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Analog Joint Source-Channel Coding with
Non-Gaussian Sets of Sensor Samples

Rafaela Schroeder, Glauber Brante, Eduardo Alves Hodgson and Richard Demo Souza

Abstract— This work presents an analog joint source-channel
coding scheme as an alternative for machine-type communica-
tions that require low latency. We have implemented parametric
and non-parametric coding for non-Gaussian sets of samples,
collected by sensors of temperature and humidity. Since the
parametric mappings are optimal only for Gaussian sources,
the Box-Cox transformation was used in order to improve
performance. Furthermore, we have employed non-parametric
coding, which adapts more efficiently to the data sets, further
improving performance at the cost of greater complexity.

Keywords— Analog Joint Source-Channel Coding, Non-
Gaussian Samples, Machine-Type Communications.

I. INTRODUCTION

In the last few years, the growth of machine-type commu-
nications (MTC) rapidly became an enabler for many internet
of things applications [1]. For example, MTC applications
involve sensors and actuators collecting information contin-
uously to maintain the stability of an industrial plant [2].
In these situations, the delay in communication could result
in loss of plant stability, and consequently financial losses.
Thus, in many so-called critical-MTC applications, one of the
main concerns lies in building ultra-reliable and low latency
communication (URLLC) methods.

Traditionally, MTC employs digital communication sys-
tems, in which the source of information is primarily encoded
with the desired rate/distortion pair. Then, channel codes that
operate as close as possible to the Shannon capacity are
applied. Such separation between channel and source codes
is optimal when large codewords are used [3]. Clearly, the
disadvantage is that considerable complexity and delays are
introduced due to the block sizes required to approach the
theoretical limits. In addition, the digital system is usually
designed for one specific rate/distortion pair, so that when
the coding rate or target distortion needs to be modified,
a complete system remodeling is required to maintain the
desired performance.

Alternatively, the analog joint source-channel coding
(JSCC) may be inserted in the context of URLLC applications,
which require low delay. In such schemes, each symbol of the
source is encoded by an analog mapping curve and transmitted
through the wireless channel. Thus, source and channel coding
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are done in only one step, symbol by symbol, resulting in
a significant decrease in terms of delay [4]. The use of
analog mapping curves was initially proposed concomitantly
by Shannon [5] and Kotel’nikov [6], whose idea is to transform
N source symbols into K symbols to be transmitted by the
channel, resulting in an N :K scheme.

Based on the Shannon-Kotel’nikov mappings, the works
in [7]–[9] implemented several schemes either for bandwidth
compression (N > K) or expansion (N < K) in the
additive white Gaussian noise (AWGN) channel. In the 2:1
compression scheme, e.g., the achieved performance is very
efficient, especially for high channel signal-to-noise channel
ratio (CSNR) where the distance from the theoretical limit
is of only 1 dB. Moreover, the authors in [10] show that
analog JSCC performs very close to the unrestricted capacity
of digital schemes, but with considerably smaller complexity
than the capacity achieving digital solutions. Furthermore, [11]
proposes some strategies to increase the robustness of analog
coding in wireless channels, modeled by Rayleigh fading.

Another way to perform the analog mappings is through
non-parametric algorithms. Unlike the previously mentioned
parametric curves, the non-parametric mapping method em-
ploys vector quantizations in the optimization process, aiming
to obtain the curve that minimizes the distortion with respect
to the information source. In literature, the power constrained
channel optimized vector quantization (PCCOVQ) has been
proposed in [12] in order to determine optimal mappings
for the AWGN channel. Subsequently, the PCCOVQ was
further extended to fading channels in [13], [14], yielding
efficient performance, approaching the optimal performance
theoretically attainable (OPTA).

It is important to notice that the performance of the analog
mappings is optimal when the probability density function
(PDF) of the source is the same as that of the channel [15].
The optimized mappings from [12] corroborate to this fact
when the transmission of Gaussian sources over an AWGN
channel is considered, by exhibiting mappings that resemble
the parametric curves used in [7]–[9], which are optimized
for the same scenario. However, many MTC applications
do not necessarily involve Gaussian signals. For example,
usual measurements taken by sensors, such as temperature
and humidity, can hardly be used directly with the above-
mentioned mappings. This motivates the investigation of tech-
niques to ensure good performance of analog schemes with
non-Gaussian sources.

