
The 7th International Telecommunications Symposium (ITS 2010)

Quantum Permanent Compromise Attack to Blum-Micali Pseudorandom Generator

Elloá B. Guedes, Francisco M. de Assis, Bernardo Lula Jr.
IQuanta – Institute for Studies in Quantum Computation and Quantum Information

Federal University of Campina Grande
Rua Aprígio Veloso, 882 – Campina Grande – Paraíba – Brazil

elloaguedes@gmail.com, fmarcos@dee.ufcg.edu.br, lula@dsc.ufcg.edu.br

Abstract— This paper presents a quantum permanent com-
promise attack to the Blum-Micali pseudorandom generator
whose security is based on the assumption of intractability of
the discrete logarithm problem. The proposed attack makes
use of the Grover’s quantum search extension for multiple
solutions and of quantum parallelism to recover the generator’s
internal state with high probability. This attack compromises
the unpredictability of the Blum-Micali cryptographic secure
pseudorandom generator, since it recovers all previous and
future output, as well as the generator’s seed. Compared to the
classical equivalent attack, the quantum algorithm proposed
has a quadratic speedup, and represents a menace against the
security of a pseudorandom generator used in many real-world
cryptosystems.

Keywords— Blum-Micali Generator, Quantum Attack, Grover
Algorithm

I. INTRODUCTION

Randomness is an essential requirement for any well-
designed cryptographic application. Session keys, initializa-
tion vectors, salts to be hashed with passwords, unique
parameters in digital signatures, and nonces in protocols are
examples of randomness usage in cryptography [1]. However,
random sources, like Geiger counts or radioactivity decay,
are not available in all cryptographic systems. In face of
this limitation, it is acceptable the use of an algorithmic
alternative: the pseudorandom numbers generators (PRNGs).

The most useful type of pseudorandom processes updates
a current sequence of numbers in a manner that appears to be
random. Such a deterministic generator, f , yields numbers
recursively, in a fixed sequence. The previous numbers (often
just the single previous number) determine the next number:

xi = f(xi−1, . . . , xi−k). (1)

Considering that the set of numbers directly representable in
the computer is finite, the sequence will repeat. The set of
values at the start of the recursion is called the seed. Each
time the recursion is begun with the same seed, the same
sequence is generated. A common requirement of PRNGs is
that they possess good statistical properties, meaning their
output approximates a sequence of true random numbers.
Those properties can be assessed via statistical tests [2], [3].

An special type of PRNG with unpredictable outputs is
the cryptographically secure pseudorandom number gener-
ators (CSPRNGs), i.e., given n consecutive output bits of
a CSPRNG, there is no polynomial time algorithm that can
predict the next bit with better than 50% chance of success
[4]. Since randomnesss plays a major role in cryptographic
systems, it is essential to analyze the vulnerability of PRNGs
specially those that are used in real world cryptosystems, i.e.,
the CSPRNGs.

A family of CSPRNGs widely adopted in cryptography
was stamped by Blum and Micali [4]. According to them,
each generator from this construction must be composed by
a function f , that is a permutation over a domain D, and
a binary function. Examples of generators founded on the
Blum-Micali construction are Blum-Blum-Shub [5], Kaliski
[6], and the Blum-Micali generator [4] whose security is
based on the assumptions of intractability of the factoring,
elliptic curve discrete logarithm and discrete logarithm prob-
lems, respectively.

However, quantum computers can implement efficient
algorithms to certain problems where an efficient classical
algorithm is not known. An example is the Shor’s quantum
factoring that may break the whole security of RSA algo-
rithm when quantum computers become scalable [7]. An-
other relevant algorithm, the quantum search, was proposed
by Grover [8] and performs a search in an unsorted N -sized
database with O(

√
N) cost.

In this paper, it is proposed a quantum permanent com-
promise attack, based on the quantum search, to the Blum-
Micali CSPRNG. Such attack retrieves the internal state of
the generator and endanger all future and previous output,
compromising the unpredictability. Moreover, this attack has
a quadratic speedup to its classical counterpart.

