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CASCADE as Correlation Enhancer for CVQKD
Protocols

Micael Andrade Souza, Francisco Marcos de Assis, Bruno Barbosa Albert and Leocarlos Bezerra da Silva Lima

Abstract— We propose a secret key reconciliation approach for
CVQKD information reconciliation based on CASCADE protocol,
which works as a correlation enhancer, in order to ensure a
better utilization of binary quantized sequences from CVQKD
protocols. We make a probabilistic analysis of the initial block
size in order to control the expected value of the corrected errors
in the first step of CASCADE and to bound the amount of infor-
mation leaked. Our method achieved significant enhancements on
binary sequences with BER < 0.35 and improved sequences with
BER > 0.35 to became eligible for information reconciliation.

Keywords— CVQKD, Information Reconciliation, CASCADE.

I. INTRODUCTION

Quantum key distribution (QKD) was proposed by Bennet
and Brassard [1] as a solution for distributing key elements
securely over a quantum channel. QKD systems aims to attend
to a necessity of two legitimate parts (Alice and Bob) to
establish a secret random key given no previous shared in-
formation. The intruder (Eve) has an unlimited computational
power and has knowledge of each protocol step. Unconditional
security is based on the no-cloning theorem and the uncertainty
principle [2]–[4]. This is a major advantage over classical
cryptosystems, whose security relies on large prime numbers
factorization complexity as its advantages over eavesdropping,
putting itself in a vulnerable spot under quantum computing
evolution.

The setups for QKD have been divided between
the Discrete-Variable (DVQKD) and Continuous-Variable
(CVQKD) ones, where the CVQKD protocols, which aims
for secret key rates and transmission distances to be at last
comparable to DVQKD protocols, uses usual optical telecom-
munications setups and encodes information on continuous
modulation of electromagnetic field of coherent states. This
ability to use common optical telecommunication equipment
(Optical Multiplexers, amplitude and phase modulators, etc.)
enables large-scale deployment, as in urban networks [5], and
does not require operating conditions as controlled as single
photon detector used in DVQKD protocols.

Despite these advantages, as CVQKD continuous modu-
late the data (most setups follows the GG02 protocol [6],
where Gaussian random variables realizations are encoded
on electromagnetic field coherent modulation), the transmitted
and received measured states presents also continuous valued
discrepancies. Thus, one should choose (1) to correct the
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continuous values itself, leading to a high noise sensibility,
or (2) to quantize the numerical data, performing binary error
correction over the quantized values, which is the most suitable
solution [7]. The procedure responsible for performing error
correction is the information reconciliation (IR) protocol.

The first IR protocol proposed to be used with QKD was
CASCADE [8], under DVQKD protocols [1], [9], [10], whose
QBER (Quantum Bit Error Rate) doesn’t exceed 15% [1], [11].
On CVQKD, the quantization procedure adds complexity to
the system, where a good methodology needs to be applied
in order to acquire as many bits as possible from the conti-
nuous measured values. Some methods have been proposed
as a solution to the quantization problem as multidimentional
reconciliation [12], [13] and the SEC protocol [7], [14]. Howe-
ver, in most cases, they will gain gain two bits from each key
elements (coherent pulse transmitted from Alice to Bob) due to
the high bit error rates found. The complexity of extracting bits
from the continuous variable is also high. Recently, a Binary
Expansion Protocol has been proposed, relying on information
theory arguments of probability distributions [15] presenting
itself as a strong option over SEC reconciliation due to its
random variable optimal compression rate.

CASCADE has been well established aon DVQKD scenarios
but it hasn’t take a spot on reconciling continuous variable
generated keys, given its inherent high bit error rates resulting
of quantization procedures on CVQKD. In this work we
propose a secret key reconciliation approach for CVQKD
based on CASCADE protocol, which works as a correlation
enhancer, in order to ensure a better utilization of binary
quantized sequences from CVQKD protocols. After binary
expansion, the raw key’s binary version owned by Alice and
Bob will present high bit error rates as the expansion extracts
more bits from the continuous values. A proper manipulation
of CASCADE main parameters, as the initial block size, may
produce an appropriated trade-off between error correction and
information leakage. It is observed that the proposed applica-
tion of the CASCADE will ease the utilization of LDPC codes
with shorter lengths in order to complete the reconciliation
step.

