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Abstract— A new Hyperspherical trigonometry based on 
Quaternion´s Algebra is introduced. Spatial curves on the 
surface of the unit-quaternion hypersphere are described in the 
parametric form. A draft of a new Continuous Quaternion 
Modulation System is presented, in which two modulation 
signals are used to drive paths in the normalized 4D-
hypersphere. The outline of a PLL-based demodulation is also 
sketched. 
 

Resumo— Uma nova trigonometria hiperesférica baseada na 
Álgebra de Quatérnions é introduzida. Curvas espaciais sobre 
a superfície da hiperesfera unitária de quatérnions são 
descritas sob forma paramétrica. O esboço de um projeto para 
um novo sistema de Modulação Analógica com Quatérnions é 
apresentado, no qual dois sinais moduladores são utilizados 
para traçar caminhos na hiperesfera normalizada 4-D. Uma 
demodulação com base em PLL é apresentada. 
 

Index Terms— Quaternion´s algebra, hyperpherical 
trigonometry, quaternion modulation system. 

I. INTRODUCTION 
 
 landmark on the modern algebra was achieved in 1843 
by William Hamilton [1], who was the first to invent an 

algebra in which the commutative law of multiplication does 
not hold. The elements of such noncommutative algebra 
were called quaternions by Hamilton [2]. Since then, unit 
quaternions have provided a convenient mathematical 
notation for representing different spatial scenarios, 
rotations in three-dimensional space, topological curves and 
matrices. 

A quaternion is a mathematical entity denoted by 
 

��� = c + x�+̆ y�̆ + z��,          (1) 
 

with c, x, y, z: real numbers, and �,̆ �̆ , ��: imaginary numbers.  
 

Quaternions form a division ring, the elements of which 
can be viewed as a scalar plus a vector. They can be seen as 
some sort of hypercomplex numbers (that is, extended 
complex numbers). Equipped with the addition and 
multiplication of quaternions [3], they form a division ring. 
The addition of quaternions has an identity element:  
0 = 0 + 0� ̆+ 0�̆  + 0��, and an inverse element: -��� = - c - x� ̆- 
y�̆ - z��. The multiplication of quaternions has an identity 
element: 1 =1+0�+̆0�̆+0��.  Fundamental formulae are: 
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 �̆2=�̆ 2=��2=�̆�
̆��=-1.                           (2) 
 

Among many applications, besides quantum mechanics 
[4], the quaternions have been used in the coding of 
movements in a 3-D space [5] and in estimating the position 
and orientation of objects [6]. More related to this work, 
quaternion-based geodesic [7] and geometry of spherical 
curves [8] have also been introduced. There are also a 
loaded relationship among topological surfaces, codes and 
modulation [9-10]. We have particular interest in new 
special trigonometries as the trigonometry over finite fields 
recently introduced [11]. This paper presents the 
foundations of a “unit quaternion”-based spherical 
trigonometry. Given a point P on the surface of a unit sphere 
of coordinates (r,δ,λ), setting r=1, it can be associated with 
a unit quaternion in terms of the latitude and longitude 
according with  
 

���:= sin(δ).cos(λ)+ 
cos(δ).sin(λ).�+̆sin(δ).sin(λ).�̆+cos(δ).cos(λ).��,            (3) 

 
with these unit quaternions confined to be on the surface of 
a hypersphere of unity radius. Indeed, if n(.) denotes the 
magnitude of ��� (norm of the quaternion), then 
n(���)=����� �1. 

A matrix representation of quaternions can also be 
derived. In fact, one of the pioneers of the geometry of more 
than three dimensions, Arthur Cayley (1821-1895), offered 
matrices to represent noncommutative algebras. He was also 
able to link determinants with straight lines and planes, 
 
��� � 


 sin��� . cos��� � �������. sin ��� sin��� . sin��� � �������. cos ���
� sin��� . sin��� � �������. cos ��� sin��� . cos��� � �������. sin ���� 

(4) 
 

Another keypoint is the inner product between two 
quaternions, which can be computed by 
 
     ��� . ���!= sin�� � . sin��!� . cos�� � . cos��!� �
                                    �cos�� � . cos��!� . sin�� � . sin��!� �
                                    �sin�� � . sin��!� . sin�� � . sin��!� �
                                    �cos�� � . cos��!� . cos�� � . cos��!�.                  (5) 
 
Rearranging this expression, we get the symmetric and nice-
looking expression: 
 

