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Adaptive linear predictors in cascade for blind
deconvolution of non-stationary and

non-minimum-phase channels
Renan D. B. Brotto, Kenji Nose-Filho, Romis Attux, João M. T. Romano

Abstract— Linear prediction plays a fundamental role in digital
signal processing due to its interesting theoretical and practical
aspects. An important application is the problem of predictive
blind deconvolution. However, it is well known that the classical
predictive technique, which assumes the use of the mean squared
error (MSE) criterion together with a linear FIR (finite impulse
response) fails when the distortion system is non-minimum-
phase. In previous works, we have investigated alternative criteria
for blind predictive deconvolution, replacing the MSE, which
is related to the `2 norm, by the generalized `p norm, with
p 6= 2. The results were effective for some non-minimum-phase
systems, but not all of them, which clearly indicated a limitation
of the linear FIR structure. In the present paper, we propose to
employ a cascade of forward and backward linear predictors. The
approach is applied to the blind equalization of communication
channels. Due to the characteristics of the transmitted signals, the
`p criterion must be considered with p → ∞. We opt to use p = 4,
which corresponds to the MFE (Mean Fourth Error) criterion,
as a smooth approximation of the `∞ norm. Also, it allows
applying the LMF (Least Mean Fourth) adaptive algorithm, in
order to track non-stationary behaviors. Simulation results show
that the proposed solution is able to deal effectively with the blind
equalization of non-stationary and non-minimum-phase channels.

Keywords— adaptive linear prediction, cascade structure, le-
ast mean fourth (LMF) algorithm, non-stationary and non-
minimum-phase channels, predictive blind deconvolution.

I. INTRODUCTION

Linear prediction (LP) naturally evokes the works of Kol-
mogorov [1] and Wiener [2], which established the principles
of linear optimal filtering. The classical paper by Makhoul
[3], as well as the nice books of M. Bellanger [4] and P. P.
Vaidyanathan [5], provides an excellent survey about the theo-
retical relevance and several applications of LP. One of the first
uses of this method was in seismic signal processing, in the
predictive deconvolution problem [6]. The predictive approach
has also been used for the blind channel equalization problem
in communication systems [7]. However, it is well known that
the main limitation of predictive deconvolution concerns the
use of the linear structure associated with the mean-squared
error criterion (MSE), since this setup provides magnitude
equalization, but the phase response remains distorted.
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An alternative to perform phase equalization is to adopt a
criterion different from the classical MSE, which is related to
the `2 norm. In [8], [9] it has been shown that the `p norms,
with p 6= 2, are able to perform deconvolution in some non-
minimum-phase channels, but not in all of them.

With this limitation in mind, this work proposes the use of
MFE (Mean Fourth Error) criterion, which is related to the `4
norm, as a smooth approximation of the `∞ norm, alongside
with a cascade structure. This also allows the use of the LMF
(Least Mean Fourth) adaptive algorithm, in order to deal with
non-stationary channels.

Our work is organized as follows: first, we recall the
predictive deconvolution problem, and the main limitations
of the linear MSE approach. Then, we present the `p norms
as alternative criteria for blind deconvolution, together with
a procedure to choose the most suitable value for p. Having
chosen the criterion, we present the cascade structure along
with the rule to adjust its parameters. With our setup defined,
we present our simulation results for the equalization of
telecommunication signals. Finally, we present our concluding
remarks.

II. RECALL ON PREDICTIVE DECONVOLUTION

In simple terms, in the discrete-time context, the forward
(one-step) linear predictor can be implemented by the structure
of an FIR filter, which corresponds to the following difference
equation:

x̂f (n) =
K∑
k=1

akx(n− k), (1)

where the vector a contains the parameters a1, . . . , aK , refer-
red to as the forward prediction coefficients. Therefore, we
can define the forward prediction error as:

ef (n) = x(n)−
K∑
k=1

akx(n− k). (2)

In a similar way, we can define the backward predictor filter
as being:

x̂b(n−K) =

K∑
k=1

bkx(n− k + 1), (3)

where the vector b contains the parameters b1, . . . , bK , re-
ferred as to the backward prediction coefficients, and the
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backward prediction error is given by:

eb(n) = x(n−K)−
K∑
k=1

bkx(n− k + 1). (4)

The classical procedure to calculate the optimal prediction
coefficients a or b consists in minimizing the mean squared
error (MSE), E[e2f (n)] or E[e2b(n)], which leads to the well-
known Yule-Walker equations [4].