The rest of this paper is organized as follows. In Section
II the Blum-Micali generator is described and a simple
exponential-order permanent compromise attack to this ge-
nerator is introduced. In Section III the Grover algorithm is
reviewed. In Section IV is introduced a quantum permanent
compromise attack to the Blum-Micali pseudorandom gene-
rator. In the Section V related works are briefly discussed and
in the Section VI conclusions and future work are presented.

II. BLUM-MICALI GENERATOR

Let p be a large prime and n = dlog pe the binary length
of p. The set Z∗p = {1, 2, . . . , p − 1} stands for the cyclic
group under multiplication mod p. Let g be a generator of
Z∗p and x0 ∈R Z∗p. We denote a ∈R A the random choice of
an element a out of the set A.

The Blum-Micali generator (BM) is prepared with para-
meters (p,g,x0) as previously described where x0 is the seed
of the generator, and p and g are the parameters publicly
known. This generator produces pseudorandom bits using
an one-way function xi = gxi−1 mod p over the domain Z∗p,
and a hard-core predicate for the permutation, denoted by δ,
as shown above:

xi = gxi−1 mod p exponential map (2)
bi = δ(xi) (3)

The 7th International Telecommunications Symposium (ITS 2010)

where δ is a binary function with the following definition:

δ(x) =

{
1 if x > p−1

2
0 otherwise.

To illustrate the usage of BM, suppose a generator con-
figured with parameters (7, 3, 1), denoting p, g, and x0,
respectively. The diagram (4) shows the evolution of internal
states and the bits outputted during this process.

1 → 3 → 6 → 1 → . . .
↓ ↓ ↓ ↓
0 0 1 0

(4)

The security of the BM generator relies on the hardness of
inverting the one-way function xi+1 = gxi mod p. This in-
version is equivalent to solve the discrete logarithm problem
and no efficient algorithm to perform this operation is known
in classical computing [9]. In the following subsection we
introduce a simple algorithm to attack to the Blum-Micali
generator.

A. Permanent Compromise Attack to Blum-Micali Generator

A permanent compromise attack happens to a pseudo-
random generator when its internal state is recovered and,
in consequence, all previous and future output become pre-
dictable. This kind of attack compromises the unpredictabil-
ity of the cryptographic secure PRNG, and also recovers the
seed.

Some concepts are needed before the permanent com-
promise attack description. The BM generator’s internal
(unknown) state in time i is defined as an ordered set
X(i) , {xi, xi−1, xi−2, . . . , x0}, where x0 is the seed. Each
xk ∈ X(i) is associated to a bit outputted by the generator,
i.e., bk = δ(xk), k = 0, 1, . . . , i. We call xi the representative
of the internal state X(i).

Since the evaluation of the exponential in (2) is compu-
tationally efficient and considering that at some point the
sequence will repeat, if any single element of a set X(i)
along its index are discovered then all the previous and future
internal states can be recovered, i.e., all elements of X(i) are
found out.

To attack a BM generator used in a cryptosystem, an
adversary has knowledge of the public parameters p and
g, and has previously discovered a sequence of output bits
(b , {bi, i = 1, 2, . . .}) produced by the generator under
attack.

In the attempt to recover the internal state of the generator,
the adversary needs to estimate an element xk ∈ X(i) along
its index. Without loss of generality, consider k = i. Let
X̂i be the set of guesses to xi ∈ X(i). The set X̂i will
be referred as the estimator set relative to xi, or plainly
estimator set. For example, as stated in the BM initialization,
the seed x0 is randomly chosen from Z∗p, so the adversary
would start in the attempt to attack the generator with the
estimator set X̂0 = Z∗p.