��� . ���!=cos(∆δ).cos(∆λ),                     (6) 
 

where ∆δ:=δ2-δ1 and ∆λ:=λ2-λ1.  
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This relationship is much more symmetric than the 
conventional inner product over the Euclidean space 3, 
derived using spherical coordinates. The distance between 
two unit quaternions on a sphere of radius R can be 
computed as d:=R.arc(��� ���!), and the angle is computed 
using the dot product 
 

arc(��� ���!):=arcos(��� . ������!), since |��� |=|���!|=1.     (7) 
 
Therefore,  

"#= R. arcos (cos(∆δ).cos(∆λ)).                   (8) 
 

JavaScript and most current computer languages use 
IEEE 754 64-bit floating-point numbers, which provide 15 
significant figures of precision. In the following, we present 
a Javascript to evaluate the distance of points of known 
latitude and longitude, assuming a radius equals to the 
radius of the Earth.  
 
JavaScript:  

var R = 6371; // km 
var d = Math.acos(Math.cos(lat2-lat1)*Math. * 
Math.cos(lon2-lon1))*R; 
 

  The complete script is available to run at the URL 
http://www2.ee.ufpe.br/codec/quaternion_distance.jar 
 

2. A SPHERICAL TRIGONOMETRIC OVER QUATERNIONS 
 
In order to define a hyper-trigonometry, let us take the 

identity element as a reference point (λ=0 and δ=π/2) and 
define the functions in terms of the angle between this 
reference and an arbitrary unity quaternion �����. Given a 
quaternion (a point on the surface of the 4D-hypersphere), 
the following trigonometric functions are promptly defined 
 

cos�����=cos(λ).sin(δ)                                   (9a) 

sin�����=$1 � cos!���. sin!���                   (9b) 

tan�����= $�&�!���. ����&�!��� � 1           (9c) 
sec�����=sec(λ).cossec(δ).                            (9d) 

 
For instance, for the particular point '��=UFPE with 

coordinates λ=lon=-34.953604o and δ=lat=-8.052771o, we 
have:  cos(UFPE)=0.18219; sin(UFPE)=0.98326; tan(UFPE)= 0.18529. 
 

Now, setting δ=π/2, λ arbitrary, the trigonometry is 
confined to the X-Y plane and collapse to the ordinary 
trigonometry: 

cos�����=cos(λ), sin�����=$1 � ���!���;  tan2�����=sec2���-1 

and sec�����=sec(λ), as expected. 
 

When dealing with a sphere of radius R, the quaternion is 
defined merely by R���. There is a close relationship between 
this quaternion-distance and the 3D-Euclidean distance of 
the geodesic path defined by the two coordinates. Let us 
consider the point described by the system illustrated in Fig. 
1. By using the properties of spherical triangles, the distance 
between two points ' '!can be computed by the well-
known relation: 

 
cos(' '!()=cos(α)=cos(δ1).cos(δ2).cos(∆λ)+sin(δ1).sin(δ2) 

so that d=R.α.                                     (10) 

 
Figure 1. Standard geo-coordinates for a unit Sphere. 

 
Considering: 
P1: RECIFE @ 8o03´14´´S 34o57´13´´W (lat=-8.05277, lon=-34.95360), 
P2: PARIS   @ 48o49´36´´N 2o20´41´´E  (lat=48.82668, lon= 2.34649), 
the distance computed using Eq(10) is exactly the Euclidian 
distance used in GPS (d=7,295 km). The use of this formula 
allows the calculation of great-circle distances between the 
two points – that is, the shortest distance over the earth’s 
surface, ignoring possible hills [12]. In contrast, the distance 
measured by Eq.(8) is carried out using another inner 
product ("#=7,143 km). However, close estimations can be 
obtained, especially when the latitude of the two points are 
not very different. If the Euclidian distance is required, a 
correction factor can be used, 
 

  α=arcos(cos(∆δ).cos(∆λ)+ε),                    (11) 
 

where ε is a correction factor given by:  
ε:=(1-cos(∆λ)).sin(δ1).sin(δ2). For a much accurate result, 
one can replace R by R=(6,371.005076123 + mean altitude 
of the two points) km.   