The paper is organized as follow: Section II revisits the
CASCADE protocol, emphasizing the initial block size desig-
ning method and the leaked information estimate; Section III
introduces the initial block size modification proposed and its
implications on information leakage and error correction. Sec-
tion IV presents the Binary Expansion protocol and the results
of combining it with the proposed CASCADE modification.
Section V presents the final considerations.

SBrT 2019 1570558935
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II. CASCADE

CASCADE is a practical reconciliation protocol proposed in
[8] with the purpose of interactively correct errors between two
binary sequences: the raw keys owned by Alice and Bob. The
main idea is to divide Alice’s and Bob’s binary sequences into
smaller blocks, compare its parities (module 2 sum) and apply
a correction function over each mismatching parity block.
CASCADE became a well established information reconcili-
ation protocol, probably the most widely used IR protocol
[11], being able to reconcile binary sequences while leaks an
amount of information close to the theoretical limit over a
BSC (Binary Symmetric Channel) for a transition probability
up to 0.15. In CASCADE, the suitable error correction function
is BINARY [16], which performs a binary search to find an
error.

A. BINARY Description

For two non identical binary sequences A and B (owned
by Alice and Bob, respectively), an error may be corrected
by exchanging its parities if there is an odd number of errors.
Therefore, if the sequences A and B differ an odd number of
positions and Bob is the one correcting his sequence, BINARY
will perform the following procedure:

1) Alice sends to Bob the first half parity of her sequence;
2) Bob compares the received parity with his sequence first

half parity and determines if the odd number of error is
located in the first or second half;

3) After located in which half is the odd errors, step 1 and
2 are repeated splitting and comparing parities until an
error is located.

Example 1: Let {a1, a2, · · · , a8} and {b1, b2, · · · , b8} be
two binary sequences and the only different bit on in position
5, a5 6= b5. The error correction will proceed as explained
above. First, it will obtain the parity (⊗) of the sequence first
half, {b1, b2, b3, b4}, and will detect no parity mismatch. The
odd number of errors must be in the second half, than b5 to
b8 is now under analysis: the parity of {b5, b6} is compared,
resulting on a mismatch and an error is detected. Finally, b5
is disclosed and the error is located at position five.

B. CASCADE Description

The protocol proceeds in several steps. First, Alice and Bob
must decide the number of steps and the initial block size (k1).
Generally, let A = A1, A2, · · · , An and B = B1, B2, · · · , Bn

(Ai, Bi ∈ {0, 1}) be the binary sequences owned by Alice
and Bob, respectively. In the first step, both parts split their
sequences into d n

k1
e blocks of length k1, where the block v

in step 1 is defined by K1
v = {l : (v − 1)k1 < l ≤ vk1},

v = 1, · · · , d n
k1
e1. Then, for each block, they calculate the

parity and whenever there’s a parity mismatch, one error may
be corrected by BINARY.

At the end of first step, all blocks of length k1 has an
even number of errors, possibly zero. Therefore, for steps

1For example, in a sequence of length 16 and k1 = 4, v = {1, 2, 3, 4} and
the blocks K1

i will assign the positions K1
1 = {1, 2, 3, 4}, K1

2 = {5, 6, 7, 8}
and so on.

i > 1, Alice and Bob choose a ki and a random function
fi : [1 · · ·n→ [1 · · · d n

k1
e]] representing a permutation at step

i. With that, the block j at step i is defined by Ki
j = {l :

fi(l) = j}2. Now, Alice and Bob repeat the process of parity
exchange for each block Ki

j and perform BINARY to correct
an error. For now on, before advance to step i + 1, when an
error located at position l in the block Ki

j is corrected in a
step i > 1, it means that each step u < i contains a block with
an odd parity. Therefore, a set K may be formed by the blocks
Ku

v , with 1 ≤ u < i, containing the bit l, and the protocol
shall choose the smallest block in K to correct another error.
Let l′ be the corrected error position when the smallest block
on K was chosen. Another set B is created formed by the
blocks from step 1 to i containing l′. At this point, the set
K′ = K∪B \K ∩B is constructed and possess all odd parity
blocks from steps 1 to i. The protocol proceeds choosing the
smallest block in K′ and updating it until K′ = ∅ and conclude
step i.