With a given estimator set X̂i that contains xi and the
knowledge of the bit bi+1 outputted by the generator, the
adversary would proceed as follows to produce X̂i+1. Com-
pute Ai+1 = gX̂i mod p, i.e., the image of X̂i under action
of the map x→ gx mod p. Let Ai+1 = A

(0)
i+1 ∪A

(1)
i+1 be the

partition of Ai+1 due to the BM rule, that is, x ∈ A(0)
i+1 iff

δ(x) = 0 and similar to A(1)
i+1. The estimator set X̂i+1 will

be given by:
X̂i+1 = A

(bi+1)

i+1 . (5)

Notice that X̂i+1, i = 0, 1, 2, ... only contains elements out
of the class defined by A(bi+1)

i+1 . The Algorithm 1 synthesizes
the procedure followed by the adversary.

Algorithm 1 Pseudocode of the algorithm used by the adversary to
promove a permanent compromise attack to a BM generator. In this
algorithm, δ denotes the function shown in (3); j is the number of
bits in b; and every set X̂i used for the first time is an empty set.
i← 1
X̂0 ← {1, 2, . . . , p− 1}
while (i ≤ j) do

for all x ∈ X̂i−1 do
if δ(gx mod p) = bi then
X̂i ← X̂i ∪ {gx mod p}

end if
end for
if i 6= j then
i← i+ 1

end if
end while
print X̂i

To exemplify the described permanent compromise state
attack, suppose that the adversary eavesdropped 2 sequenced
output bits, b = {10}, from a BM with parameters p = 7
and g = 3. He would start his estimators to the seed with the
set X̂0 = {1, 2, . . . , 6}. With the information that the first bit
observed was b1 = 1, he would discard the numbers lesser
than (7− 1)/2 = 3 and perform the operation gx mod p in
the remaining ones, resulting in the set of estimators to x1,
X̂1 = {4, 5, 6}. Proceeding the same way, but with the next
observed bit b2 = 0, the intruder would update from X̂1 his
estimators to x2, resulting in X̂2 = {1}. In this case, with
only two intercepted bits, the adversary could retrieve, with
100% of sure, the internal state of the generator.

B. Correctness and Analysis of the Algorithm (1)
To verify that the permanent compromise attack to BM

recovers the internal state, it must be proved that: (i) every
estimator set X̂i contains xi ∈ X(i); and (ii) given sufficient
bits in b, the size of the set X̂i is unitary for i large enough
or the adversary will easily to predict the next generator’s
output. The skecth of the proofs to the requirements (i) and
(ii) are presented below. In order to prevent trivialities we
assume that x0 is member of a larger cycle in the functional
graph [10] of the exponential map (2). This assumption
is clearly acceptable since short cycles correspond to high
predictability of the sequence.

Proof of (i) – Every set X̂i of estimators contains the
correspondent representative xi ∈ X(i): Induction in i.
Clearly, the claim is valid for i = 0 as x0 ∈ X̂0 = Z∗p .
Assume xi ∈ X̂i (induction hypothesis). It must be shown
that xi+1 ∈ X̂i+1. Indeed, from (5), y ∈ X̂i+1 if only if (1)
y = gx mod p for some x ∈ X̂i and, (2) δ (y) = bi+1. But,

The 7th International Telecommunications Symposium (ITS 2010)

by the induction hypothesis, xi ∈ X̂i and, according to BM
productions, δ(xi+1 = gxi mod p) = bi+1 so xi+1 attains
both requirements (1) and (2). We have done.

Proof of (ii) (sketch) – Cardinality |X̂i| = 1 for i
enough large or the next bit is fully predictable: In the
i−th step, prior observing bi, the adversary calculate Ai =
gX̂i−1 mod p = A

(0)
i ∪ A

(1)
i . Define q = |X̂i|/|X̂i−1|, then

observe that q = Pr[bi = 0|X̂i−1] or q = Pr[bi = 1|X̂i−1]
due to the BM rule. Then the uncertainty of bi is H(q)
where H(q) stands for the binary entropy calculated in q.
Note that if A(0)

i = ∅ then q = 1 and bi is completely
predictable and similar is true if A(1)

i = ∅. Thus we assume
that a good choice of parameters x0, g and p should hold
H(q) > 1− ε, where ε is a small positive number. Therefore
q = |X̂i|/|X̂i−1| is near enough to 1/2 or the bit bi is fully
predictable. This conclude the sketch of the proof of (ii).

