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Discrimination Algorithm for False Alarm
Reduction in SAR Incoherent Change Detection

Alexandre B. Campos, Ricardo D. Molin Jr., Mats 1. Pettersson, and Renato Machado

Abstract— This paper introduces an additional stage for in-
coherent change detection algorithms (CDAs) based on multi-
layer perceptron (MLP). Pixels the CDA initially assigned as
detections are re-evaluated by the MLP based on features
extracted from the processed images, according to a previously
performed training. The tests considered multitemporal synthetic
aperture radar (SAR) images from the CARABAS-II system, in a
scenario where military vehicles were concealed under vegetation.
Preliminary results show that the proposed method can reduce
the false alarm rate (FAR) by up to 73% for the same probability
of detection.

Keywords— CARABAS-II, CDA, false alarm reduction, MLP,
SAR images.

I. INTRODUCTION

Change detection is the process of identifying differences
between two or more images of the same area of interest, con-
sidering polarimetric, multispectral, or multitemporal images
[1]. Recognizing such changes visually may be laborious and
inefficient, in such a way that this process is automatized th-
rough change detection algorithms (CDAs), which are widely
used in areas such as precision agriculture [2], deforestation
monitoring [3] and urban studies [4].

In the last few years, synthetic aperture radars (SAR) have
become one of the main tools for monitoring the Earth’s
surface [1]. SAR systems can be classified as orbital or
airborne, being able to generate high-resolution images due
to the synthesis of a large aperture along their movement. At
lower frequencies (e.g., VHF band), SAR systems have been
used in applications such as ground and foliage penetration
(GPR - Ground Penetrating Radar [5], FOPEN - Foliage Pene-
tration [6]), especially for detection of covered or camouflaged
structures that are not revealed by optical sensors.

In this context, the airborne SAR system CARABAS-II has
been developed by the Swedish Defence Research Agency
(FOI) as a tool for monitoring forested areas with FOPEN
applications, operating at the lower limit of the VHF band
(20-90 MHz). Change detection in forested areas is usually
associated with a large number of scatters and involves a
series of challenges, in such a way that FOI has published
a set of 24 SAR images from a test field in northern Sweden,

Alexandre B. Campos, Ricardo D. Molin Jr., and Renato Machado,
Graduate Program of Electronics and Computer Engineering, Aeronautics
Institute of Technology (ITA), 12228-900, Sao José dos Campos - SP, Brazil.
E-mails: beckercampos@ieee.org, rsddj@ieee.org, renatomachado@ieee.org.
Mats I. Pettersson, Department of Mathematics and Natural Sciences, Ble-
kinge Institute of Technology (BTH), 371 79, Karlskrona, Sweden. E-mail:
mats.pettersson @bth.se. This study was financed in part by the Coordination
for the Improvement of Higher Education Personnel (CAPES) - Finance Code
001.

where 25 military vehicles were concealed under vegetation,
in order to encourage the development of new CDAs [7]. The
main challenge in this scenario is to sufficiently suppress the
clutter! to achieve a false alarm rate (FAR) low enough to
provide useful information to the operator of the system.

Typically, a CDA is composed of three main parts: (1) the
change image processing highlights the differences between
a surveillance image and one or more reference images; (2)
a decision process aims to classify the pixels, or groups of
these, into targets or background; (3) finally, morphological
operations are employed to reduce the number of false alarms
based on the resolution and other physical characteristics of
the system.

In this paper, we introduce a second processing stage based
on a multi-layer perceptron (MLP) after the CDA is applied.
The detected pixels are tested again by the MLP, which
considers features of change regions from the surveillance
and reference images to discriminate targets from potential
false detections. Preliminary results show that the proposed
model can efficiently reduce the number of false alarms, while
keeping a high probability of detection.

The remainder of this paper is organized as follows. Section
II describes the considered dataset of 24 SAR images. Section
IIT introduces the proposed model, the change detection algo-
rithm and the training of the MLP network. In Section IV, the
results are presented and discussed. Finally, Section V presents
some final considerations and remarks.

II. DATA DESCRIPTION

The change detection problem considered in this paper is
based on a set of 24 SAR images acquired in 2002 with the
CARABAS-II system in a boreal forest region in northern
Sweden. The CARABAS-II system transmits horizontally po-
larized waves in a frequency range of 20-90 MHz, which
ensures that the sensor only receives strong responses from
objects of the order of 1 m or larger, in a way that most
changes that occur in the environment, such as falling leaves
and branches, are not registered in the images [6].