C. Initial Block Size Design and Information Leakage

To explain the original k1 design method, first lets define
a binomial random variable X ∼ Bin(k1, pe) where k1
represents its length (number of trials) and pe is the success
probability. The variable X models the errors between Alice’s
and Bob’s sequences, being pe the error probability (or, in a
communication point of view, a BSC channel transition pro-
bability), and a success at position l represents the occurrence
of an error at this position.

After CASCADE first step, the probability of remaining 2j
errors on a certain block of length k1 is (1) the probability of
this blocks already have 2j initial errors (no error correction
would be applied) or (2) the probability of this block have
2j+1 initial errors (an error correction with BINARY would fix
one error). Than, the total probability δ(j) of a block of length
k1 to keep 2j errors after the first step could be expressed as

δ1(j) = P [X = 2j] + P [X = 2j + 1]. (1)

So, the expected value of remaining errors in a block of
length k1 after the first step is

E1 =

b k1
2 c∑

j=1

2jδ1(j) = k1p−
1− (1− 2p)k1

2
. (2)

In [8] the authors of CASCADE [8] made the choice of
the initial block size as the greatest integer satisfying two
conditions, as stated in Equations (3) and (4):

E1 ≤ 0.346, (3)

b k1
2 c∑

l=j+1

δ1(l) ≤ 1

4
δ1(j)→ P [X > 2j] ≤ 1

4
P [X = 2j]. (4)

The first condition imposes a small amount of errors when
step one is finished and the second one demand that, for

2Given the fi function, the block Ki
j is formed by all domain points led

to the image point j.
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TABLE I
CASCADE BENCHMARK

BER k1 I(4) Î(4) k1H(pe)

0.01 73 6.81 6.67 5.89
0.05 14 4.64 4.60 4.01
0.10 7 3.99 3.81 3.28
0.15 5 4.125 3.984 3.049
0.20 4 3.509 3.362 2.888
0.25 3 3.422 3.221 2.434
0.30 3 3.692 3.598 2.644

a given j, the probability of remaining 2(j + 1), · · · , bk1

2 c
errors after step 1 be smaller than the probability of remaining
2j errors. Both conditions guarantee a fast reconciliation
procedure (few steps will be needed).

With k1 chosen as stated above and ki = 2 · ki−1, the
information leaked (bits per block of size k1) after w steps
may be upper bounded by [8]:

I(w) ≤ 2 +
1− (1− 2pe)

k1

2
dlog(k1)e+

i∑
l=2

E1

2l−1
dlog(k1)e,

(5)
Table I gives the allowed largest values of k1, the amount

of leaked information after step 4 (I(4)) according to Equa-
tion (5) and the simulation results after step 4 (Î(4)) according
to the original implementation.

The values of k1, I(4) and Î(4) are the same as in [8],
for BER ≤ 0.15. The scenarios where 0.15 < BER ≤ 0.30
were simulated under the same k1 choice conditions, revealing
CASCADE behaviour under high BER conditions. In the range
0.15 < BER ≤ 0.25, the secret key is left with less than one
secrecy bit per block, which implies an excessive amount of
information leakage and, for BER ≥ 0.25, the protocol expose
more information bits than the block length, i. e., Î(4) > k1.

III. INITIAL BLOCK SIZE MODIFICATION

This Section describes the main contributions of this paper.
In the previous Section, it was shown that the protocol tends
to leak an extremely high amount of information for BER >
0.15, specially for BER ≥ 0.25. Since no application of
CASCADE has been proposed to operate in such BER levels
[11], [17], [18], commonly being analyzed for BER < 0.15,
it’s proposed a usage of CASCADE as correlation improover
by correcting some amount of error between the sequences
while leaks a controlled amount of information during several
reconciliation steps.

