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Automatic quality control systems based on pattern
recognition and sparse signal processing

Diogo Alfieri Palma1 and Leonardo Tomazeli Duarte2

Abstract— This paper presents the application of two methods
for automatic detection and classification of abnormal quality
control patterns. A generator of synthetic concurrent control
charts was implemented to create mixtures from patterns de-
scribed in the literature. In order to obtain features for the
classification step, the generated charts were initially processed
via sparse regression using the Least Absolute Shrinkage and
Selection Operator (LASSO) method. Then, we assess the per-
formance of the classifier which was founded on an artificial
neural network (ANN) on two different situations: i) with inputs
given by the observed (raw) data and ii) with inputs given by the
features generated by the LASSO method. ANN fed with sparse
inputs performed extremely close to the ANN fed with raw data,
using considerably less inputs.

Keywords— Quality Control, Concurrent Control Charts,
Sparse Regression, Artificial Neural Networks.

I. INTRODUCTION

The search for productivity, safety and flexibility in in-
dustrial operations has played an important role with respect
to competitiveness, market standards and legislation. In this
context, quality management and control represents a critical
success factor for organizations. A key aspect in quality
control is maintenance, which is essential to reduce opera-
tional costs [1]. Indeed, maintenance plans –— corrective,
preventive and predictive –— seek to mitigate and/or eliminate
operational costs in three main components: nonconformity in
products, inefficiency in processes and loss of opportunity in
sales [2].

Once the root causes of operations poor quality are iden-
tified and action plans are elaborated, it becomes necessary
to monitor and control processes, which allows the execution
of these plans at appropriate times, so as to minimize un-
scheduled interruptions (corrective maintenance). Among the
tools widely used to support maintenance are statistical process
control (SPC) and, in particular, control charts, which help
processes by indicating their control state, identifying causes
and reducing variability, in order to achieve performance
stability [3].

A control chart is essentially a time series (signal) drawn
from data collected in a certain process. Data collection may
occur manually or automatically by the use of sensors (e.g.,
temperature, humidity, pressure, dimensions of a product, etc.).
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Frequently, the data behind a control chart is the result of
linear and/or noisy mixtures of particular patterns, which are
often associated with abnormal process behavior (or abnormal
causes). For instance, in Figure 1, there are some examples
of abnormal patterns which are found in practice [4]. A
challenging aspect in quality control, which is addressed in
this paper, is how to identify and classify abnormal patterns
in the case concurrent control charts, that is, when there are
more than one abnormal pattern acting in the process.

Fig. 1. Abnormal control chart patterns: (1) increasing trend, (2) decreasing
trend, (3) cyclic, (4) systematic, (5) upward shift and (6) downward shift.

Previous studies have used different techniques for detecting
and classifying patterns in concurrent control charts. For
instance, we highlight the following ones:
• Singular spectrum analysis (SSA) and learning vector

quantization network were applied by [5]. The authors
also tested their methodology against real data acquired
from aluminium smelting processes;

• In [6], the authors presented the application of RobustICA
along with a decision tree in order to recognize patterns
from the extracted features;

• Blind source separation methods were addressed by [7].
The authors extracted, selected, processed and classified
data into patterns via support-vector machines (SVMs);

• A sparse regression approach was proposed by [8], using
the Least Absolute Shrinkage and Selection Operator
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(LASSO) method and a clustering/k-means based dictio-
nary learning process.

The present work addresses the use of two combined
methods — LASSO and artificial neural networks (ANNs) —
for the classification of concurrent control charts into abnormal
patterns described in the literature. The paper is organized as
follows. Section 2 details the methodology steps and tools used
to solve the problem. Section 3 presents the experiments and
the results obtained by the applied methods. Finally, Section
4 closes the paper with our conclusions.

II. METHODOLOGY

In the following, we shall present the methodological as-
pects of our work. In first part, we address the problem of
generating samples from typical control charts. This step is
important since it provides the datasets that were processed
by the classifier. Then, in a second part, we introduce the
main aspects of our proposal, including a brief review of the
LASSO method.

A. Synthetic Data Generation

In the field of statistical quality control, there is a set of
models which describe control charts with particular abnormal
patterns. These patterns are often associated with shortcomings
that may be found in a manufacturing process. For instance,
an increasing trend pattern may indicate certain tool wearing
gradually and a systematic pattern can relate to difference
between shifts [4].