In this work, we adopted two sets of temperature and
humidity samples collected by sensors available in [16], which
have non-Gaussian PDFs. Therefore, we first implement sim-
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ple techniques to improve the performance of the parametric
schemes. To that end, we have employed the Box-Cox transfor-
mation, which performs power functions in order to approach
the arbitrary PDF of the collected data to that of a Gaussian
source [17]. The advantage of combining the parametric map-
pings with the Box-Cox transformation is the low complexity,
which may be crucial to practical MTC implementations. On
the other hand, since the non-parametric schemes adapt more
efficiently to different data sets, we have also employ the
PCCOVQ algorithm following [14]. Our results show that the
non-parametric scheme has increased performance, at the cost
of a greater complexity due to the optimizations required by
the PCCOVQ algorithm. However, for some CSNR values
we observe that both mappings perform similarly, with less
than 1 dB of difference between them. Thus, the parametric
mapping also stands out as a good alternative with lower
implementation complexity. With respect to the OPTA, there a
difference of 6 dB at the CSNR of 15 dB using the parametric
scheme for the temperature set, while the non-parametric
scheme reduces this difference to 5.2 dB.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model, the proposed combination
of parametric mappings and the Box-Cox transformation is
given by Section III, while the PCCOVQ algorithm is given
by Section IV. Section V presents some numerical results and,
finally, Section VI concludes the paper.

II. SYSTEM MODEL

Analog JSCC is based on coding discrete-time continuous
amplitude symbols using a mapping curve. Let us consider
a source vector x ∈ R1×N , with mean power σ2

x, which
is encoded into C(x) ∈ R1×K using either parametric or
non-parametric mappings. The resulting coded vector is then
transmitted through the wireless channel. At the receiver, the
received signal is given by

y = C(x) · h+ w, (1)

where h is the channel fading coefficient, modeled according
to a quasi-static Rayleigh distribution with power σ2

h, while
w is the AWGN vector, with variance σ2

w. Then, the CSNR
is defined as

CSNR = 10 log10

(
σ2
h

σ2
w

)
. (2)

To evaluate the performance, a frequently used metric is
the mean squared error (MSE), which computes the Euclidean
distance between x and the estimate x̂ obtained by the receiver
based on y,

MSE =
‖x− x̂‖2

N
, (3)

from which we write the signal-to-distortion ratio (SDR) as

SDR = 10 log10

(
σ2
x

MSE

)
. (4)

Furthermore, the theoretical limit of communication is given
by the OPTA, obtained by equating the channel capacity and

the rate distortion function, so that [11]

N log10

(
σ2
x

MSE

)
= K

∫
h

10 log10

(
1 +

h2

σ2
w

)
p(h) dh. (5)

Throughout this work, we focus on 2:1 compression
schemes, i.e., N = 2 source symbols are encoded into
K = 1 channel symbol. In the sequel, Section III details
parametric mappings, while the PCCOVQ algorithm is given
in Section IV.

III. PARAMETRIC SCHEME

A. Box-Cox Transformation

In order to improve performance of non-Gaussian sources
using parametric analog mappings, we first resort to the
Box-Cox transformation, which aims to approach the PDF
of the collected data to a Gaussian PDF [17]. Then, for a
source symbol vector s with arbitrary distribution, the Box-
Cox transformation is given by

s(µ) =

 ln(s), µ = 0
sµ − 1

µ
, µ 6= 0

(6)

in which −5 ≤ µ ≤ 5 is numerically optimized in order to
obtain a PDF as close as possible to a Gaussian distribution.

Moreover, in order to obtain a set of samples with zero-
mean, we normalize the data using

s̃ =
s(µ)− s(µ)

max{s(µ)} −min{s(µ)}
, (7)

where s(µ) denotes the mean of the vector s(µ).

B. 2:1 Compression

One of the most employed parametric mappings in the case
of 2:1 compression is known as the Archimedes’ spiral curve,
which encodes a pair of samples x = (x1, x2) ⊂ s̃ on the
positive and negative arms of the spiral, whose corresponding
angles are given by [7]

θ̂1 = arg min
θ≥0
{(x1 −

∆

π
θ sin θ)2 + (x2 −

∆

π
θ cos θ)2}, (8)

θ̂2 = arg min
θ<0
{(x1 +

∆

π
θ sin θ)2 + (x2 −

∆

π
θ cos θ)2}, (9)

where ∆ is the distance between the arms of the spiral, and
θ ∈ R is the angle that corresponds to the path between the
origin to the point mapped in the spiral. Finally, we employ
only the smaller angle, so that the mapping is defined as

M∆(x) = min(θ̂1, θ̂2). (10)

Figure 1 illustrates the encoding of a pair of samples on
the Archimedes’ spiral curve. As an example, we adopted
x = (1.3, 1.3), represented by the symbol ◦ in the figure.
Then, positive and negative angles θ1 and θ2 are shown, so
that M∆(x) = θ2 is chosen as the mapped symbol, represented
by ∗ in the figure. As a result, two source symbols represented
by coordinates of the Cartesian plane are mapped into a single
angle M∆(x) on Archimedes’ spiral.
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Fig. 1: Example of a pair of samples x = (1.3, 1.3) mapped
into the Archimedes’ spiral, resulting in a single symbol
M∆(x).