Additional improvements can easily be made by 
considering ellipsoidal-shaped quaternions instead of 
spherical ones. In this case, we redefine Eq.(3), in terms of 
the flattening f and the major axis a of the ellipsoid, as 

 
���:=a.sin(δ).cos(λ)+a.(1-f).cos(δ).sin(λ).�+̆ 

          +a.sin(δ).sin(λ).�̆+a.(1-f)cos(δ).cos(λ).��.            (12) 
 

To be in compliance with the Brazilian Geodesic System 
[13], we adopt a=6,378.160 km (major semi-axis) and 
f=1/298.25 (flattening). When using the international 
ellipsoid model of Hayford, a=6,378.38800 km and 
f=1/297.0 [13]. 

The inner product given by Eq.(6) is then replaced by: 
 

��� . ���! � )!. cos�Δ�� . +cos�� � . cos��!� . �1 � ,�! �
                �sin �δ �. sin��!�.,                                       (13) 
 
which reduces to Eq.(6) when a=R (R=1) and f=0. 

Further geometrical considerations are presented in the 
sequel. If every point on the a spherical shell is fully 
described by a quaternion, then any trajectory can be 
described in parametrized form, that is 
 

/�0� � 1 �0� � 1!�0��̆ � 12�0��̆  � 13�0���.         (14) 
 

This approach allows the use of vector functions for 
parametrizing a curve C, as illustrate in Figure 2.  
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Figure 2. A trajectory C (spatial curve) on the surface of the  

quaternion hypersphere. The curve is oriented and starts when  
t=a<b and finishes when the elapsed time is b-a. 

 
Any trajectory (a spatial curve) can be modeled through 

vector functions according with: 
 

/�t):=cos(λ(t)).sin(δ(t))+cos(δ(t)).sin(λ(t)). �̆+ 
               +sin(δ(t)).sin(λ(t)). �̆ +cos(δ(t)).cos(λ(t)).�� ,    (15) 

 
where r(t) are the parametric equations of any curve C. 

Indeed, the length L of a surface curve on the hypersphere 
can be computed by 
 

4 � 5 6∑ 89:;�<�
9< =!3>? 

@
A  "0,                  (16) 

 
where qi(t) are continuous and differentiable functions. For 
instance, let us compute the length of the geodesic path at 
the surface of a hypersphere of radius R= 6,371 km from the 
quaternion δ1=53.14722o and λ1=-1.84944o to δ2=20.20444o 
and λ2=-8.97389o.  

From t=0 to t=48h, at constant speeds vδ=-0.012 rad/h and 

vλ=-0.00259 rad/h, a computation using MathcadTM 

furnished roughly 3,748 km. The evaluation of the distance 

using Eq.(8-10) furnished 3,738 km (<0.27%). 

What is a possible relationship between the tools 
described in this paper and the Telecommunications field? 
That is a question that certainly was made through the 
reading. Not only first approximation GPS-issues are 
potentially concerned with, but mainly new modulation 
schemes can be devised. We are currently examining a two-
carrier phase-quadrature continuous modulation, in which 
two analog signals are used to pilot λ(t) and δ(t), so as TO 
describe  a particular surface curve in the 4D-hypersphere. 
A low carrier frequency wm is used in an FM modulator that 
drives the unit-quaternion coordinates δ and λ. 
 

3. A DRAFT OF A CONTINUOUS QUATERNION 

MODULATION SYSTEM 
 
We propose here a two-carrier phase-quadrature 

quaternion modulation system as shown in the block 
diagram of Fig. 3. In this system, two analog information 
signals are used to pilot the angles λ(t) and δ(t) so as to 
describe a particular surface curve in the quaternion sphere,  

 

��0� B CD0 � 2FGH 5 ,I�0J�"0K<
LM ,               (17) 

 

��0� B CD0 � 2FGH! 5 ,N�0J�"0K<
LM .               (18) 

 

Two FM modulators using the direct method [14] are 
provided to generate the basic signal with quadrature 
carriers. This is illustrated in Figures 3a and 3b.  

The output of the four FM systems are cos(λ(t)), sin(λ(t)) 
and cos(δ(t)), sin(δ(t)), respectively. Then, four balanced 
four-quadrant modulator (Gilbert-cells type [14]), combine 
the basic signals so as to compute the (quaternion) 
coordinates {qi(t)} of the vector function that describes the 
surface curve. In order to transmit such quaternion 
coordinates, two multiplex (in phase and in quadrature 
multiplex, Fig. 3c) can be used so as to require only a couple 
of high frequency (wc1, wc2) carriers. 