In the literature of quality control, there are well-established
models that can be used to simulate abnormal patterns and also
to generate concurrent control chart signals - Table I presents
these models [7], [8], [6]. In this table, xi(t) denotes the
signal that represents the i-th control chart; t is the discrete
temporal index (t = 1, . . . , N ), where N in the number of
samples. Also in Table I, there are other parameters associated
with those models: σ is the control chart standard deviation,
µ is the mean value of the control chart, ri(t) is a sample,
at instant t, drawn from a standard normal distribution, d is
the stratification deviation, a the amplitude, T the period, g
the gradient and s the shift magnitude. The choice of these
parameters was done according to [7]. Moreover, we consider
the following values: N = 100, µ = 0, σ = 1 and T = 16.

TABLE I
ABNORMAL PATTERN GENERATION.

Pattern Equation Parameters
Systematic xi(t) = µ+ ri(t)σ + d(−1)t d = 2σ

Cyclic xi(t) = µ+ ri(t)σ + a sin(2πt/T ) a = 2σ
Inc./Decrea-
sing Trend xi(t) = µ+ ri(t)σ ± tgσ g = 0.075σ

Up/Down-
ward Shift xi(t) = µ+ ri(t)σ ± sk

If t > T/2,
k = 0. Else,
k = 1.s = 2σ

Once the patterns are generated, the next step is to generate
samples which correspond to mixtures of different patterns
(concurrent charts). A mixture is obtained by the linear com-
bination of two or more distinct patterns randomly chosen.

In practice, it is common for the data composing a con-
current control chart to suffer from external noise, which is
uncorrelated with respect to the abnormal behavior itself. In
mathematical terms, this generative model is given by:

y = x1w1 + x2w2 + · · ·+ xnwn + p, (1)

where y represents the resulting linear mixture, xi corresponds
to an abnormal control chart pattern, wi the weight applied to
pattern i and p the additive white Gaussian noise (AWGN).

The number of patterns per mixture sample was set to two,
because it is unlikely — given certain window size — to have
more than two problem sources acting at the same time. Pattern
weights were set to 0.6 and 0.4, respectively. Moreover, as
in [8], we did not consider both increasing/decreasing trend
and up/downward shift mixtures, because these would refer
to the same behavior only with a change in direction or shift
magnitude. Finally, the generated mixtures were normalized
through min-max normalization, scaling data between [0, 1].
Figure 2 illustrates this process.

Fig. 2. Mixing process of two distinct abnormal patterns (increasing trend
and cyclic) with AWGN.

B. Least Absolute Shrinkage and Selection Operator
Linear sparse regression aims at providing a linear gen-

erative model (according to (1)) with the fewest number of
parameters. When the inputs xi are known, sparse regression
can be done by minimizing a loss function with a given
constraint on the parameters wi (i=1,...,n) related to sparsity.
In our problem, the inputs, which correspond to the abnormal
patterns, are not known in advance and, therefore, sparse
regression can be tackled by defining a dictionary whose
atoms are composed of signals that are associated with the
abnormal patterns. In other words, the dictionary can be
obtained by generating each one of the patterns previously
described (Figure 1).

In mathematical terms, sparse regression relies on the fol-
lowing multiple linear regression model:

y = Xβ + ε, (2)

2
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which can be expressed as:
y(1)
y(2)

...
y(N)

 =


x1(1) x2(1) . . . xp(1)
x1(2) x2(2) . . . xp(2)

...
...

. . .
...

x1(N) x2(N) . . . xp(N)

×

β1
β2
...
βp

+

ε1
ε2
...
εN


where vector y represents inputs from a control chart, X ∈
Rn×p is the matrix composed by the atoms of the dictionary
(each atom is arranged in column), β is the vector of sparse
coefficients to be defined and ε is the noise associated with
the error inherited by using a linear model.

The LASSO method was chosen since one of its main
features is the assignment of value zero in several coefficients
of the vector β, which facilitates the interpretation of the
solution. Such a feature is interesting in the context of variable
selection/identification of relevant variables [9], [10]. Thus,
the signal must be represented by the combination of atoms
in the dictionary that uses a reduced number of non-null β
coefficients. This leads to an optimization problem that can
be expressed by:

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ

p∑
j=1

|βj |

= argmin
β∈Rp

‖y −Xβ‖22︸ ︷︷ ︸
Residue

+λ ‖β‖1︸ ︷︷ ︸
Penalty

(3)

where λ represents a regularization parameter for the β penalty
according to the L1 norm.