In addition, following [9], [11], we also employ an invertible
function Tα, so that

Tα (M∆(x)) = sign(M∆(x)) · |M∆(x)|α , (11)

where α becomes a parameter to be optimized together with
∆, which allows to increase the SDR at the receiver [11].

Finally, we normalize the energy of the channel symbol
using a parameter γ, so that the symbol to be transmitted
through the wireless channel is given by

C(x) =
Tα (M∆(x))

γ
. (12)

C. Decoding

At the receiver, the received symbol denoted by y is de-
normalized by γ, has its phase adjusted and receives the
inverse function T−1

α (·), so that

ỹ = sign
(y · γ

h

)
·
∣∣∣y · γ
h

∣∣∣ 1
α

. (13)

Then, an estimate x̂ is made based on ỹ using a maximum
likelihood (ML) decoder, given by [9]

x̂ML = M−1
∆ (ỹ) , (14)

where M−1
∆ (·) is the inverse mapping.

Finally, the inverse of the Box-Cox transformation involves
operations of (6)-(7), such that

s̃ML = x̂ML ·
(

max{s(µ)} −min{s(µ)}
)

+ s(µ), (15)

in which it is assumed that min{s(µ)}, max{s(µ)} and s(µ)
are known at the receiver. Then, by applying µ, also known,
we have the estimation of the transmitted signal given by

ŝ = (s̃ML · µ+ 1)
1
µ . (16)
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Fig. 2: Mappings obtained with the PCCOVQ algorithm for
the employed set of temperatures.

IV. NON-PARAMETRIC SCHEME

Non-parametric encoding determines the optimal mapping
for a given data-set by performing numerical optimizations.
In this work, we have employed the PCCOVQ algorithm,
following [13], [14], which aims at mapping the vector x of
N = 2 dimensions in Q quantization regions Ωi, obtaining
a partition p = {Ω0,Ω1, · · · ,ΩQ−1}. Then, the encoder
selects a channel symbol given by s = ∆P · ui, where
ui is a signal from a pulse amplitude modulation (PAM)
and ∆p is the constant distance between two neighboring
symbols. In addition, the receiver is composed by a set of
a codebooks a, which contain the reconstruction vectors ck,j
that allow decoding. Therefore, the parameters p, a and ∆P

are optimized according to

min
p,a,∆P

D(p,a,∆P) + λP, (17)

whose goal is to minimize the distortion between the original
and the mapped symbols, D(p,a,∆P), according to the MSE
criterion in (3), with λ being a Lagrange multiplier to constrain
the employed power P .

For the sake of brevity, we briefly present the optimiza-
tion process in (17), done by the Linde-Buzo-Gray (LBG)
algorithm [18]. In addition, we also refer to [14] for a more
detailed description of the algorithm. Then, the LBG algorithm
involves five steps:

1. Initialization of the algorithm with fixed values of ∆p,
λ and a known codebook;

2. Optimization of the partition p;
3. Optimization of the coodebook a;
4. Optimization of the parameter ∆p;
5. Calculation of D(p,a,∆P) and, if the decrease in terms

of MSE between two consecutive iterations is smaller
than a predefined threshold, the optimization is stopped;
otherwise, repeat from step 2.

Figure 2 illustrates the mappings obtained by the PCCOVQ
algorithm to the set of temperatures from [16], for different
fading values. Nevertheless, since the instantaneous fading
coefficient is not known by the receiver, a distortion is still
expected afer decoding.

V. NUMERICAL RESULTS

In this work, we have used temperature and humidity
samples available in [16], collected in Athens, Greece, in
2018. The temperature set has 1310 samples ranging from

3
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TABELA I: Information about the dataset.
General Information Temperature (◦C) Humidity (%)

Number of samples 1310 812

Minimum value 20 25

Maximum value 42 45

Mean 32.70 38.33

Variance 27.94 11.09

(a) Temperature set.

(b) Relative humidity set.

Fig. 3: Histograms of the employed data-sets [16].

