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The ℓ0-Norm Constraint Coefficient Reusing Least Mean Square
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Abstract— An adaptive filtering algorithm should present fast
convergence and good steady-state behaviour. Both metrics can be
enhanced if one makes use of the sparsity (energy concentration
in few coefficients) of the involved (unknown) transfer function.
Unfortunately, such an approach can suffer from steady-state
performance degradation when the signal-to-noise ratio is low,
due to an increase of the adaptive weights variance. This
work advances a new algorithm that combines the reusing
coefficient strategy, which increases the robustness against the
additive noise, with a sparsity-aware algorithm, which employs
an approximation of the ℓ0-norm in order to penalize non-sparse
adaptive vector estimations.

Keywords— Adaptive Filtering, Convergence Analysis, ℓ0-
Norm Constraint, Reusing Coefficients.

I. INTRODUCTION

It is widely known that sparse signals and transfer functions
are often present in applications such as channel equalization,
system identification and acoustic echo cancellation [1]. This
fact has motivated the insertion of such prior knowledge in the
design of adaptive algorithms, in order to obtain improvement
in the convergence rate and/or good steady-state performance.
Traditional algorithms, such as the LMS (least mean square),
NLMS (normalized LMS), AP (affine projection) and RLS
(recursive least square), are intrinsically agnostic with respect
to the energy concentration of the transfer function that the
adaptive filter intends to emulate1, so that sparsity-aware
schemes may enhance their learning capabilities [2]. Most of
these schemes can be classified into two categories: (i) pro-
portionate algorithms, and (ii) regularization-based algorithms.
The first of them comprises as examples the PNLMS [3], the
PNLMS++ [4], the IPNLMS [5], the MPNLMS [6], and the
IMPNLMS [7]. Among the regularization-based algorithms,
one can list several proposals, such as the zero-attracting
LMS (ZA-LMS) [1], the ℓ0-LMS [8] and the non-uniform
norm constraint LMS [9]. Since the sparsity-norm regularized
filters are computationally less expensive and can achieve a
better compromise between convergence and steady-state error
than the proportionate approaches [10], this paper focuses on
regularization-based algorithms, especially the ℓ0-LMS, whose
performance is analyzed in [11], [12].

Unfortunately, insertion of prior information on the sparsity
of the ideal transfer function does not guarantee robustness
against noise in a low signal-to-noise ratio (SNR) environ-
ment [13]. In this case, the high variance of the adaptive

1Instituto Federal do Rio de Janeiro. 2Programa de Engenharia Elétrica
(PEE), COPPE/UFRJ, Rio de Janeiro-RJ, Brasil. 3 Coordenação de Engen-
haria de Computação, CEFET-RJ campus Petrópolis, Petrópolis-RJ, Brasil.
4 Coordenação de Telecomunicações, CEFET-RJ campus Nova Iguaçu, Nova
Iguaçu, Brasil. E-mails: leonardo.resende@ifrj.edu.br, newton.siqueira@cefet-
rj.br , diego.haddad@cefet-rj.br, mariane@pads.ufrj.br.

1This paper focuses on the identification system task.

coefficients translates into poor steady-state performance [14].
This problem can be mitigated by the coefficient reuse (RC)
strategy [15], which improves steady-state performance with-
out significantly harming the convergence rate [16].

This paper proposes a deterministic optimization cost func-
tion, whose approximate solution introduces in the RC-LMS
algorithm [17] a penalty for non-sparse coefficient vectors
through an approximate ℓ0-norm regularization. The resulting
algorithm (named ℓ0-RC-LMS) presents a low computational
burden and combines the enhanced performance of sparsity
aware based strategies with the robustness of reusing coeffi-
cient schemes in low SNR scenarios.

Section II succinctly describes the RC-NLMS algorithm and
its derivation using the Lagrange multiplier technique. Section
III presents the ℓ0-LMS algorithm, which is usually derived us-
ing stochastic gradient. Section IV unifies the two paradigms,
providing a generalized algorithm that incorporates both ℓ0-
norm regularization and the reuse of coefficients. Section V
presents comparisons between the advanced approach and
other algorithms. Finally, Section VI presents the concluding
remarks of the paper.

II. RC-NLMS ALGORITHM

The algorithms that use the coefficient reuse technique
perform well in steady-state operation, with a small reduction
in the convergence rate which, in many scenarios, is negligi-
ble [15]. The RC strategy basically smoothes the dynamics
of the adaptive weights, which is especially beneficial in
environments with low SNR. The degree of coefficient reuse
is directly influenced by an adjustable parameter L ∈ N,
with L greater than one (otherwise the RC-NLMS algorithm
degenerates into the classic NLMS).