The idea is to adjust E1 by an arbitrary parameter ε, which
will indicates the fraction of errors that remains after the first
step. The subsequent steps shall proceed unmodified, doubling
k1 in each step advanced and performing recursive searches.

The proposed formulation demands that

E1 ≤ k1peε, (6)

and using Equation (2) in Equation (6), it is obtained

k1pe(1− ε)−
1− (1− 2pe)

k1

2
≤ 0. (7)

0 1 2 3 4

0

0.1

0.2

Step

B
E

R

ε = 0.80
ε = 0.85
ε = 0.90
ε = 0.95

Fig. 1. BER improvement for different values of ε and pe = 0.25

Therefore, for a fixed error rate and some ε previously
specified, there will be a finite set of integers that satisfies
Equation (7), which are the possible values of k1. Within this
set, the bigger value may be used.

Several simulations were performed in order to model the
behavior of the proposed modification under high BER scena-
rios, once E1 controls the error correction at the first step but
tells nothing about information leakage on further steps. First,
some information reconciliation simulations were performed
for BER = 0.25 and ε equal to 0.80, 0.85, 0.90, 0.95, shown
in Figure 1. Second, two step reconciliation simulations for
BER equal to 0.25, 0.35 and 0.45 and for ε assuming the same
values of Figure 1 were realized and the information leakage
estimated at each step, once Figure 1 revealed that at the third
step almost all errors have been fixed, meaning excessive infor-
mation leakage. The results are presented in Table II, where its
possible to see that information reconciliation proceeds in the
first step as expected, correcting errors proportionally to the
value of ε, but for some scenarios, a two step reconciliation
leaks more information than the theoretical bound given in
Equation (5). It is due to the modification made on k1, whose
design method doesn’t guarantee that the expected number
of errors after each pass decreases exponentially, which is
a fundamental outcome for achievement of Equation (5), as
explained in [8].

Besides the information leakage, another way of analyzing
the error correction performed is to observe it as a step
by step channel improvement, as described in Figure 2. For
either direct or reverse reconciliation, Alice’s or Bob’s strings
must be corrected meanwhile the other stays unmodified. We
indicate the string S under correction after the i-th step as Si.
It is clear that Si has less errors than Si−1, so the bit error
rate after each step is smaller than in the previous step. We
remark that information reconciliation performs a correlation
improvement and, in an information theory point of view,
a channel capacity enhancement3 (both terms will be used

3If the sequences Si are understood as the result of a transmission through
a BSC(pe), which has a very specified channel capacity [19], any error
correcting code used for reconciliation is upper bounded by the BSC(pe)
inherent channel capacity. Then, with the usage of CASCADE, the bit error
rate between the sequences may decrease step by step, which implies on a
channel capacity improvement.

3
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TABLE II
INITIAL BLOCK SIZE MODIFICATION INFORMATION LEAKAGE AND

CAPACITY ENHANCEMENT FOR THE FIRST AND SECOND STEPS.

BER ε k1 I(1) Î(1) I(2) Î(2) ∆C1 ∆C2

0.25

0.80 9 3.99 2.98 7.49 9.80 0.11 0.60
0.85 13 3.99 3.02 9.50 11.72 0.07 0.44
0.90 19 4.49 3.46 15.12 15.86 0.05 0.32
0.95 39 5,00 3.94 32.74 14.67 0.03 0.10

0.35

0.80 7 3.49 2.49 6.42 8.53 0.08 0.65
0.85 9 3.99 2.98 2.29 11.67 0.06 0.50
0.90 14 3.99 2.98 12.79 12.10 0.03 0.27
0.95 28 4.49 3.48 27.74 13.23 0.02 0.09

0.45

0.80 5 3.49 2.49 6.12 8.21 0.06 0.69
0.85 7 3.49 2.27 7.47 9.76 0.03 0.51
0.90 11 3.99 2.99 12.89 13.69 0.02 0.26
0.95 22 4.50 3.48 28.00 14.47 0.01 0.07

interchangeably). Than, the “channel capacity"implied by both
sequences after the i-th step is denoted by Ci, C0 is its capacity
before reconciliation process, and the quantity

∆Ci = Ci − C0 (8)

is defined as the channel capacity enhancement. Table II last
two columns gives the capacity enhancements achieved by the
protocol. The values of C0 for the simulated BER values are
0.188, 0.066 and 0.007 bits, respectively.