It is also known that the forward and backward prediction
error filters (PEF), when associated with the linear structure
and the MSE criterion, present two important properties [7]:
• The PEF works as a whitening filter, i.e., the error

signal e(n) tends to be uncorrelated as the number of
coefficients K increases.

• The forward and the backward PEF are FIR minimum-
and maximum-phase filters, respectively.

To see how these properties are related to the deconvolution
task, let us first introduce this problem.

H(z) W(z)s(n)
x(n)

e(n)

Fig. 1: Block diagram of blind deconvolution problem.

In Figure 1, we have an input signal s(n) that is distorted by
the channel H(z), originating the signal x(n). The objective
is to project a deconvolution filter, W (z), to compensate the
channel, producing the signal e(n), which is an estimate of
s(n). In the unsupervised version of the problem, the filter is
adjusted without the complete knowledge of the input signal
neither the channel.

Provided that the signal s(n) has uncorrelated samples and
the channel has minimum-phase (for the forward predictor)
or maximum-phase (for the backward predictor) response, the
PEF structure can be used as a deconvolution filter. As an
example of predictive deconvolution, we have the pioneer
work of Robinson [6], which uses a forward prediction error
filter in geophysics signal processing.

However, decorrelation is sufficient for equalization only
of minimum- or maximum-phase channels [7]. For more
general scenarios, we must explore a stronger property: the
independence between the samples of s(n). In the following,
we will present how the `p norms, with p 6= 2, explore the non-
linear decorrelation, which goes further in the independence
direction.

III. ALTERNATIVE CRITERIA FOR PREDICTIVE BLIND
DECONVOLUTION

In [9], we investigated how the `p norms, with p 6= 2, can
be used as alternative criteria for deconvolution. To do so, we
have the following optimization problem:

w∗ = arg min
w

T−1∑
n=0

|e(n)|p = arg min
w

||e||pp. (5)

Taking the gradient of (5) with respecto to w, we have:

∇wJ`p =
T−1∑
n=0

p|e(n)|p−1sign
(
e(n)

)
x(n− 1). (6)

Considering an ergodic process [10] and a large enough
number of samples, the sum in (6) converges to an expectation
operator [10], leading to:

∇wJ`p = E
[
p|e(n)|p−1sign

(
e(n)

)
x(n− 1)

]
. (7)

For the optimal predictor, we have:

∇wJ`p = 0

E
[
p|e(n)|p−1sign

(
e(n)

)
x(n− 1)

]
= 0.

(8)

Equation (8) shows that the minimization of (5) leads to a
non-linear decorrelation between the prediction error and the
input signal. As the past samples of the prediction error are
linear combinations of x(n− k), with k ≥ 1, an `p PEF with
an adequate order results in:

E
[
f
(
e(n)

)
e(n− k)

]
= 0, k ≥ 1, (9)

with f
(
e(n)

)
= p|e(n)|p−1sign

(
e(n)

)
.

According to equation (9), the `p prediction-error filters,
with enough coefficients, perform a non-linear decorrelation
between e(n) and its past samples. Now, if we adopt

f(s) =
d
(
log(p(s))

)
ds

, (10)

with p(s) as the probability density of input signal, in (9), we
have that the non-linear decorrelation is sufficient to provide
independence [11].

In addition to that, we can establish an interesting relation
between the `p norms and the Maximum Likelihood for
generalized Gaussian distributions [12], as we show next.

When applied to the deconvolution problem, the Maximum
Likelihood criterion is given by:

W∗ = arg max
w

JML(W)

= arg max
w

1

R

R∑
r=1

T−1∑
n=0

log
(
pS
(
wnx(n)

))
+ log

(
|detW|

)
,

(11)
where W represents the convolution matrix associated with
the filter w(n), wn it is the n-th line of W, with n =
1, 2, · · · T ; pS(·) is the probability distribution of s(n);
x = [x(0) x(1) · · · x(T − 1)]T ; T is the total number of
samples available and R denotes the number of realizations.