In the optimization problem expressed in (3), the greater the
value assigned to λ, the greater the number of null values in
β. Therefore, the choice of λ in our context should be carried
out in order to obtain a vector β with as many null values as
possible; in this case, the coefficients that are not null would
be related to the abnormal patterns that are active at a given
window. However, this search for λ should also keep the ability
to explain a signal given a dictionary. Figure 3 illustrates the
trade-off between the value λ and the residue — mean squared
error (MSE) — associated with the representation obtained by
LASSO for an observed signal y.

Fig. 3. Trade-off between sparsity (in the sense of the L1-Norm) and
representation error for different values of λ.

As expected, MSE increases by the value in λ and the degree
of sparseness/number of null values. Thus, it is evident that

the choice of λ indicates a trade-off between the sparseness
degree and the quality of the approximation model.

In our work, we consider an implementation of LASSO
in Matlab software (function lasso) that addresses the op-
timization problem expressed in (3). This function returns
the adjusted coefficients of the least squares regression for
a geometric sequence of λ values [11]. Figure 4 shows the
approximation of a mixture given a vector β (coefficients)
obtained through LASSO.

Fig. 4. Example of LASSO approximation in a mixture.

In order to select a β vector, a sparsity factor parameter
was arbitrary set to 0.5 (50%). Basically, it means that, in
addition to performing sparse regression through a dictionary
containing the six abnormal patterns, the chosen vector βlasso

must have three null coefficients. Algorithm 1 was used for
selecting the sparse representation given an observed signal
y, the dictionary and a sparsity factor. In case the sparsity
requirement cannot be satisfied, the sparser βlasso is returned.

Algorithm 1: SPARSE REPRESENTATION FROM LASSO
inputs : y,dictionary, sparsityFactor
output: ylasso

begin
βmatrix ← lasso(y, dictionary)
ylasso ← last column in βmatrix

minNulls ← rows in ylasso × sparsityFactor
foreach βcolumn in βmatrix do

if nulls in βlasso ≥ minNulls then
ylasso ← βcolumn

return ylasso

end
end
return ylasso

end

Once the sparse representation is defined, the resulting
coefficients can be used as input variables in classifiers.

C. Artificial Neural Network

The multiclass classification with ANN was performed in
Matlab with the function patternnet, which uses by default a
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multilayer perceptron (MLP) and a learning algorithm that is
based on the minimization of classification error by means of
a conjugate gradient type technique. This function is recom-
mended by Matlab for training in pattern recognition problems
involving a large amount of data, due to the lower memory
consumption and higher execution speed when compared to
algorithms traditionally set in gradient descent [12].

The ANN was configured to have only one hidden layer
with the number of outputs equal to the number of patterns
described: (1) increasing trend, (2) decreasing trend, (3) cyclic,
(4) systematic, (5) upward shift and (6) downward shift. The
default software settings related to splitting the dataset were
used, so we considered 70% of data for training, 15% for
validating and 15% for testing. The inputs, defined for each
sample control chart, were: 100 for raw data (the total number
of samples N ) and 6 for sparse representation (coefficients in
β). Default patternet’s hyperbolic tangent sigmoid activation/-
transfer function was used for the hidden layer. The output
layer transfer function, on the other hand, has been defined
as softmax. This function ends up normalizing the six outputs
in the interval [0, 1], where the sum of these results in 1.
Such a procedure renders easier the classification process in a
multiclass context that must support class assignment to one
or more outputs.

Table II shows an example of ANN outputs when fed with
inputs (sparse representation) of a concurrent control chart
sample. Once the ANN outputs are obtained, a threshold can
be defined for the assignment or not of each of the classes.
The indices of the classifications and their respective patterns
can be obtained as shown the Table III. Finally, the obtained
classifications could be compared with those patterns that
originated the synthetically generated mixture sample.

TABLE II
EXAMPLE OF ANN OUTPUTS CLASS ASSIGNMENT (THRESHOLD = 0.2).