IV. RECONCILIATION OF CVQKD KEYS

A. Quantization Method

On continuous variable QKD, as Gaussian Modulated Cohe-
rent States (GMCS) protocols, the first step before start any
error correction is to decide whether to perform a real valued
error correction or to apply some quantization method in order
to extract binary sequences from the coherent states [7], which
has proved to be the most adopted option.

The Sliced Error Correction (SEC) has established itself
through the years as the main error correcting solution for
CVQKD protocols. It combines the design of Sm slicing func-
tions, which will slice the interval (−∞,∞) into m partitions
to produce binary sequences (m indicates the number of bits
extracted from each quantum state transmitted), with powerful
LDPC codes to accomplish error correction for the deteriorated
binary sequences obtained by the slicing functions.

A much easier solution is proposed in [15] where it is
performed a binary expansion of continuous values that acts as
a quantizer method, ensuring expansion bits interdependence
based on the following well known Lemma [20]:

w = 1 w = 2 w = W
S0

C0

S1

C1

S2

C2

SW

CW

· · ·

∆C1

∆C2

Fig. 2. CASCADE based channel improvement scheme.

Lemma 1: Let Y be a random variable with continuous
probability distribution function F (y). Let U = F (Y ) (i.e.,
U is a function of Y defined by its distribution function).
Then U is uniformly distributed on [0, 1].

A direct result of the Lemma above is that the continuous
distribution function of a random variable X maps the raw key
values directly into the interval [0, 1] uniformly distributed.
Moreover, with a binary expansion of the uniform distributed
values, the bits will be pairwise independent and each one
will be distributed as a Bernoulli variable with parameter 1

2 ,
resulting on a compressed representation of X . The expansion

x = 0.x1x2x3 · · ·xl =
l∑

j=1

xj2
−j (9)

of a x ∈ [0, 1] has the format 0.F1F2 · · ·Fl [20], each Fi ∈
GF (2), 1 ≤ i ≤ l, has equal outcome probability and l is
the expansion order. The process to obtain a proper GMCS
expanded values raw keys is the following:

1) For Alice’s and Bob’s raw key value, calculate F (X)
([0, 1] value);

2) Expand each value as in Equation (9);
3) Treat each bit of the r values of the raw key as a BSC

channel.
Each raw key value is a Gaussian random variable re-

alization and every realization will be expanded in l bits,
as showed above, where a sequence of r realization of the
Gaussian random variable is represented as a l × r matrix as
in Equation (10).

(X1, X2, · · · , Xr) =


F 1
1 F 1

1 · · · F 1
r

F 2
1 F 2

2 · · · F 2
r

...
...

. . .
...

F l
1 F l

2 · · · F l
r

 (10)

B. Simulation Results and Discussion

In order to simulate the quantum state transmission, the
quantum channel is modeled as an Additive White Gaussian
Noise Channel (AWGNC) since the quantum states are cohe-
rently modulated [21]. The performed experiments followed
the methodology of Section IV-A, where a Gaussian random
variable X is transmitted and the channel output Y is received.
Obtaining a function F (·) for each transmitted and received
value, the continuous values are expanded in the form of
Equation (10), ensuring that each bit of expansion configures
a BSC channel. Each channel in the expansion was treated
individually, and simulations of reconciliation were performed
using the proposed modification of CASCADE with 0.75 ≤ ε ≤
0.95. The experiment operated under a 5dB SNR and applied
a four-bit binary expansion, resulting on sequences with BER
values of 0.1637, 0.3538, 0.4369, 0.4708 and channel capacity
C0 of 0.357, 0.062, 0.011, 0.002, respectively.