For the particular case in which we use a forward prediction
error filter, the convolution matrix corresponds to a triangular
matrix with unit diagonal, which leads to:

det (W) = 1. (12)

Applying (12) in (11), we have:
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W∗ = arg max
w

JML(W)

= arg max
w

1

R

R∑
r=1

T−1∑
n=0

log
(
pS
(
wnx(n)

))
.

(13)

The Maximum Likelihood criterion provides an unbiased
and efficient estimator, i.e., an estimator that is able to achieve
the Cramer-Rao bound, as more samples are used [13], [7].
However, this criterion requires the explicit knowledge of the
signal probability distribution. Fortunately, many distributions
of practical interest can be unified by the generalized Gaussian
[12], given by:

pS
(
s(n)

)
=

β

2αΓ(1/β)
e
−
( |s(n)− µ|

α

)β
(14)

where µ is the mean value of the distribution, Γ(·) is the
Gamma function, α is the spread parameter and β is the shape
parameter, both related by:

αβ = βE
[
|s(n)− µ|β

]
. (15)

For β = 1, (14) corresponds to the Laplacian distribution;
if β = 2, we have the classic Gaussian distribution. Finally,
as p → ∞, the generalized Gaussian approaches the uniform
distribution.

Applying the Maximum Likelihood criterion, with the na-
tural logarithm, to the generalized Gaussian distribution (with
µ = 0 for simplicity), we have:

JML(W) =
1

R

R∑
r=1

T−1∑
n=0

ln
(
pS
(
wnx(n)

))
= RTln

( β

2αΓ(1/β)

)
− 1

αβ
1

R

R∑
r=1

T−1∑
n=0

|wnx(n)|β

= RTln
( β

2αΓ(1/β)

)
− 1

αβ
1

R

R∑
r=1

T−1∑
n=0

|e(n)|β

= RTln
( β

2αΓ(1/β)

)
− 1

αβ
1

R

R∑
r=1

||e(n)||ββ .

(16)
Once the parameters α and β fixed, we have the following

optimization problem:

arg max
w

JML(W) = arg max
w

− 1

αβ
1

R

R∑
r=1

||e(n)||ββ

= arg min
w

1

R

R∑
r=1

||e(n)||ββ .

(17)

Equation (17) shows that maximizing the Likelihood cri-
terion is equivalent to minimize the sample average of the
`p norm, for p = β, of the prediction error e(n). From this
relation between p and β we have:
• For super Gaussian distributions [14], we choose 1 ≤ p <

2, with p = 1 for the Laplacian distribution.

• For a Gaussian distribution, we adopt p = 2.
• For sub Gaussian distributions [14], we use p > 2, with
p→∞ for the uniform distribution.

In [9] we provide a rather complete study on `p criteria
for predictive deconvolution, which shows that the `p forward
prediction error filters are able to perform the blind deconvo-
lution of some non-minimum-phase systems. However, it still
presents performance limitations according to the positions of
the zeros of the channel. In a way, our result meets that of
the work of Knockaert [15], which shows that the `p forward
prediction error filters, with p 6= 2, have all their zeros inside
a circle with radius 2 in the complex plane. In short, despite
the value of p in the `p criterion, there is a limitation in using
the `p forward prediction error filters which is intrinsically
connected to its linear structure. Hence, together with the
optimization criterion, the choice of a suitable structure for
the deconvolution filter is also an important step in its project.

In this work, and inspired by some well-known works in
both seismic deconvolution [16], [17], and channel equaliza-
tion [18], [19], we propose the use of a cascade of linear
forward and backward predictors. Comparing to the above
mentioned works, we have two goals in mind: first, we
aim to preserve the linearity of the filters, instead of using
the non-linear approach in [18], [19], in order to have a
relatively simple parameter optimization; second, we look for
an adequate adaptive procedure to make the scheme effective
in a non-stationary scenario.

