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An Epanechnikov Kernel Based Method for Source

Separation in Post-Nonlinear Mixtures
Caroline P. A. Moraes, Denis G. Fantinato, Aline Neves

Abstract— In the context of the nonlinear Blind Source Sep-
aration problem, Post-Nonlinear mixtures can be separated via
Mutual Information minimization. In this case, methods based
on score functions can be used and the recovered sources
distributions can be estimated by kernel methods. Usually a
Gaussian kernel function is used. However, other kernel functions
with interesting properties can be used, such as the Epanechnikov
kernel. Based on this, we apply the Epanechnikov kernel to
estimate the pdf and the relative gradient, in order to recover
the sources. Also, we compare a classic Gaussian kernel with the
Epanechnikov kernel, showing that the latter performs better
than the former.

Keywords— Blind Source Separation, Post-Nonlinear Mixtures,
Mutual Information, Epanechnikov Kernel.

I. INTRODUCTION

Blind Source Separation (BSS) is a classic problem within

the signal processing area occupying a prominent position in

view of its versatility and its wide range of practical appli-

cations [1]. Since the 80’s, great efforts have been dedicated

to this problem, whose objective is to create an artificial way

to retrieve the signals of unknown sources through a set of

observed mixtures [2], [3]. The problem is called “blind”

because the sources and the mixing process are unknown. The

assumption of linear and instantaneous mixing models present

a solid theoretical framework and counts with applications

in several areas, such as biomedical signal processing [4],

communication systems [1] and geophysical signal analysis

[5]. The Independent Component Analysis (ICA) is a set of

techniques widely used for solving the BSS problem [5],

which assumes the hypothesis that the sources are mutually

statistically independent. In that sense, several criteria are used

to retrieve the sources, some of them are based on cumulants

[6], maximum likelihood [7] and maximum correlation [8].

In many applications such as hyperspectral imaging [9],

intelligent chemical sensors arrays [10] and remote sensing

[11], the linear assumption is not enough for retrieving the

sources, since the observed signal present a nonlinear distor-

tion. However, a generic nonlinear approach still lacks method-

ology capable of ensuring source separation, which makes

this research field very modern and challenging. There are

several models that can be applied, being the efforts dedicated

to models where ICA techniques are still valid, under some

constraints, such as Linear-Quadratic [11] and Bilinear form

[12]. In this paper, we investigate nonlinear mixtures using
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the Post-Nonlinear model (PNL), which is more complex, but

also able to represent a larger set of nonlinear processes.

In Section II, we describe the linear and nonlinear mixing

models. Section III shows the criterion based on the mutual

information and its associated parameters. Section IV analyzes

the Epanechnikov and Gaussian kernels, and their respective

gradients. In Section V the simulations results are presented

and analysed. Finally, we conclude in Section VI.

II. BLIND SOURCE SEPARATION

In the past decades a large number of BSS algorithms have

been developed and studied, all of them based on linear and/or

nonlinear mixing models. In the following we describe both

of them.

A. Linear Mixing Model

For the case of linear mixtures, x is the M -dimensional

observation vector x(n) = [x1(n), x2(n), . . . , xM (n)]T ,

s is the vector of unknown sources s(n) =
[s1(n), s2(n), . . . , sN (n)]T , where N is the number of

sources and A is the mixing matrix. It can be modeled as:

x(n) = A s(n), (1)

where n is the time index. In this work, we will restrain our

study to the cases where N =M .

To separate the sources from x, the objective is to obtain a

separating matrix B, ideally equal to the inverse of A, up to

a scale and a permutation factors. Sources can be recovered

by:

y(n) = B x(n). (2)

where y(n) = [y1(n), y2(n), . . . , yN (n)]T is the vector with

the estimated sources.

B. Post-Nonlinear Model

The Post-Nonlinear model assumes that the mixing process

occurs through a linear stage followed by a nonlinear function

f(·), that is supposed to be invertible and monotonic. Mathe-

matically, the process can be modeled by:

xi(n) = fi(

N
∑

j=1

aij sj(n)), ∀ i ∈ {1, . . . ,M}, (3)

where the term aij represents the coefficients of the mixing

matrix A.

The aim is to find the matrix B and the function g(·) that

could retrieve the sources, so that:
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yi(n) =

N
∑

j=1

bij(gi(xj(n))), (4)

in which bij represents the coefficients of the matrix B and

yi(n) represents the i-th recovered source, admitting scale

invariance and/or permutation between the signals.

The system model is as illustrated in Fig. 1.

A B

f g

u(n) x(n) z(n)

y(n)s(n)

.

.

.

.

.

.

Fig. 1. Mixture Model Post-Nonlinear.