For the information leakage, the first bit of expansion (F 1),
with BER = 0.1637, presents a situation more compatible
with the original CASCADE usage. The protocol ran two steps
of reconciliation and the leaked information stood below the
values of the corresponding k1. In every value of ε the better

4
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TABLE III
INFORMATION LEAKAGE COMPARISON OF THE RECONCILIATION FIRST

TWO STEPS IN CVQKD KEYS BINARY EXPANDED

pe ε k1 I(1) Î(1) I(2) Î(2) C1 C2

0.1637

0.75 12 3.98 2.99 6.92 9.01 0.46 0.85
0.80 15 3.99 2.99 7.90 10.18 0.44 0.79
0.85 20 4.49 3.51 11.43 12.05 0.85 0.42
0.90 30 4.50 3.53 15.52 13.22 0.39 0.56
0.95 61 5.00 4.14 33.45 24.03 0.37 0.50

0.3538

0.75 5 3.49 2.49 5.40 7.10 0.18 0.86
0.80 7 3.50 2.51 6.46 8.65 0.14 0.70
0.85 9 4.00 3.00 9.36 11.73 0.12 0.55
0.90 14 4.00 3.00 12.90 12.06 0.09 0.31
0.95 28 4.50 3.51 28.01 13.65 0.07 0.15

0.4369

0.75 4 3.00 1.99 4.24 5.43 0.10 0.86
0.80 5 3.50 2.49 6.02 8.06 0.07 0.72
0.85 7 3.50 2.50 7.33 9.62 0.05 0.53
0.90 11 4.00 3.00 12.61 13.29 0.03 0.29
0.95 22 4.50 3.55 27.28 14.60 0.02 0.08

0.4768

0.75 4 3.00 1.99 4.40 5.75 0.06 0.81
0.80 5 3.50 2.49 6.32 8.41 0.04 0.65
0.85 6 3.50 2.49 7.04 9.46 0.03 0.58
0.90 10 4.00 3.00 12.53 11.80 0.01 0.20
0.95 20 4.50 3.49 27.09 13.49 0.00 0.05

result was for ε = 0.75 and two steps performed, where 9 bits
per block of 12 bits were nearly leaked and the channel was
improved with ∆C2 = 0.502, the highest in the category.

The second bit, F 2, with BER = 0.3538, was very similar
with the simulations presented in Section III (BER = 0.35).
The suitable values of ε for a two step reconciliation performed
by CASCADE laid in the interval [0.90, 0.95], as for ε ≤ 0.90
the reconciliation leaked Î(2) > k1, making the resulting key
unusable. On the other hand, the results shown in Table III
includes the ε = 0.75, setting k1 to 5 bits and leaking 2.5
bits in the first step, while ∆C1 = 0.12. That’s a much better
option than use ε = 0.95, when k1 = 28, Î(2) = 13.658 and
∆C2 = 0.09.

For F 3 and F 4, the bit error rates were extremely high
(BER = 0.4369 and BER = 0.4768, respectively) letting
ε assume values above 0.95 (possibly some value between
0.90 and 0.95 will result in a suitable information leakage).
Both scenarios behaved similarly, leaking information in a
close range, which implies that the reconciliation behaves
similarly for bit error rates above 0.40. The best channel
improvements and information leakage were obtained for one
step of reconciliation and ε = 0.75, where Î(1) = 1.99 bits
in both cases.

V. CONCLUSIONS

The reconciliation with CASCADE following the proposed
modification of the initial block size and the Binary Expansion
protocol behaved differently for the first two bits of expansion
and for the third and fourth bits. As F 1 and F 2 were
found in an usual error correction code operation, with a
mutual information greater than 0.02, the proposed correlation
improvement tended to decrease the effort made by the second
error correction procedure (LDPC, for example), by reducing
both its complexity and its computer demanded power. For

F 3 and F 4 we had a different outcome, as they presented
mutual information below the threshold of 0.02 bit, when they
would originally be disclosed. Using the proposed method,
Table III showed that it is possible to improve correlation
between keys without compromising the entire information.
Future works would contemplate an application with LDPC
codes and further researches into the optimal values of ε .
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