To analyze the complexity of the permanent compro-
mise attack described it is important not forget that p in
practical applications is a large prime, i.e., p ≈ 2n, and
that evaluations of (2) have unitary cost of the exponent.
In the adversary’s algorithm the modular exponentiation is
evaluated to modular residues of p, thus the complexity is
O(p) ≈ O(2n) to a classical computer.

III. GROVER’S QUANTUM SEARCH ALGORITHM

The Grover’s quantum search algorithm performs a generic
search for a solution in an unsorted database [8]. This
algorithm is adequate to many problems where the best-
known algorithm is to naively search through the potential
solutions until one is found.

Suppose that an unsorted database contains N elements
and M solutions. To represent the N elements of the database
in binary, there are necessary n = dlogNe bits, i.e., n is the
problem input size. To perform the Grover’s search in this
database the steps described below must be followed:

1) Preparation of two registers: the first containing n
qubits initialized as |0〉, and the second register con-
taining a single |1〉 ancilla qubit;

2) Hadamard transformation: must be applied in both
registers, producing 1√

N

∑N−1
i=0 |i〉 and |−〉;

3) Grover iteration: Repeat k times the following steps:
a) Phase inversion: Invert the phase of the states in

the first register that are solutions to the search
problem. Use the second register as an auxiliary
to this operation;

b) Amplitude amplification: Re-invert the phases
that were inverted in the previous step over the
total average. Due to the fact that a quantum sys-
tem is described by an unitary vector, this process
will increase the amplitudes of the solutions and
decreases the others;

4) Measurement: Perform a measurement in the first
register.

The step 2 consisted in the Hadamard transformation of
the input, and thus the state before the Grover’s iteration can
be written considering the solutions (subspace |ψgood〉) and
the non-solutions (subspace |ψbad〉):

|ψ〉 = H⊗n+1 |0〉⊗n |1〉 (6)

=
1√
2n

2n−1∑
k=0

|k〉 (7)

=
√
pgood |ψgood〉+

√
pbad |ψbad〉 (8)

= sin(θ) |ψgood〉+ cos(θ) |ψbad〉 (9)

where pgood =
∑
x∈Xgood

|αx|2, αx = 1√
2n

, pbad = 1 −
pgood, θ ∈

(
0, π2

)
, and sin2(θ) = pgood.

The operator G, denoting the Grover iteration, must be
applied k ≈ π

4

√
N
M times in order to amplify the amplitudes

of the solutions to the problem:

Gk |ψ〉 = cos((2k + 1)θ) |ψbad〉+ sin((2k + 1)θ) |ψgood〉 . (10)

The Grover’s quantum search algorithm provides a
quadratic speed-up over its best-known classical counterpart.
The extremely wide applicability of searching problems
makes this algorithm interesting and important. The next
section shows an application of the Grover’s algorithm to
endanger the security of a BM generator.

IV. QUANTUM PERMANENT COMPROMISE ATTACK

The quantum algorithm that performs the permanent com-
promise attack to Blum-Micali is composed of two main
parts: the first part, illustrated in the circuit of Figure 1, that
is responsible for the identification of the estimator set to
the representative of X(i); and the second part, that follows
the first and is illustrated in the Figure 2, that performs the
amplitude amplification with the Grover’s quantum search
algorithm.

|b1〉 •

|b2〉 •

...
. . .

...

|bj〉 . . . • . . .

|0〉

H δ g() δ g()

. . .

δ g()

. . .

...
...