III. CRITERION BASED ON MUTUAL INFORMATION

There are several criteria that allow solving the BSS prob-

lem. In [13], the authors proposed a criterion based on the

minimization of the mutual information among the estimated

sources using an adaptive estimation of the log-derivative of

densities.

Mathematically, the accurate mutual information (MI) mea-

sure is very difficult to be obtained since it demands knowl-

edge of the joint and marginal signals probability density

functions (pdf). The work of Taleb and Jutten [13] proposes a

simplified criterion, by expressing the MI only as a function

of the marginal entropies, resulting in:

C(Y ) =

N
∑

i=1

H(Yi)−
N
∑

i=1

H(Zi)− log | detB|, (5)

where Yi is the random variable associated with yi(n), Zi

is the random variable associated with zi(n) and H(·) is

Shannon’s entropy function. As shown in Fig. 1, zi(n) =
g(xi(n)).

The marginal entropy can be estimated using a sliding

window (l) and is expressed as:

Ĥ(D) = −1

l

l
∑

n=1

log(PD(D(n))), ∀ n ∈ {1, . . . , l}, (6)

where D is a random variable and PD is its associated prob-

ability density function whose estimation will be discussed in

Section IV.

Having defined the cost function given by (5), its optimiza-

tion may be achieved through an algorithm that iteratively

updates the matrix B and the nonlinear function g(·) using

the relative gradient [14]. This method was developed in the

context of the EASI (Equivariant Adaptive Source Separation)

technique, showing good convergence properties.

For B, the adaptation equation is:

B← (I− λ ψ(Yi))B, (7)

where I is the identity matrix, λ is the adaptation step size and

ψ(Yi) is the score function of the gradient. At each iteration,

the rows of B are also normalized. For the nonlinear function

g(·),

gi ← (1− µ δ(Yi, Zi))gi, (8)

where µ is the adaptation step size, and δ(Yi, Zi) is the score

function of the gradient in each iteration.

The score functions ψ(Yi) and δ(Yi, Zi) depend on PY and

PZ . Its estimation will be detailed in the following section.

IV. KERNEL DENSITY ESTIMATION

Parzen window is a non-parametric method to estimate the

pdf through the use of kernel functions, based on a finite data

sample [15]:

P̂D(D(n)) =
1

l

l
∑

m=1

K(d(n)− d(m)), (9)

where K(·) is the kernel function.

This method consists in summing several kernel functions,

centered at each signal sample, for estimating the pdf. The

function must present certain characteristics to be used as

kernel [16]. The Central Limit Theorem (CLT) [5] establishes

that, in distributions of independent random variables, if we

combine an infinite number of variables, the distribution will

tend to a normal distribution. Due to the CLT and the large

occurrence of Gaussian signals in nature, the Gaussian kernel

is one of the most used:

Kgau(x) =
1√
2πσ

exp

(−x2
2σ2

)

, (10)

where σ is the bandwidth of the estimator and x is the sample

value.

However, in [16] it is shown that, based on the AMISE

(Asymptotic Mean Integrated Square Error) the Epanechnikov

kernel has a better performance for pdf estimation than the

Gaussian kernel. In the analysis developed in [16], Epanech-

nikov is shown to be an optimal kernel for pdf estimation. It’s

expression is given by:

Kepa(x) =
3

4σ

(

1− x2

σ2

)

,−σ ≤ x ≤ σ. (11)

As described in Section III, the MI based criterion (5) can

be optimized in two stages: a linear one given by (7) and

nonlinear one given by (8). In the following we will discuss

each one of them taking into account the kernel function

chosen to estimate the PX(X).

A. Linear Stage

In the linear stage, matrix B is updated through (7). We

may define ψ(Yi) as:

ψ(Yi) =
N
∑

n=1

∂Ĥ(Yi)

∂bij
, (12)

where, for the Gaussian kernel,

2
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∂Ĥ(Yi)

∂bij
=

1

l2

l
∑

n=1

1

P̂Y (Yi)

l
∑

m=1

Kgau(Yi)Yin,m
Zjn,m

σi
, (13)

and for the Epanechnikov kernel

∂Ĥ(Yi)

∂bij
=

1

l2

l
∑

n=1

1

P̂Y (Yi)

l
∑

m=1

6 Yin,m
Zjn,m

4σ3

i

, (14)

where Yin,m
= yi(n) − yi(m) is the vector of recovered

sources and Zjn,m
= zj(n) − zj(m) is the signal obtained

after the function g(·).

B. Non-Linear Stage

The nonlinear function g(·) can be approximated by a

truncated Taylor series expansion [17], as follows:

gi(xi(n)) = cTi ξi(n), ∀ i ∈ {1, . . . ,M} (15)

where ci = [ci1, ci2 . . . cib]
T are the coefficients of function

gi(·) and ξi(n) = [x1i (n) x
2

i (n) . . . x
b
i (n)]

T are the nonlinear

mixtures with exponents from 1 to b, being b the highest degree

of the truncated series.