Inputs Outputs Classification
-0.1053 0 0
0.4388 0.5424 1

0 0 0
0.2971 0.4205 1

0 0.0113 0
0 0.0258 0
- 1 -

TABLE III
EXAMPLE OF ANN OUTPUT CLASSES RESULTING PATTERNS.

Index Pattern
2 Decreasing Trend
4 Systematic

III. EXPERIMENTS AND RESULTS

We have performed 100 simulations and the results below
refer to the mean values. For each simulation, 1000 mixture
samples — splitted into training, validation and test datasets
— and a dictionary containing 6 distinct abnormal patterns
were generated.

Two classification strategies using ANN were compared.
First, we fed an ANN with sample’s raw data. Then, an

ANN with only six inputs was fed using the LASSO sparse
representation of these generated samples. The ANN clas-
sification threshold was set to 0.2 and the mixture AWGN
signal-to-noise ratio (SNR) to 25dB. Other parameters related
to synthetic data generation as well as the ANN setup are
detailed in Section II.

A. Inputs: Raw Data

The ANN used for classifying raw data reached a precision
of 98.59% and an error of 1.41%. The mean values obtained
during tests are presented in Table IV and in Figure 5.

TABLE IV
INDICATORS OBTAINED FOR RAW DATA CLASSIFICATION (SNR = 25dB).

Indicator Occurrences
FP 3 (0.31%)
FN 10 (1.10%)
TP 290 (32.23%)
TN 597 (66.36%)

Total 900 (100%)

Fig. 5. Raw data classification results per class (SNR = 25dB).

In addition to the good results obtained by the raw data
classifier, a good balance of patterns in terms of the mixtures
generated for classification during tests is noted by the distri-
bution of the classes.

B. Inputs: Sparse Coefficients

The ANN used for the classification of sparse entries
generated via LASSO reached a precision of 96.88% and error
of 3.12%. The mean values obtained during tests are presented
in Table V and in Figure 6.

TABLE V
INDICATORS OBTAINED FOR CLASSIFICATION OF SPARSE ENTRIES

(SNR = 25dB).

Indicator Occurrences
FP 11 (1.21%)
FN 17 (1.91%)
TP 283 (31.42%)
TN 589 (65.45%)

Total 900 (100%)
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Fig. 6. Sparse entries classification results per class (SNR = 25dB).

When compared to the classification of raw data it is
possible to observe a small increase of FP and FN in classes
(5) upward shift and (6) downward shift.

C. Noise Level Variation Tests

This section presents the summarized result for trials run-
ning different noise levels. The methodology was the same
used in the classification already presented for a low noise
level (SNR = 25dB), but considered other SNR values.

Fig. 7. Accuracy of the classification strategies for different levels of noise.

It is possible to observe (Figure 7) an advantage of the
sparse representation in scenarios of stronger noise, that is,
when SNR assumes the most negative values. In general, there
is a small difference between the ANN fed with raw data
when compared to the sparse representation in the other cases.
Therefore, it can be said that the ANN fed with sparse inputs
showed a performance extremely similar to the strategy using
raw data.

The higher the noise level, the most a mixture starts to
resemble a systematic pattern, hence why there is an accuracy
decrease in this case, being the sparse representation approach
able to deal with this issue in a better way when compared to
the ANN fed with raw data.

IV. CONCLUSION
In this work we studied the identification and classification

of concurrent control charts abnormal patterns in two different
situations. In the first one, an ANN was fed with the raw data
of the synthetically generated mixture samples. Then, the same
ANN topology — with the exception of the input layer — was
fed with the coefficients of the vector β obtained from a sparse
regression step using the LASSO method.

The small difference in precision between ANN fed with
100 raw data inputs and ANN whose input layer had only
six elements — of which half were null — corroborates the
sparse regression ability to act as a feature selector in this
classification context. In scenarios of additive Gaussian noise
with positive SNR the classifiers presented a good precision.
In case of more intense noise considered — with SNR -25dB
— the accuracy of the classifiers proved to be superior to 50%,
with a noticeable advantage to the sparse representation that
resulted in a better noise attenuation.

Another aspect that can be pointed out is the lower cost of
memory and disk allocation when using the sparse representa-
tion, which makes it possible to use classification techniques
in scenarios in which a large volume of data is necessary or
available for processing.

Overall, the results demonstrated a good performance when
tested with synthetically generated data, which encourages
prototyping and testing in real world situations. Future re-
search may also consider other sparse regression methods.
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