. . .
...

|0〉

|0〉 ����	
�

|0〉 ����	
�

...
. . .

...

|0〉 ����	
� . . .

|1〉 H . . .

Figure 1. First part of the quantum circuit that implements the quantum
permanent compromise attack to Blum-Micali pseudorandom generator.

This algorithm starts creating a superposition of qubits,
representing all the elements in X̂0 = Z∗p, and uses the
information of the b bits discovered to mark which of these
elements could be in the internal state X(i). After this
phase, the Grover algorithm is run and the amplitude of

The 7th International Telecommunications Symposium (ITS 2010)

|0〉 . . .

U

A

. . .

U

A

65
...

...
. . .

...

|0〉 65
|0〉

|0〉

...
...

. . .
|0〉

|1〉

Figure 2. Second part of the quantum circuit that implements the quantum
permanent compromise attack to Blum-Micali pseudorandom generator. This
part follows the first one and implements the Grover’s quantum search.

the elements marked as solutions are amplified, being able
to be measured with high probability. The input for the
circuit that implements the quantum permanent compromised
is described as follows:

1) The first register is composed by the sequence of bits
discovered by the intruder simply codified as qubits;

2) The second register, containing dlog pe qubits, are used
to represent the elements of X̂i;

3) Containing as much qubits as the first register, this
third register is composed of ancilla qubits, that will
help in the identification of the estimators for x ∈ X;

4) The fourth register contains the auxiliary qubit for the
Grover’s quantum search algorithm.

The gates δ and g() in the first part, implement the
following operations:

δc |x〉 |0〉 =

|x〉 |0〉 if x 6∈ Z∗p
|x〉 |1〉 if x > (p−1)

2 and c = 1

|x〉 |1〉 if x ≤ (p−1)
2 and c = 0

|x〉 |0〉 otherwise

g() |x〉 =
{

x if x 6∈ Z∗p
gx mod p otherwise

Both gates are reversible and can be implement efficiently
in a quantum computer, since they are already implemented
efficiently on a classical computer. After this first part, given
j bits in b, it is expected that the estimators to xj will be the
states associated to |11 . . . 1〉 in the third register. The gates
U and A of the quantum searching part denotes, respectively,
the phase inversion and amplitude amplification of Grover’s
algorithm. The U oracle implements the function f(x) = 1
if the third register is equal to |11 . . . 11〉, and f(x) = 0
otherwise. The applications of U and A are equivalent to the
Grover iterations from (10).

In the attempt to exemplify the quantum permanent com-
promise attack, suppose that an intruder recovered the bits
b = {001} and knows that p = 7 and g = 3 for a certain BM.
He also possess a quantum computer that implements the
quantum permanent compromise attack algorithm described,
and wants to use this algorithm to recover the internal
state of the generator. The adversary would prepare the first

register with the state |001〉; the second register with 3 qubits
initialized with |0〉; the ancilla register with the state |000〉;
and the Grover auxiliary ancilla qubit with |1〉, resulting in
the following initial state:

|ψ0〉 = |001〉 |000〉 |000〉 |1〉 (11)

Since the first register is just used to control the application
of δ, it will be omitted in the following steps. According to
the circuit in the Figure 1, a Hadamard gate must be applied
in the second and fourth registers, and the other registers
must be left unchanged, resulting:

|ψ1〉 = H⊗3 ⊗ 1l⊗3 ⊗H [|000〉 |000〉 |1〉] (12)

=
1
√
23

23−1∑
k=0

|k〉 |000〉 |−〉 (13)

=
1
√
8
(|0〉+ |1〉+ . . .+ |7〉) |000〉 |−〉 (14)

The first application of δ is controlled by a 0 qubit and
targets the first ancilla qubit to 1 if the second register
is lesser or equal than (p − 1)/2. As consequence of δ
application, the |ψ1〉 state evolves to |ψ2〉:

|ψ2〉 = δ0 |ψ1〉 (15)