IV. CASCADE PREDICTORS AND DECONVOLUTION

Fig.2 illustrates the proposed approach where, due to the
commutative property, the forward predictor can be written
in terms of the backward error and vice-verse. Since our
interest concerns communications signals, which are generally
assumed to present an independent and identically distribution,
the `p criterion to be employed in the structure optimization
must consider p→∞. We adopt p = 4, which corresponds to
the MFE criterion, as a smooth approximation of the `∞ norm.
This allows applying the LMF adaptive algorithm, in order to
track non-stationary behaviors. The updating procedure can
be simply derived from the scheme in Fig. 2, as shown in the
following.

x(n)

y1(n)

e(n)

B(z) A(z)

y2(n)

A(z) B(z)

Fig. 2: Scheme of the proposed adaptive procedure.

e(n) = y1(n−K)−
K∑
k=1

bky1(n− k + 1), (18)

3
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where y1(n) = x(n) −
∑K
k=1 akx(n − k), or, due to the

commutative property:

e(n) = y2(n)−
K∑
k=1

aky2(n− k), (19)

where y2(n) = x(n−K)−
∑K
k=1 bkx(n− k + 1).

From (18), we can express the MFE criterion by:

E[|e4(n)|] = E

∣∣∣∣∣
(
y1(n−K)−

K∑
k=1

bky1(n− k + 1)

)∣∣∣∣∣
4
 ,

(20)
or, from (19), by:

E[|e4(n)|] = E

∣∣∣∣∣
(
y2(n)−

K∑
k=1

aky2(n− k)

)∣∣∣∣∣
4
 . (21)

Hence, the update rule for the LMF [20] is simply given by:

ai(n) = ai(n− 1)+

µe(n)e∗(n)
(
y2(n− 1− i)e∗(n) + y∗2(n− 1− i)e(n)

)
,

bi(n) = bi(n− 1)+

µe(n)e∗(n)
(
y1(n− i)e∗(n) + y∗1(n− i)e(n)

)
, (22)

or, for real input symbols:

ai(n) = ai(n− 1) + µ(e3(n− 1))y2(n− 1− i),
bi(n) = bi(n− 1) + µ(e3(n− 1))y1(n− i), (23)

where µ is the step-size.
Now we present our simulation results.

V. RESULTS

First, we consider the communication channel switching
over three different situations: minimum-phase to mixed-
phase to maximum-phase responses. The minimum-phase
transfer function is given by H1(z) = 1.8 − 1.2z−1 +
1z−2; the maximum-phase response corresponds to H3(z) =
H1(1/z)z−2; and the mixed-phase response corresponds to
H2(z) = H1(z)H3(z). In all situations the channels are
normalized by their `∞ norm and fed, each one, by 30.000
samples generated by an i.i.d. discrete uniformly distributed
random variable with two symbols [−1, 1]. For the predictive
equalizer we consider a 5-tap forward and 5-tap backward
PEF, to be adapted by the LMF algorithm.

Besides the good performance of the algorithm, the first
simulation indicates the relevance of a certain degree of a
priori knowledge about the phase behavior of the channel,
which is related to the distribution of their zeros inside and
outside the unit circle. Having this in mind, we adopt as
benchmarks the 6-tap and 11-tap best delay Wiener filters.
The 11-tap one has been attained only for the mixed-phase
channel. This is because, for the minimum-phase, only the 5-
tap forward prediction structure intervenes in the equalization,
the same way that only the 5-tap backward prediction error

1 2 3 4 5 6 7 8 9

n 10
4
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6-tap Wiener Filter

11-tap Wiener Filter
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Fig. 3: ISI for the LMF algorithm (µ = 7.5e−4 - blue) and
for the 6-tap and 11-tap best delay Wiener filter (red).

affects the equalization of the maximum-phase channel. So,
the 6-tap Wiener filter represents the best solution to be
attained with a 5- tap forward PEF and a 5-tap backward PEF
respectively. Moreover, the 11-tap Wiener filter represents the
best result to be attained for the cascade structure for general
mixed phase channels.

In order to illustrate the above discussion, Fig. 3 depicts
the degree of intersymbol interference (ISI) along the whole
90.000 iterations of the algorithm. Such parameter is given by

ISIdB = 10 log10

∑
i |gi|2 −maxi |gi|2

maxi |gi|2
, (24)

where gi are the coefficients of the combined response G(z) =
H(z)A(z)B(z).

The ISI is presented in red for the two considered bench-
marks, i.e., the 6-tap and the 11-tap Wiener filters. The blue
curve corresponds to the cascade structure, adapted by the
LMF algorithm, for 100 Monte Carlo (MC) simulations. As
we can see, for the minimum and maximum phase channels,
the cascade structure almost reaches the best performance to be
attained with a 6-tap best delay Wiener filter. For the mixed-
phase channel, its performance is between the 6 and 11-tap
best delay Wiener filters.