As depicted in Fig. 1, consider the vector2 w(k) ∈ R
N that

contains the adaptive coefficients wi(k), for i ∈ {0, ..., N −
1}, at the k-th iteration. Given a reference (or desired) signal
d(k), often corrupted by additive noise ν(k), the error e(k)
is a stochastic assessment of the quality of the current filter
estimate, which is computed through

e(k) , d(k)− y(k), (1)

where y(k) , wT (k)x(k) is the adaptive filter output at the
k-th iteration and x(k) ∈ R

N is the input vector defined as

x(k) ,
[
x(k) x(k − 1) . . . x(k −N + 1)

]T
, (2)

with x(k) being the k-th sample of the input signal. Using
these definitions, the RC-NLMS algorithm can be derived from

2All vectors of this paper are of column-type.
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Fig. 1. Block diagram of an adaptive system identification task, where w
⋆

denotes the unknown system.
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Fig. 2. Contour plots of the cost function FRC[w(k + 1)] and coefficients
vectors, assuming ρ = 0.99. (a) for L = 1 (i.e., the standard NLMS); (b) for
L = 4.

the following optimization problem [15]:

min
w(k+1)

FRC[w(k+1)] =

L−1∑

l=0

ρl‖w(k+1)−w(k− l)‖2 (3)

s.t. ep(k) = (1− β)e(k),

where β is the step size (or learning factor), e(k) is the filtered
error, given by

e(k) , d(k)− θ(ρ)

L−1∑

l=0

ρlwT (k − l)x(k), (4)

and
θ(ρ) ,

ρ− 1

ρL − 1
, (5)

in which ρ ∈ (0, 1] controls the weight given to past coefficient
vectors [15]. Figure 2 illustrates the modifications engineered
in the cost function by the coefficient reuse strategy for the
bi-dimensional case (i.e., N = 2), where the corresponding
contour plots and coefficient vectors are illustrated for L = 1
and L = 4.

The constrained and deterministic problem given in (3) can
be solved by the Lagrange multiplier technique, which gives

rise to the following unconstrained and equivalent3 problem:

min
w(k+1)

FRC[w(k + 1)] + λ [ep(k)− (1− β)e(k)] , (6)

whose solution generates the following filter updating equa-
tion:

w(k + 1) = θ(ρ)

L−1∑

l=0

ρlw(k − l) +
βe(k)x(k)

||x(k)||2
. (7)

It should be observed that the use of a small ρ value reduces
the effect of previous w(k− l) vectors. Note that the solution
w(k + 1) minimizes the sum of weighted distances w.r.t. the
last L vectors w(k − l), for l ∈ {0, 1, . . . , L − 1}, which
smoothes adaptive coefficient oscillations. The computational
effort involved in the coefficient reuse strategy may be reduced
using the Set-Membership approach [18]. Furthermore, the
trade-off between convergence rate and steady-state behavior
can be relaxed through a time-variant coefficient reuse factor
[16], [19].

III. ℓ0-LMS ALGORITHM

Motivated by the Least Absolutely Shrinkage and Selection
Operator (LASSO) [20] and by Compressive Sensing (CS)
approaches [21], the ℓ0-LMS algorithm [22] aims to accelerate
the identification of a sparse system. This ability is obtained
by minimizing the stochastic cost function

Fℓ0−LMS(k) , e2(k) +
κ

β
F̺ [w(k)] , (8)

in which the parameter κ ∈ R
+ regularizes the amount

of penalization of non-sparse solutions and F̺ [w(k)] is an
almost everywhere differentiable function that approximates
the ℓ0-norm4 and depends on an adjustable parameter ̺ ∈ R

+

[11]. Such approximation is required due to the NP hardness
of l0-norm optimization [8]. One popular choice for F̺ [w(k)]
is [11]

F̺ [w(k)] ,

N−1∑

n=0

(

1− e−̺|wn(k)|
)

, (9)

which is employed in this work. Alternative choices for this
approximation function are given in [23]. Both ℓ0-LMS and
ℓ0-NLMS updates5 can be written as

w(k + 1) = w(k) + β̃(k)x(k)e(k) + κf̺ [w(k)] , (10)

where f̺ [·] is an approximation of the negative of the gradient
of F̺ [w(k)] w.r.t. w(k) and β̃(k) is the step-size, given by

β̃(k) =

{
β, for the ℓ0-LMS algorithm,
β

x
T (k)x(k)+δ

, for the ℓ0-NLMS algorithm.
(11)

This paper employs a low cost approximation of
f̺ [w(k)] = ∇

w(k)F̺[w(k)], so that the i-th coefficient of

3Equivalent in the sense that its solution is the same as that of the original
constrained problem.