An iteration of the algorithm includes the linear update of

B followed by the nonlinear update of gi(·). This last stage

is obtained by taking the derivative of (5) with respect to gi’s

coefficients ci. Thus, in the update equation (8),

δ(Yi, Zi) =

N
∑

n=1

∂Ĥ(Yi)

∂ci
−

N
∑

n=1

∂Ĥ(Zi)

∂ci
. (16)

For the Gaussian kernel, this leads to:

∂Ĥ(Yi)

∂ci
=

1

l2

l
∑

n=1

1

P̂Y (Yi)

l
∑

m=1

Kgau(Yi)Yin,m
bi

σi

∂Zn,m

∂ci
,

(17)

∂Ĥ(Zi)

∂ci
=

1

l2

l
∑

n=1

1

P̂Z(Zi)

l
∑

m=1

Kgau(Zi)Zin,m

σi

∂Zin,m

∂ci
,

(18)

where bi = [bi1 bi2] is the row vector of matrix B.

For the Epanechnikov kernel,

∂Ĥ(Yi)

∂ci
=

1

l2

l
∑

n=1

1

P̂Y (Yi)

l
∑

m=1

6 Yin,m
bi

4σ3

i

∂Zn,m

∂ci
, (19)

∂Ĥ(Zi)

∂ci
=

1

l2

l
∑

n=1

1

P̂Z(Zi)

l
∑

m=1

6 Zin,m

4σ3

i

∂Zin,m

∂ci
. (20)

V. PERFORMANCE ANALYSIS

A. Simulation Scenario

In the previous section we described a method for PNL

mixtures separation based on the use of two different kernel

functions, the Gaussian and the Epanhechnikov ones. In order

to understand the performance difference between implement-

ing the method with each of these two kernel functions, in this

section we present some simulations results. We considered

two independent sources both with uniform distribution and

with a range from -1 to 1.

Firstly the sources were mixed by matrix A:

A =

[

0.65 0.23
0.35 0.76

]

and, in the sequel, a cubic non-linear function f(·), is applied,

resulting in:

xi(n) = fi(ui(n)) = (ui(n))
3. (21)

As shown in Section II, function g(·) searches the inverse

of f(·) to recover the sources:

g(xi) = c1 xi + c2 sgn(xi)
3

√

|xi|. (22)

where sgn(xi) is the signal function. In this work, we consid-

ered the same f(·) for all mixtures, thus c11 = c21 = c1 and

c12 = c22 = c2.

Ideally, if the coefficient c1 = 0 and c2 = 1, we have

that g(·) = f−1(·), i.e., exactly the inverse of the nonlinear

function f(·). However, such solution is hardly attained due

to the impossibility of obtaining an accurate pdf and to

the presence of imprecisions in the estimation process. The

algorithm tries to obtain the best solution possible, close to

the ideal one.

In order to evaluate the algorithms performance, we will use

the Signal-to-Interference Ratio (SIR) that can be obtained by

the expression:

SIR = 10 log

(

E[yi(n)
2]

E[(si(n)− yi(n))2]

)

. (23)

Thereby, high values of SIR mean that sources were re-

trieved with higher quality.

B. Results and Discussion

In order to study the effects and the performance of the

method with the Epanechnikov and the Gaussian kernel, in

this section we will analyze the behavior of the algorithm

presented for the separation of the PNL mixture.

3
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(b) Bandwidth (σ2)
2 2.2 2.4 2.6 2.8 3 3.2

S
IR

(d
B
)

30

40

50

Max SIR
with µ = 0.3

Max SIR
with σ = 3

Fig. 2. Sigmas and Steps Analysis.

TABLE I

THE CHOSEN VALUES OF THE BEST STEP SIZES AND BANDWIDTHS.

Kepa Kgau

Linear Step λ 0.1 0.03
Nonlinear Step µ 0.3 0.1

σ1 3.3 1.3
σ2 3 1.6

1) Kernel Bandwidth and Adaptation Steps: Firstly, some

tests were performed to choose the algorithms parameters that

would provide the best results. This is necessary because the

parameters σ, l µ and λ have significant influence on the

results. Due to their interdependence, it is necessary that they

be adjusted jointly, to achieve the maximization of the SIR.