The imaged area has 6 km? (3 km x 2 km), and each pixel
corresponds to an area of 1 x 1 m, which means that the
considered images are analyzed as matrices with dimensions
3000 x 2000. Moreover, 25 military vehicles were deployed
in regions where the forest is denser. The vehicles consist of
three different models: ten TGB11, with dimensions 4.4 x
1.9 x 2.2 m, eight TGB30, with 6.8 x 2.5 x 3.0 m and seven
TGB40, with dimensions 7.8 x 2.5 X 3.0 m. Figure 1 shows an

!Unwanted signals or echoes that hinder the detection of targets.
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example of one of these images, in which the 25 targets are
highlighted inside the red square. Other structures like power
lines, fences, rocks and constructions can also be seen as bright
structures, which motivates the use of a reference image for
clutter suppression.

Fig. 1. Example of a SAR image from the CARABAS-II database. The
targets are highlighted inside the red square.

Moreover, the 24 SAR images considered in this paper can
be divided into four missions: Sigismund, Karl, Fredrik, and
Adolf-Fredrik. Each mission is associated with a different
target deployment, illustrated in Figure 2, and contains six
images: two acquired with a flight heading of 225°, two with
135° and two with 230°. While deployments Sigismund and
Karl are displayed in the top-left corner of the images with
target headings of 225° and 315°, respectively, deployments
Fredrik and Adolf-Fredrik are found in the bottom-right corner
of the images with target headings of 225° and 270°, respec-
tively. The headings are defined as 0° pointing towards the
north and increase clockwise.

The change detection is then performed considering pairs
of images from different deployments, i.e., missions. In this
paper, the same 24 pairs of surveillance and reference images
presented in [7] are considered for comparison purposes.

III. PROPOSED MODEL

A block diagram for the proposed model is presented in
Figure 3 and can be divided into three main steps: (1) the
image processing is performed by a CDA which, after an
internal decision step, binarily indicates objects (groups of
connected pixels) where significant changes occur between a
surveillance image and a reference one; (2) a 9 x 9 window
centered in the centroid of each detected object is considered
a region of interest (ROI), where the features extraction is
performed; (3) a previously trained MLP network is used to
discriminate detections into a target or non-target class.

The model characteristic implies that the probability of
detection is limited by the CDA, as the MLP network can only
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Fig. 2. Four possible missions and their respective target deployments in
CARABAS-II data: (a) Sigismund, (b) Karl, (c) Fredrik and (d) Adolf-Fredrik.
Details about the distribution of the 25 targets in respect to their three possible
classes (TGB11, TGB30 and TGB40) can be found in [7].
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Fig. 3. Block diagram of the proposed model. Two georeferenced images (z,-
and z) are applied into a change detection algorithm (CDA), which highlights
objects of interest. Each object’s location and surroundings are extracted
(ROI extraction), with a set of features for each object being acquired. A
previously trained neural network (MLP) can then discriminate the CDA’s
detections as being targets or non-targets. A final georeferenced image (z5)
is then generated, where only the objects classified by the MLP as targets are
maintained and thus a false alarm reduction occurs.

discriminate detections that are previously assigned by the
CDA. Thus, the MLP block introduction aims to improve the
performance of radar change detection algorithms by reducing
the presence of false detections (false alarms). In this paper,
a CDA based on control charts (detailed in Subsection III-
A) is applied to demonstrate the proposed method, while the
features and methodologies for training the MLP are shown
in Subsection III-B.

A. Change Detection Algorithm (CDA)

The incoherent CDA considered in this paper is adapted
from [9]. This algorithm is based on a control chart technique
[10] that iteratively detects outliers and thus can help to define
optimal thresholds for each pair of images.

The first part of this CDA consists in generating a change
image through a differencing technique, i.e., a reference image
z is subtracted pixel by pixel from a surveillance image z;.
The resulting matrix is then normalized, i.e., subtracted by its
mean and divided by its standard deviation, and a threshold
is used to establish an upper control limit (UCL) and a lower
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control limit (LCL). Pixels that lay outside this interval are
classified as targets and the remaining ones are renormalized.
This process is repeated until every pixel is found between
the lower and upper limits, as can be seen in Figure 4. The
output of this part is a binary image, where ‘1’ denotes positive
changes (the targets of interest, pixels above the upper limit)
and ‘0’ represents the background and negative changes.

Fig. 4.  Iterative process of the CDA. Pixels greater than the thresholds
are considered to be part of targets (first chart) and the remaining ones are
renormalized. This process is repeated until every pixel is found within the
lower and upper limits (last chart).