4Rigorously, the ℓ0-norm is a pseudonorm.
5Other ℓp-norms could also be chosen [9].
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Fig. 3. Curves of F̺(x) and the low-cost approximation f̺(x) (in blue)

of the exact function −
∂F̺(x)

∂x
(in red). (a) F̺(x) with ̺ = 2.5; (b) f̺(x)

and its exact version with ̺ = 2.5; (c) F̺(x) with ̺ = 5; (d) f̺(x) and its
exact version with ̺ = 5.

f̺ [w(k)], denoted by f̺ [wi(k)], can be written as

f̺ [wi(k)] ≈ −
∂F̺[w(k)]

∂wi(k)
, (12)

which is related to a zero-attracting term [24]. The quantity
f̺ [wi(k)] can be expressed as [22]

f̺[wi(k)] =







̺2wi(k) + ̺, − 1
̺
≤ wi(k) < 0

̺2wi(k)− ̺, 0 < wi(k) ≤
1
̺

0, elsewhere
. (13)

Figure 3 presents some examples of the univariable func-
tions F̺(x) and f̺(x). Note that f̺(x) implements a zero-

point attraction function, which in some contexts might pro-
duce large steady-state misalignment [12]. The ℓ0-LMS can be
modified in order to reduce its computational complexity and
increase its robustness against impulsive noise (e.g., see [25]).

IV. PROPOSED ALGORITHM

The algorithm proposed in this work minimizes the cost
function

min
w(k+1)

L−1∑

l=0

ρl‖w(k+1)−w(k− l)‖2+αF̺[w(k+1)], (14)

where the term αF̺[w(k+1)] penalizes non-sparse solutions,
subject to the linear constraint [17]

ep(k) = (1− β||x(k)||2)e(k). (15)

The solution of (14)-(15) provides a new non-normalized
algorithm that is sparsity-aware and employs coefficient reuse.
In the following, an approximated solution is derived.

Using the Lagrange multiplier technique for solving (14)-
(15), the following unconstrained problem is obtained:

min
w(k+1)

L−1∑

l=0

ρl‖w(k + 1)−w(k − l)‖2 + F̺[w(k + 1)]

+λ[ep(k)− (1− β||x(k)||2)e(k)] , G[w(k + 1)], (16)

where λ is the Lagrange multiplier.

Zeroing the gradient ∇
w(k+1)G[w(k + 1)] w.r.t. w(k + 1)

results in:

∇
w(k+1)G[w(k+1)] = 2

L−1∑

l=0

ρlw(k+1)− 2
L−1∑

l=0

ρlw(k− l)

+
α

2
f̺[w(k + 1)]−

λ

2
x(k) = 0, (17)

where f̺[w(k+1)] , −∇F̺[w(k+1)] and F̺[w(k+1)] ≈
F̺[w(k)] [2].

Rewriting (17), we obtain

w(k + 1) = θ(ρ)

L−1∑

l=0

ρlw(k − l)−
θ(ρ)

2
αf̺[w(k)]

−
λ

2
θ(ρ)x(k) (18)

Replacing (18) in (15), we get

d(k)− θ(ρ)

L−1∑

l=0

ρlwT (k − l)x(k)

︸ ︷︷ ︸

=e(k)

+
θ(ρ)

2
αfT

̺ [w(k)]x(k)

+
λ

2
θ(ρ)‖x(k)‖2 = e(k)− β‖x(k)‖2e(k), (19)

and assuming that θ(ρ)
2 αfT

̺ [w(k)]x(k) can be approximated
by zero (see [26]), we conclude that

⇒ λ =
−2βe(k)

θ(ρ)
. (20)

Finally, by replacing (20) in (18), we obtain the filter update
equation for the proposed ℓ0-RC-LMS algorithm:

w(k + 1) = θ(ρ)

L−1∑

l=0

ρlw(k − l) +
θ(ρ)

2
αf̺[w(k)]

+βx(k)e(k). (21)

Note that the update equation (21) can be efficiently com-
puted by defining the intermediate vector φ(k) as

φ(k) , θ(ρ)w(k)+θ(ρ)ρw(k−1)+ . . .+θ(ρ)ρL−1
w(k−L+1),

(22)
so that (21) can be rewritten as

w(k + 1) = φ(k) + β
[

d(k)− φT (k)x(k)
]

x(k)

+
θ(ρ)

2
αf̺[w(k)]. (23)

Using the recursion

φ(k+1) = ρφ(k)+θ(ρ)w(k+1)−θ(ρ)ρLw(k−L+1), (24)

the updating of the intermediate vector φ(k) requires 3N
multiplications and 2N sums (assuming that both terms θ(ρ)
and θ(ρ)ρL have been previously stored in memory). It should
be noted that, employing (24), the complexity of the ℓ0-RC-
LMS algorithm does not increase with L. If D denotes the
fraction of the N coefficients that are zero, each iteration of the
ℓ0-RC-LMS algorithm at steady-state requires approximately
(4+D)N sums and (4+D)N +1 multiplications, compared

3
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to the 2N sums and 2N + 1 multiplications involved in the
original LMS algorithm. The pseudocode of the proposed ℓ0-
RC-LMS algorithm is presented in Algorithm 1, where Nit is
the total number of iterations performed.

