual machines with predefined software installed,

that meet the requirements for usage with SDRs.
For better performance, we have used Kernel Based virtu-

alization (KVM) with the libvirt interface, so we could

control the hypervisor with Python scripts [16].
In our setup, the virtual machines come with Ubuntu 18.04

with all USRPs and RTL-SDR drivers installed and up to date,

as well as with GNU Radio Companion [15].
These VMs are based on a previously created template, that

is cloned every time a user requests a new VM. Each VM

has a total storage capacity of 10 GB and can have 1 or 2

virtual CPUs, and 1 to 4 GB of RAM. The testbed users

and administrators need to reserve the resources they need

carefully: on the one hand, if they allocates a VM with too

many resources, later they might not be able to allocate more

VMs; on the other hand, with too few resources they might

have a poorer performance than expected.
3) Web Interface: So the users could have an easy access to

this platform, a Web Interface was created, making it possible

for them to perform allocation and management of resources

independently. This interface was developed using Flask, a

Python micro-framework for web development. This provided

a clean and easy to use front-end for the users, while also

controlling the back-end and resource management. Illustrative

screenshots can be seen in Figs. 4 to 6
This interface is freely available on our GitHub repository

[17].
This interface has a user control, so new users can be added

and removed as needed, and a resources allocation control.

Fig. 4. Virtual Machine allocation and access screens

These resources are basically virtual machines (with or without

USRPs) and RPis.

Each hardware resource (USRP or RPi) needs to be pre-

configured in two configuration files: one for the USRPs and

other for the RPis. After that, the web interface needs to be

restarted.

Finally, after the resources are allocated, the interface pro-

vides the user with commands to access the allocated resources

via a remote SSH terminal, as shown in Fig. 6.

Fig. 5. Main interface

III. USAGE EXAMPLES

Over the following sections, we are going to present three

basic experiments used to test our platform. It is worth to

mention that this platform is able to perform not only these, but

many more experiments in regard to radio communications.

The ones shown here are to be used as a starting point for the

users to develop and test their own experiments.

The basic usage of this platform can be done in the

following way: First the user logs in the platform. Following,

it decides which resources he needs and allocates them, using

the main interface seen in Fig. 5. Finally, the experimenter

can access the resources with the instructions provided by the

platform, like shown in Fig. 4, and perform the experiments

that shall be introduced over the next sections. To finalize, the

experimenter needs to release the used resources so the next

3

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’19, 29 DE SETEMBRO à 02 DE OUTUBRO DE 2019, RIO DE JANEIRO, RJ

Fig. 6. Virtual machine with GNU Radio being accessed using the available instructions on the web interface

one can use them. A flowgraph of a basic experiment is shown

in Fig. 7

Fig. 7. Basic Experiment flowgraph.

The following experiments were based on [6] and their

implementations are available on the platform’s GitHub repos-

itory [17].

A. Example 1 - Amplitude Modulation (AM)

This experiment means to illustrate the performance of a

communications system that makes use of AM. The user can

alter different parameters from different blocks that are used

to compose the transmitter and receiver in order to observe

the effects of those parameters on the recovered data.

The transmitter is executed on a VM. Here we implement

a dual tone signal using conventional amplitude modulation,

where the user can tweak parameters such as the modulation

coefficient and, after all operations, the AM signal is transmit-

ted using the USRP using the UHD:USRP Sink block.

The receiver is implemented on the RPi and its where the

AM signal is receiver on the RTL-SDR module, using the

RTL-SDR source block. After, the recovery of the message

is done, resulting in a wav file with the dual tone signal that

was transmitted. On the spectrograms, we can see the received

signal spectrum and the demodulated signal’s envelope. This

allows us to observer the effects of the tweaked parameters on

the transmitter side.

B. Example 2 - Frequency Modulation (FM)

This experiment aims at illustrating a Frequency modulated

communications system, by implementing Narrow Band FM

transmission and reception of an audio file. Here the user is

capable of not only observing the spectra of the transmitted

signal and the received one, but also recovering the audio file

on the receiver side.

The flowgraph (Fig. 8) is executed in a VM to perform

the transmission. It contains a file selector block, to choose

the audio file (wav format) to be transmitted, in conjunction

of a Narrow Band FM transmit block for modulation and a

UHD:USRP Sink to send the modulated signal over the radio

channel.

Fig. 8. FM transmission flowgraph.

In the receiver (see Fig. 9), which is executed on a RPi, the

FM signal is received by the RTL-SDR module, like in the

previous example. It is then treated on the receiver in a way

where the user can recover all information contained in the

signal’s phase and can also listen to the signal, when saved in

an audio file.