Finally, morphological operations are employed to reduce
the occurrence of false alarms (as in [7], [11]). According to
the criteria adopted in [7], [9], an erosion process removes
objects (groups of connected pixels) considered too small
given the system resolution, while a dilation is applied to
unite groups of pixels that are too close from each other, both
employed with a 3 x 3 structural element.

The final result of the considered CDA is a binary image,
in which objects of interest are highlighted. In a conventional
radar target detection problem, every object would be assigned
as targets and thus the number of false alarms would tend to
be high.

B. Discrimination Algorithm (MLP)

The discrimination algorithm is based on MLPs, a class of
feedforward neural networks, which derives from the percep-
tron [12]. They are distinguished from the latter by having hid-
den layers between the input neurons and the network output
[13], with non-linear activation. The learning process of the

network is supervised through a backpropagation algorithm.
Due to its characteristics, it can distinguish data that are not
linearly separable. An architecture example of an MLP neural
network is presented in Figure 5.

hidden layers

input layer

Fig. 5. Architecture for an MLP binary classification.

The choice for this class is based on the characteristics of
the data (non-linearly separable) and ease of implementation.
Furthermore, perceptrons and MLPs have already been applied
to SAR images with different objectives: discrimination of dif-
ferent types of targets (vehicles) [14], [15] and noise removal
[16]. Given an MLP used for binary classification, the i-th
layer of the network (output neuron) can be formulated as

al = i Wit + b, (D

where its activation is defined in terms of the weight matrix
W and the vector bias b%, governed by the activation function
f%, which transforms the sum of the outputs of the previous
state in an output a’ [13], defining the algorithm classification.

The weight update process is made by a backpropagation
algorithm, which can be summarized as follows [17]: (1)
weights initialization; (2) samples extraction from the training
set; (3) propagation phase, which starts as an input vector
applied in the first hidden layer and calculates the error
signals between the desired answer and the obtained one; (4)
backpropagation phase, which starts in the output layer and
calculates the local gradients; (5) iteration between (3) and
(4) with new training samples until the stopping criteria are
satisfied.

The training set for the MLP consists of four image pairs
that represent all four missions from the selected images
(CARABAS-II). Thus, the database is compounded by 100
target samples (25 targets for each pair) and 100 background
samples. For sampling the data, each of the 100 target lo-
cations is acquired, given that their positions on the field are
previously known for the CARABAS-II set. The same is made
for 100 pixels considered as background. For extracting the
latter, two methodologies are proposed:

1) MLP I: random pixel extraction from image background;

2) MLP II: image pre-processing in order to obtain objects

previously identified as false alarms (false detections) on
the used CDA, aiming to extract more relevant pixels of
the background.

Each sample of the training data, from a total of 200, is
acquired in the following way: (1) the coordinates (x,y) from
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the pixel of interest is extracted, where the pixel represents
a known target, a random point in the background (MLP I)
or a erroneously detected point from the CDA (MLP II); (2)
a window, centered in (x,y), of size 9 X 9 (in a way that it
can comprise the biggest target size, described in Section II)
is considered for the surveillance image z, and reference z,;
(3) features from these windows are extracted to represent the
object of interest, centered in (x,y); (4) the outcome of this
extraction (features vector) is used as input layer for the MLP.
The extraction process is presented in Figure 6.
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Fig. 6. Features extraction process.

In the feature vector, us and u, represent the mean value
obtained from the window for the surveillance and reference
images, respectively. Analogously, the variances o2 and o2
are extracted. Furthermore, the minimum (ming), maximum
(max,) and median (med,) values of the surveillance window
are also acquired. The selected features aim to represent
the window with a reduced number of inputs in contrast to
utilizing all the 81 pixels of the window.

Thus, for the training data 200 samples are acquired (100
target samples and 100 background samples). The MLP I
approach comes from [18], but while target and randomly
selected background windows can be easily distinguished,
objects identified as false alarms are usually a greater chal-
lenge. Therefore, the methodology MLP II is proposed for
establishing a more robust training data.

Figure 7 illustrates windows considered as target, back-
ground according to MLP I and background according to
MLP II. While the first one represents a vehicle, the third one
represents a fence (part of the background) with characteristics
that make its rejection difficult by the majority of CDAs.

LIl

Fig. 7. Samples acquired from a surveillance image. Target, background,
and a false detection mistakenly detected by the CDA, respectively.