Algorithm 1 ℓ0-RC-LMS Algorithm

1: procedure ℓ0-RC-LMS(N ,L,ρ,x(k),Nit,d(k),̺,α)
2: if ρ = 1 then ⊲ Initialization
3: θ(ρ)← 1

L

4: else

5: θ(ρ)← ρ−1
ρL−1

6: end if

7: w(0)← 0N×1, . . . ,w(−L+ 1)← 0N×1

8: k ← 0
9: φ(k)← 0N×1

10: while k ≤ Nit do ⊲ Main loop
11: Evaluate e(k) using (4)

12: w(k + 1)← φ(k) + β
[

d(k)− φT (k)x(k)
]

x(k)

13: w(k + 1)← w(k + 1) + θ(ρ)
2 αf̺[w(k)]

14: k ← k + 1
15: Evaluate φ(k + 1) using (24)
16: end while

17: end procedure

The fast identification of sparse transfer functions, observed
in the ℓ0-LMS algorithm, and the robustness in low SNR
environments of the reuse of coefficients are combined in the
ℓ0-RC-LMS algorithm. This is confirmed by the results of the
simulations presented in the next section.

V. RESULTS

The algorithms used for purposes of comparison with the
proposed algorithm are LMS, ℓ0-LMS and RC-LMS. The
following parameters were employed: L = 2, ρ = 0.9,
̺ = 2 · 10−3, βLMS = 2 · 10−2, βℓ0LMS = 1.2 · 10−2,
βRCLMS = 1.5 ·10−2,βℓ0RCLMS = 1.5 ·10−2, σ2

ν = 2 ·10−2 and
κ = 10−3. A white Gaussian noise (WGN) with variance σ2

ν

was added to the reference signal. All averaged results come
from 400 independent Monte Carlo trials. The performance
of the adaptive filter algorithm is analyzed through the mean
square deviation (MSD), defined by

MSD(k) , E
{
‖w⋆ −w(k)‖2

}
, (25)

where E{·} denotes the statistical expectation operator. The
ideal transfer function coefficients are w⋆

n = 1, for n ∈
{0, 1, 2}, and w⋆

n = 0, for n /∈ {0, 1, 2} [27].
Figure 4 displays the MSD as a function of the number

of iterations. Note that the proposed algorithm presents better
steady-state performance than the other algorithms.

Figure 5 presents the steady-state MSD as a function of
β. The parameters used are the same as those used in the
simulations of Fig. 4. Notice that the proposed scheme has
the best steady-state performance, independent of the β value.

In order to evaluate the tracking behavior of the proposed
algorithm, Fig. 6 shows the evolution of the MSD in a case
where there is an abrupt change of the unknown plant after
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LMS algorithms.
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Fig. 5. Steady-state MSD (in dB) for the LMS, ℓ0-LMS, RC-LMS and
ℓ0-RC-LMS algorithms.

5000 iterations. The initial and last ideal transfer functions are
given by

Initial : w⋆
n =

{
1, for n ∈ {0, 1, 2}
0, otherwise.

(26)

Last : w⋆
n =







1, for n = 0
−0.8, for n = 1
0.3, for n = 2
0, otherwise.

(27)

From this figure, it can be observed that the proposed algo-
rithm has good tracking ability.

Figure 7 presents the MSD behavior of the ℓ0-RC-LMS
algorithm as a function of the β parameter for different values
of L. The other parameter values were ρ = 0.9 and σ2

ν =
10−4. The results were obtained from 100 independent Monte
Carlo trials, with WGN input signal and ideal transfer function
given in (26). Note that increasing the number of previous
coefficient vectors L in the ℓ0-RC-LMS produces better steady
state performance.
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VI. CONCLUSIONS

In this paper, a new deterministic optimization problem is
formulated, whose solution provides an adaptive algorithm that
presents two desirable properties, namely: fast convergence
when the unknown transfer function is sparse and robust
performance to high energy additive noise. The proposed
algorithm presents better steady-state behavior than traditional
approaches, resulting in MSD improvements of more than 3
dB in the performed simulations without a noticeable loss
in the convergence rate. In addition, the proposed algorithm
presented experimentally good tracking capability.
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