A straightforward option for this design could be a 
standard FDM system to independently transmit the 
quaternion components. If a four-carrier FDM system is 
used two transmit information of the quaternion, a passband 
filter bank centered at the frequency wci i=1,2…4 allows 
demodulating the envelope, recovering then the i th-
coordinate of the quaternion, i=1,2…4. In such an approach, 
the synchronous carrier detection required by using the two 
“quadrature multiplex” is no more required, which can be an 
advantage in some communication scenarios. An OFDM-
based system could as well be designed to carry the 
quaternion information. 

This kind of communication system can be interpreted as 
some sort of modulation associated with twisted signal 
locus, as described in the seminal book by Wozencraft-
Jacobs [15, p.613]. 

If digital information is available at the input as an 
alternative for the two analog signals, then CPFSK 
(Continuous-Phase Frequency-Shift Keying) can be used 
instead of FM modulators. 

The demodulator circuit first performs a synchronous 
detection of the two carriers (a passband filter is used) and 
the quaternion coordinates q1(t) q3(t) and q2(t) q4(t) are 
retrieved. A limiter circuit should be used, since there is no 
information in the amplitude. Then, four squaring circuits 
are used and their output are combined to derive both 
signals sin(δ(t)) and cos(δ(t)). The key quaternion 
coordinate retrieval relationships are: 
 

1 !�0� � 12!�0� � sin!���0��,                     (19a) 
1!!�0� � 13!�0� � cos!���0��,                    (19b) 
1!!�0� � 12!�0� � sin!���0��,                     (19c) 
1 !�0� � 13!�0� � cos!���0��.                    (19d) 

 
Therefore, there exists some analog redundancy in the 

scheme that can be exploited; q1(t),…,q4(t) work as a kind of 
analog parity-check equations. These signals undertake a 
final demodulation step (Figs. 5-6), which is achieved with a 
PLL as an FM demodulator [14], now tuned at low free-
frequency, leading to a guesstimate of the signals fI(t) and 
fQ(t). From the double arc identities, both sin2(.) and cos2(.), 
in Eqs. (19), can be expressed in terms of cos(2δ(t)) or 
cos(2λ(t)). Accordingly, the free frequency of each PLL is 
2wm<<wc, i.e., twice the basic low frequency. Naturally, we 
assume that such a frequency is greater than the maximum 
frequency of both the bandlimited input signals fI and fQ and 
it is enough to avoid spectrum overlap. The demodulation of 
λ(t) is carried out in a similar way. There are different ways 
to combine the two redundant estimations, but this point is 
not addressed here in this paper. 
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         (a)                                                      (b)                                                (c) 
Figure 3. Block diagram of circuits for generating quaternion coordinates: a) in phase signal drives longitude, b) in quadrature signal drives latitude, c) A 

two-signal basic multiplex used to convey the quaternion coordinates over the same carrier. 

 
Figure 4. Two-carrier Quaternion Modulator. The information of the two input signals is transmitted as a  

twisted-locus r(t) of a surface curve on the quaternion hypersphere given by Eq.(15). 
 

 
Figure 5. Basic two-carrier Quaternion Demodulator: In Quadrature input signal retrieval (Eq.(19a,b)). 
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Figure 6. Basic two-carrier Quaternion Demodulator: In phase input signal retrieval (Eq.(19c,d)). 
 

Another point that deserves a careful investigation is the 
bandwidth requirements of these systems. At a glance, the 
bandwidth per carrier B is roughly: 

 
  B = BFM1 + BFM2, Hz/carrier,    (20) 

 
where BFM1, BFM2 are the bandwidth needed for the FM-
signals cos(λ(t)), cos(δ(t)), respectively, estimated by 
Carson’s rule. This is twice the band of one FM signal if 
identical modulators are used. Also, the analysis and 
performance assessing in the presence of Gaussian noise are 
currently under examination, to gain insight into the 
behavior of the proposed system. 

4. CONCLUDING REMARKS 

 
This paper presents some preliminary investigation on 

potential applications of quaternions. In particular, a new 
hyperspherical trigonometry based on quaternion´s algebra 
is introduced and the description of surface curves on the 
unit-quaternion sphere is addressed. Parametrizing is also an 
important issue for quantum coding [16]. One application of 
these tools is the design of new twisted-locus analog 
communication systems, where the modulation scheme is 
quaternion-based. This approach also provides analog 
redundancy, which is a promising aspect of the technique. 
Albeit the performance results have not be assessed yet, the 
true nature of these schemes is quite new and they 
extensively make use of FM modulators and PLL, which are 
known to provide good noise immunity properties. 
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