C. Example 3 - Digital Transmission

Here we will illustrate the performance of a Digital com-

munication system. Since the platform is limited in terms

of performance, the user uses it only to transmit the signal

an receive the raw data, leaving the post-processing to be

done offline in a more powerful machine. This is another way

of using our platform, for data collection only, leaving the

processing to a secondary location.

The experiment consists in a transmitter (see Fig. 10),

executed in a VM, that is responsible for sending a Quadrature

4

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’19, 29 DE SETEMBRO à 02 DE OUTUBRO DE 2019, RIO DE JANEIRO, RJ

Fig. 9. FM reception flowgraph.

Phase Shift Keying (QPSK) signal using a USRP, and a

receiver (see Fig. 11) in a RPi, that captures the raw data

samples and saves it into a file, using the RTL-SDR. Here the

user can tweak the kind of modulation that he/she wants for

the transmission, by altering the type of constellation used and

the roll-off factor of the transmitted pulse.

Fig. 10. Digital transmission flowgraph.

Fig. 11. Digital reception and demodulation flowgraphs.

IV. CONCLUSIONS

As detailed in previous sections, with this platform we make

it possible to perform experiments regarding radio commu-

nications, from data sources to transmission, reception and

decoding, thus reducing the gap between theory and practice

and enriching the teaching of this area.

The main point of this platform was its low cost when

compared to more robust and complex teaching platforms.

Also, with the usage of Open Source Software, we allow

the users not only to perform simple experiments, but also to

broaden the possibilities of experiments in the radio communi-

cations area by creating their own implementation of systems,

considering bigger scenarios and new techniques.

APPENDIX

PLATFORM COST ESTIMATES

In this section, we present an estimate of the cost, in BRL,

of the elements that compose the platform, shown in Table I.
TABELA I

EXAMPLE OF COST TABLE FOR THE PLATFORM.

Material Quantity Unit Price Total Price

Network Cables 3 R$ 3,90 R$ 11,70
Raspberry Pi 2 R$ 239,90 R$ 479,80
8GB SD Card 2 R$ 44,90 R$ 89,80
RPi Power supply 2 R$ 34,90 R$ 69.80
Virtualization server 1 R$ 2.500,00 R$ 2.500,00
USRP 2 R$ 5.420,00 R$ 10.840,00
RTL-SDR 2 R$ 150,00 R$ 300,00
Total - - R$14.291,10

REFERENCES

[1] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The Next Generation

Wireless Access Technology. Elsevier Academic Press, 1 ed., 8 2018.
[2] Ericsson, “Ericsson mobility report - q4 2018,” tech. rep., Ericsson,

2019.
[3] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, pp. 3051–3073, 7 2009.
[4] mmMagic Project, “mm-Wave based mobile radio access network for

5G integrated communications.” Online at https://5g-mmmagic.eu/.
[5] CorteXlab, “FIT/CorteXLab cognitive radio platform.” Online at https:

//5g-mmmagic.eu/.
[6] R. W. Stewart, K. W. Barlee, D. S. W. Atkinson, and L. H. Crockett,

Software Defined Radio using MATLAB & Simulink and the RTL-SDR.
Strathclyde Academic Media, 2015.

[7] Universidade Federal de Minas Gerais - UFMG, “UFMG FUTEBOL
Testbed.” Online at http://futebol.dcc.ufmg.br/index.html.

[8] Trinity College Dublin - Connect Centre, “Iris: The reconfigurable radio
testbed.” Online at https://iris-testbed.connectcentre.ie/.

[9] “Arch linux official website.” Online at https://archlinux.org.
[10] Ettus Research, “B200/b210/b200mini/b205mini.” Online at https://kb.

ettus.com/B200/B210/B200mini/B205mini.
[11] Ettus Research, “The usrpTM hardware driver repository.” Online at

https://github.com/EttusResearch/uhd.
[12] Ettus Research, USRP B200/B210 Bus series. Online at https://www.

ettus.com/wp-content/uploads/2019/01/b200-b210 spec sheet.pdf.
[13] S. Markgraf, D. Stolnikov, Hoernchen, K. Keen, C. Vogel, and H. Welte,

“rtl-sdr.” Online at https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr.
[14] The MagPi Magazine: The official Raspberry Pi magazine, “Raspberry

pi 3: Specs, benchmarks & testing.” Online at https://www.raspberrypi.
org/magpi/raspberry-pi-3-specs-benchmarks/.

[15] “Gnuradio official website.” Online at https://www.gnuradio.org/.
[16] “Libvirt python api bindings.” Online at https://libvirt.org/python.html.
[17] J. F. N. Pinheiro, E. M. S. de Santana Junior, and T. F. Maciel, “The

Raspberry Pi SDR testbed.” Online at https://github.com/jpinheiro228/
pi testbed.

5