In our simulations, we adopted the same number of taps for
the forward and backward PEF in the cascade. By doing so,
we are assuming, even implicitly, that the mixed-phase channel
has the same number of zeros inside and outside the unit
circle. In our next experiment, we evaluate how this symmetry
interferes in the cascade performance.

To do so, let us now consider the channel switching over the
three following mixed-phase transfer functions: H1(z), with
zeros z1 = 0.5ejπ/4, z2 = z∗1 , z3 = 0.7 and z4 = 1.5; H2(z),
with zeros z1 = 0.5ejπ/4, z2 = z∗1 , z3 = 1.5ejπ/3 and z4 = z∗3
and H3(z) with zeros at z1 = 0.5, z2 = 1.5ejπ/4, z3 = z∗2
and z2 = 1.5 (all of them normalized by their `∞ norm). We
show the results in Figure 4.
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Fig. 4: ISI for the LMF algorithm (µ = 7.5e−4 - blue) and
for the 6-tap and 11-tap best delay Wiener filter (red) for non-
stationary mixed-phase channels (variable zeros arrangement).

From the above result, we can see that the arrangement of
the zeros has a considerable effect on the cascade performance.
When we have more zeros inside (H1(z)) or outside (H3(z))
the unit circle, the cascade is close to the 6-tap Wiener filter.
For the case in which the channel has the same number of
zeros inside and outside the unit circle, and therefore match
to our assumption for the number of forward and backward
taps, the result is between the 6-tap and 11-tap Wiener filter.

Finally, in order to illustrate the behavior of the proposed
technique with noisy channels and multilevel modulation the
next presented result considers 4-QAM with symbols ±1± j.
We considered again the same switching channels of the previ-
ous simulation (normalized by `∞ norm), with the addition of
a white Gaussian noise, with zero mean, and a signal-to-noise
ratio of 30 dB.

Figure 5 shows the outputs xi(n) of the corresponding chan-
nel Hi(z), for i = 1, 2, 3 (again with 100 MC simulations).
The effect of the severe distortions is clear, rendering the
system to a closed-eye condition [21].

(a) x1(n) (b) x2(n) (c) x3(n)

Fig. 5: Channel outputs

Figure 6 presents the recovered signals ei(n), i = 1, 2, 3,
after 30.000, 60.000 and 90.000 iterations, respectively.

(a) e1(n) (b) e2(n) (c) e3(n)

Fig. 6: Recovered signals

As we can see, the recovered signals are formed by four well
defined clouds, i.e., in a opened-eye condition. These clouds

are centered at points different from ±1± j, which indicates
the necessity of a gain stage after the cascade [19]. Besides,
we can see a few points around the complex plane origin, due
to filtering transient effects.

VI. CONCLUSIONS

In this paper we proposed an alternative solution for pre-
dictive blind deconvolution of non-minimum-phase and non-
stationary channels driven i.i.d. discrete signals. The proposed
solution is based on the cascade of forward and backward
prediction error filters, the parameters of which are optimized
by the MFE. In order to deal with a non-stationary scenario,
such optimization is carried out by means of the LMF adaptive
algorithm. The presented results confirmed the performance
of the proposed solution in the blind deconvolution of non-
stationary and non-minimum-phase channels, with results
close to the ones attained with the best delay Wiener filters.
The presented analysis and results have shown that a cascade
of linear `p PEFs, associated to a simple adaptive procedure,
is able to achieve blind deconvolution in cases in which
classical solutions fail. This is a stimulating issue, since it
opens interesting perspectives both in practical and theoretical
points of view.
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autodidacte par rétroprédiction et prédiction,” in Proceddings of the
Colloque GRETSI, 1993.

[19] C. A. F. da Rocha, Técnicas prditivas para equalização autodidata. PhD
thesis, Faculdade de engenharia elétrica e de computação, Universidade

de Campinas, 1996.
[20] A. H. Sayed, Fundamentals of adaptive filtering. Wiley, 2003.
[21] J. Proakis and M. Salehi, Digital Communications. McGraw-Hill

Education, 5th ed., 2007.

6