IV. EXPERIMENTAL RESULTS

Image pairs 4, 7, 13 and 22 from [7] were selected to train
the algorithm. Thus, the trained algorithm was applied for the

remaining 20 proposed pairs. For the CDA stage, the following
thresholds were adopted: 2.75, 3.0, 3.5, 4, 4.5, 5.0 and 6.0.
In order to acquire the training data samples for the MLP II
methodology, 100 samples of detections mistakenly assigned
as targets from the four training pairs at the threshold 2.75
were selected. Thus, after the model training, pixels previously
appointed as detections by the CDA for each threshold are
reassessed. “CDA + MLP I” and “CDA + MLP II” are the
adopted names for the systems composed by the CDA and the
two training methodologies, respectively.

The neural networks were implemented in Python, using
the TensorFlow library. A batch size of 20 was used and
the rmsprop optimizer was employed. Given the features
transformations applied in this work, it was possible to reduce
the computational complexity of the adopted model. Thus, for
the selection of the MLP architecture, variations from one to
three hidden layers were tested, besides varying the number
of neurons present in each of them in quantities of 16, 32
and 64. The architectures were evaluated with respect to their
precision and loss, which directly reflects the network’s ability
to maintain a good probability of detection while still being
able to reduce the number of false alarms significantly.

The best performance was achieved using three hidden
layers, each one with 16 neurons activated by a ReLU function.
The output neuron is activated by a sigmoid function [17]. This
architecture, for the MLP I, obtained a precision of 99% and
a -25.35 dB loss. For the MLP II, the precision was 96.89%
and a -9.37 dB loss.

In order to evaluate the use of this algorithm in radar change
detection problems, we employ metrics such as probability of
detection and false alarm rate (FAR). The first expresses the
number of true detections over the total number of known
targets, while the second is defined as the number of false
detections per km?. Receiver operating characteristics (ROC)
curves are used to visualize the performance of an algorithm
for a set of thresholds, linking the two previously cited
variables. In general, we may conclude that better decision
or detection performance is indicated by an ROC curve that
is higher and to the left in the ROC space [19].

Figure 8 presents the comparison between the original
ROC curve for the CDA (continuous blue line) and the two
proposed approaches. The FAR is disposed in a logarithmic
form for better visualization. The probability of detection (FPy)
is limited by the CDA, and thus the MLP discriminator acts as
a false alarm reducer. This is noticeable from the displacement
between the original CDA curve and the proposed approaches,
especially the MLP II one. Additionally, the results are dis-
posed in Table I, which compares the FAR for each approach
given a fixed probability of detection.

TABLE I
FALSE ALARM RATE BY PROBABILITY OF DETECTION FOR THE ORIGINAL
CDA AND WITH THE ADDITION OF MLP I AND MLP II DISCRIMINATORS.

P, FAR

CDA CDA + MLPI CDA + MLP II
0.97 0.4583 0.3792 0.1229
0.96 0.2500 0.2333 0.0917
0.95 0.2333 0.2167 0.0907
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Fig. 8.  Comparison between CDA performance and systems with the
discriminator algorithm.

Both Figure 8 and Table I demonstrate a large difference
in performance between the CDA and its use in combination
with the discriminator algorithm. Performance improvement is
noticeable when the network is trained with samples of false
alarms previously detected (e.g., fences and power lines). This
is due to the fact that the approach used to train the MLP II
considers a more realistic case of target discrimination, which
although achieving a theoretical precision lower than the MLP
I, ends up being more suitable to the problem.

V. CONCLUSIONS

In this paper, a system compounded of a CDA and a
discriminator algorithm is proposed in order to re-evaluate
the detections initially pointed out by the first one. The
results indicated a performance improvement by reducing false
alarms with an extremely low computational cost, since the
MLP model can be pre-trained. The false alarm reduction
achieved indicates that a CDA which favors a high probability
of detection (even with a high false alarm rate) can be
preferable to the application, as the discriminator algorithm
can compensate these flaws. This can cause a simplification
of the threshold establishment process, as the main concern
of a change detection algorithm is to maintain a low FAR.
By dismembering the problem of target detection into two
algorithms, a greater permissiveness of the CDA is allowed,
i.e., to use the first algorithm to maximize target detection and
ensure a high P, leaving to the MLP the task of eliminating
(or reducing) false alarms. Future works can address the com-
putational complexity of the proposed model in comparison
to known costly algorithms approaches, such as ones that use
techniques like constant false alarm rate (CFAR) filters and
likelihood ratio tests (e.g., [20], [21]).
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