Fig. 2 shows some examples of how the SIR values vary

with respect to the step size (figure (a)) and the bandwidth

(figure (b)). The displayed results are the mean SIR values

obtained after 10 Monte Carlo simulations, sweeping values

of µ and σ. For figure (a), we used σ1 = 3.3, σ2 = 3, l = 100
and λ = 0.1, where σ1 refers to the first source while σ2 refers

to the second one. For figure (b) we used σ1 = 3.3, l = 100
µ = 0.3 and λ = 0.1. In both cases, the Epanechnikov kernel

was used. Fig. 2a shows that the best value for the nonlinear

stage step size, is µ = 0.3. Fig. 2b shows the performance

with respect to the bandwidth, achieving the maximum value

of SIR with σ2 = 3. The same procedure was executed to

select the best parameters for the Gaussian kernel.

Throughout this analysis, it was possible to chose the best

parameters for both kernels. Tab. I presents the values used

for the step sizes and the bandwidths. In general, the linear

stage step sizes are smaller than nonlinear stage ones and

the Gaussian kernel presented its best performance with the

smallest of them (λ = 0.03) which may lead the algorithm

to converge slower. The Epanechnikov kernel bandwidths are

higher than the ones used by Gaussian kernel, but these values

depend on the parameters interdependence.

2) Sliding Window Size: Another very important parameter

is the sliding window size, l, due to its high relevance in

Sliding Window Size
50 100 150 200 250 300 350 400

S
IR

(d
B
)

20

25

30

35

40

45

50

Kepa

Kgau

100 Samples
Sliding Window

Fig. 3. Variation of Sliding Window Size for Epanechnikov and Gaussian
kernel.

Samples (103)
0 5 10 15 20

C
o
effi

ci
en
ts

V
ar
ia
ti
on

0.2

0.4

0.6

0.8

Kepa

Kgau

Coefficiente c2

Coefficiente c1

Fig. 4. Comparison of the coefficients convergence for Epanechnikov and
Gaussian kernel.

the SIR values, as shown in Fig. 3. For this simulation we

used the parameters given in Tab.I. Since the used parameters

µ, λ and σ were optimized considering l = 100, it was

expected the maximum SIR value to happen at this point.

Since the parameters were kept fixed during simulation, a loss

in performance for other values of l was expected. Due to the

interdependence between the parameters, for each value of l it

would be possible to obtain the values of µ, λ and σ leading

to the highest value of SIR. Comparing the performances

of the method with both kernels, we can observe that for l

greater than 100 samples, the use of the Epanechnikov kernel

always outperforms the use of the Gaussian kernel, presenting

a difference that can be higher than 15 dB (l = 150) in terms

of SIR.

3) Nonlinear Function Coefficients: In Eq. (22), it is shown

that the nonlinear function g(·) depends on coefficients c1 and

c2. Thus, we can analyze the convergence of the nonlinear

part of the algorithm by analyzing the behavior of these two

coefficients throughout iterations, as shown in Fig. 4.
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TABLE II

THE BEST RESULTS OF SIR FOR THE EPANECHNIKOV AND GAUSSIAN

KERNEL

SIR (dB)
Kepa Kgau

Recovered Ŝ1 37.93 52.96

Recovered Ŝ2 61.59 33.98

Average Value 49.76 43.47

In Fig. 4 we note that using the Epanechnikov kernel, the

algorithm converges faster than using the Gaussian kernel,

keeping the parameters shown in Tab.I. Looking closer, the

Kepa coefficients final values are: 0.13 and 0.87, while the

Kgau coefficients are: 0.29 and 0.7. Remembering that the

ideal values would be 0 and 1, Kepa leads to much better

results.

Finally, having chosen the best parameters for each kernel

function, we present, in Tab. II, the SIR values for the recovery

of the two sources, considering the parameters show in Tab. I,

l=100 and an average through 30 simulations. It is possible to

observe that, using the Epanechnikov kernel, the SIR results

are higher for both sources.

Comparing the SIR value for each source, the Epanechnikov

kernel was 3.95 dB and 8.63 dB higher, respectively. The av-

erage of the SIR for the recovered signals was 6.29 dB higher

than the one obtained with the Gaussian kernel, showing that

the Epanechnikov can be better than Gaussian kernel in this

case.

VI. CONCLUSIONS

In this work, the BSS problem using the PNL model was

studied using the mutual information minimization criterion

based on the marginal entropies and on kernel functions to

estimate the pdf. We verified, through simulations, that the

use of the Epanechnikov kernel for pdf estimation leads to a

better result than the Gaussian kernel, leading to an average

gain in performance in terms of SIR, of 6.29 dB. We also

showed how the choice of the algorithms parameters such

as step sizes, kernel bandwidth and sliding window size

affect the algorithm. A bad choice of such parameters may

largely compromise the methods performance. Furthermore,

the Epanechnikov kernel uses a square polynomial function,

providing a lower computational cost, while the Gaussian

depends on the exponential function. In the future, we consider

extending the work using other nonlinearities and applying this

method in practical scenarios.
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