=
1
√
8
[(|0〉+ |4〉+ . . .+ |7〉) |000〉+

+ (|1〉+ |2〉+ |3〉) |100〉] |−〉 (16)

The next step is to perform the transformation g():

|ψ3〉 = g() |ψ2〉 (17)

=
1
√
8
[(|0〉+ |4〉+ |5〉+ |1〉+ |7〉) |000〉+

+ (|3〉+ |2〉+ |6〉) |100〉] |−〉 (18)

The expression of the state |ψ3〉 tells that X̂1 = {3, 2, 6}.
But, the intruder knows two more bits, and also the estimators
set X̂2 and X̂3 can be obtained.

The application of δ0 controlled by the second qubit of
the first register results:

|ψ4〉 =
1
√
8
[(|0〉+ |4〉+ |5〉+ |7〉) |000〉+

+ |1〉 |010〉+ |6〉 |100〉+ (|3〉+ |2〉) |110〉] |−〉 (19)

The result of g() to |ψ5〉 is given below:

|ψ5〉 = g() |ψ4〉 (20)

=
1
√
8
[(|0〉+ |4〉+ |5〉+ |7〉) |000〉+

+ |3〉 |010〉+ |1〉 |100〉+ (|6〉+ |2〉) |110〉] |−〉 (21)

To conclude the first phase, the δ gate, controlled by the
third qubit of the first register and targeting the third qubit
of the third register, needs to be applied to the state |ψ5〉:

|ψ6〉 = δ1 |ψ5〉 (22)

=
1
√
8
[(|0〉+ |7〉) |000〉+ (|4〉+ |5〉) |001〉

+ |3〉 |010〉+ |1〉 |100〉+ |2〉 |110〉+ |6〉 |111〉] |−〉 (23)

The 7th International Telecommunications Symposium (ITS 2010)

After the execution of the first phase of the algorithm,
the state |6〉 in Eq. (23) is the only one associated to
|111〉, identifying that the set X̂3 is unitary and, therefore,
x3 = 6. Although the representative is already identified,
this information is accessible only at the quantum level – at
the final of the first phase a measurement would return any
number from 0 to 7 with the same probability. Therefore, it is
needed to perform Grover iterations, the second phase of the
algorithm, to increase the probability that the representative
will be returned after a measurement.

To simplify the calculus, the state |ψ6〉 can be rewritten in
the following manner:

|ψ6〉 =

√
7

8

∣∣∣¬X̂i

〉
|y〉 |−〉+

1
√
8

∣∣∣X̂i

〉
|111〉 |−〉 (24)

= sin(θ)
∣∣∣ψX̂i

〉
+ cos(θ)

∣∣∣ψ¬X̂i

〉
(25)

where i = 3;
∣∣∣X̂i

〉
= |6〉;

∣∣∣¬X̂i

〉
denotes all the states

that aren’t in the estimator set X̂3; y 6= 111;
∣∣∣ψX̂i

〉
=

|6〉 |111〉 |−〉; |ψ¬î〉 =
∣∣∣¬X̂i

〉
|y〉 |−〉; θ ∈ (0, π2) satisfies

sin2(θ) = 1
8 ; and, thus θ ≈ 0.36 radians.

The optimal number k of iterations to be performed is
π
4

√
8
1 ≈ 2. So, two Grover iterations on |ψ6〉 results:

|ψ7〉 = G2 |ψ6〉 (26)
= cos[(2 · 2 + 1)θ]

∣∣ψĩ

〉
+ sin[(2 · 2 + 1)θ] |ψi〉 (27)

= cos(5θ)
∣∣ψĩ

〉
+ sin(5θ) |ψi〉 (28)

= cos(1.8)
∣∣ψĩ

〉
+ sin(1.8) |ψi〉 (29)

This result states that a measurement in the second register
of |ψ7〉 will return the representative to X(3) (x3 = 6)
with probability |sin(1.8)|2 = 94, 53% of sure. With this
information the intruder will be able to retrieve all the set
X(i) of internal states from the generator under attack,
endangering its unpredictability.

The quantum permanent compromise attack to BM de-
scribed in this section has total complexity equal to the sum
of the complexities of each phase. In the first one, the cost is
equal to O(1), because of 2 · j ·O(1) oracle’s operations per-
formed; the second part has total cost equal to the Grover’s
algorithm, O(

√
p) = O(

√
2n) because p ≈ 2n. So, the total

cost of the quantum algorithm is O(1)+O(
√
2n) = O(

√
2n).

This result represents a quadratic speedup over its classical
counterpart.

V. RELATED WORK

Classical attacks to pseudorandom generators have been
studied for many researchers, not only with cryptographic
purposes. Kelsey et al. [1] proposed a taxonomy that clas-
sifies attacks to PRNGs in six different categories and
also discuss their extensions. According to these authors,
the study of cryptanalytic attacks on PRNGs has practical
and theoretical applications because (i) there aren’t any
widespread understanding of the possible attacks to PRNGS;
(ii) PRNGs are single point of failure in many real-world
cryptosystems; and, (iii) many systems use badly-designed

PRNGs or use them in ways to make various attacks easier
that they need to be.

So far, regarding quantum attacks to pseudorandom gener-
ators, no references were found in the literature that present
such attacks. Since the proposed algorithm characterizes
a speedup over its classical counterpart, it opens up the
possibility to use quantum computation to endanger the
security of such generators.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a quantum permanent compromise
attack to the Blum-Micali generator. This algorithm uses
quantum searching with multiple solutions and parallelism to
retrieve the generator’s internal state with high probability.
The algorithmic complexity is O(

√
2n) contrasting with

O(2n) of the best classical algorithm known, where n is
the input size.

To the authors’s knowledge, the attack introduced in
this work is the first proposal of quantum attacks against
pseudorandom numbers generators. Furthermore, this attack
brings results against the security of a generator used in real-
world cryptographic applications.

In future works, the authors intend to analyze the adoption
of some elements from the quantum algorithm to the discrete
logarithm problem into the permanent compromise attack.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support
rendered by the Brazilian National Council for the Im-
provement of Higher Education (CAPES), and the useful
discussions with Francine Melo and Gilson O. Santos.

REFERENCES

[1] J. Kelsey, B. Schneider, D. Wagner, and C. Hall, “Cryptanalytic attacks
on pseudorandom number generators,” Lecture Notes in Computer
Science, vol. 1372/1998, pp. 168–188, 1998.

[2] A. Rukhin, “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” National Institute
of Standards and Technology, Tech. Rep., 2008.

[3] G. Marsaglia, “The Marsaglia Random Number CDROM, including
the DIEHARD Battery of Tests of Randomness,” 1995.

[4] M. Blum and S. Micali, “How to generate cryptographically strong
sequences of pseudorandom bits,” SIAM J. Comput., vol. 13 (4), pp.
850–864, 1984.

[5] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseudo-
random number generator,” SIAM Journal on Computing, vol. 15, pp.
364–383, 1986.

[6] B. S. Kaliski, “Elliptic curves and cryptography: A pseudorandom bit
generator and other tools,” Ph.D. dissertation, MIT, Cambridge, MA,
USA, 1988.

[7] P. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Journal on Com-
puting, vol. 26, pp. 1484–1509, 1997.

[8] L. K. Grover, “Quantum mechanics helps in searching for a needle in
a haystack,” Physical Review Letter, vol. 79, pp. 325–328, 1997.

[9] A. Sidorenko and B. Schoenmakers, “State recovery attacks on pseu-
dorandom generators,” in Western European Workshop on Research in
Cryptology, 2005, pp. 53–63.

[10] D. Cloutier, “Mapping the discrete logarithm,” Senior thesis – Rose-
Hulman Institute of Technology, 2005.