20◦C to 42◦C, while the relative humidity set has 812 samples
ranging from 25% to 45%. Table I summarizes the information
of the collected data and Figure 3 illustrates the histograms
of each data-set, from which we can observe non-Gaussian
distributions.

First, in order to evaluate the application of the Box-Cox
transformation for each data-set we employ the Kolmogorov-
Smirnov (KS) test [19], which evaluates the normality of
a given sample distribution by means of a probability of
significance PS. Then, to affirm that a given set of samples
is Gaussian distributed, it is necessary that PS falls above
a certain level of significance threshold, usually adopted as
PS > 0.05. Table II shows the values of PS for the original
sets of temperature and humidity, as well as the sets after
the Box-Cox transformation. As we can observe, the KS
test shows that the Box-Cox transformation does not provide

TABELA II: Probability of significance (PS), before and after
Box-Cox transformation.

Set Original Samples Transformed Samples

Temperature 8.5296 · 10−7 2.5334 · 10−5

Humidity 1.7067 · 10−4 0.0014
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Fig. 4: SDR versus CSNR for the temperature set.

perfect Gaussian distributions, according to the established
level of significance. Given that there are significant gaps
in the histograms presented by Figure 3, which are inherent
characteristics of the adopted sample sets, the normalization
of the data becomes limited. However, let us remark that the
value of PS after the Box-Cox transformation is significantly
larger than for the original sets. As we will observe in the
following results, such an increment is already important to
improve the performance.

Figure 4 shows the SDR performance as a function of the
CSNR for the set of temperature samples. We consider the
parametric scheme with and without the Box-Cox transforma-
tion, denoted respectively by ‘Box-Cox’ and ‘Original’, the
non-parametric scheme by means of the PCCOVQ algorithm,
and the OPTA. As we can observe, the non-parametric scheme
achieves better performance, with a difference of approxi-
mately 7 dB with respect to the OPTA in low CSNR, reducing
while the CSNR increases. For the parametric scheme, it is
first important to notice the significant SDR improvement
yielded by the Box-Cox transformation, confirming the effec-
tiveness of the method. In addition, we can also observed that
its performance is very close to the non-parametric scheme for
a CSNR around 15 dB, thus becoming a good low-complex
alternative method. However, we also observe that the SDR
of this method stagnates at high CSNR, which is due to
the mismatch between the PDF of the samples and that of
the channel. Despite the improvements provided by the Box-
Cox transformation, the KS test shows that there is still a
considerable difference between the transformed data-set and
the Gaussian PDF, which is evidenced in higher CSNRs.

In addition, we numerically optimize the parameters α and
∆ in order to maximize the SDR of the parametric mappings,
for each data-set. The optimized values are given in Tables III

4
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TABELA III: Optimization of the parameter α.
CSNR [dB] 0 5 10 15 20 25 30

Temp. Original 20.3 16.9 16.3 16.0 16.9 19.7 18.0
Temp. Box-Cox 1.0 1.5 1.5 1.5 2.0 2.0 2.0
Humidity Original 15 19.7 18.7 19.9 20.6 22.2 23.8
Humidity Box-Cox 1.0 1.5 1.5 1.5 2.0 2.0 2.0

TABELA IV: Optimization of the parameter ∆.
CSNR [dB] 0 5 10 15 20 25 30

Temp. Original 34 34 34 36 37 37 37
Temp. Box-Cox 3.9 3.25 3.0 2.0 2.0 2.0 2.0
Humidity Original 37 37 40 42 43 43 43
Humidity Box-Cox 3.9 3.25 3.0 2.0 2.0 2.0 2.0
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Fig. 5: SDR versus CSNR for the humidity set.

and IV, respectively. As observed in our simulations, the
optimization of α and ∆ without the application of the Box-
Cox transformation performs quite far from theoretical limit,
18 dB from the OPTA at CSNR = 20 dB for the set of
temperatures, while the Box-Cox transformation is able to
reduce this gap to 7 dB. Therefore, the difference caused
by the Box-Cox transformation is more expressive than the
optimization of α and ∆ alone.

Finally, Figure 5 plots the SDR as a function of the CSNR
for the set of humidity samples, for which we can draw
very similar conclusions, demonstrating the adaptability of the
methods. A noteworthy comparison between Figures 4 and 5
is the absolute values of the SDR. Since the SDR depends on
the variance of the source, so that σ2

x = 27.94 for the adopted
set of temperatures and σ2

x = 11.09 for the set of humidity,
there is a small difference in terms of SDR comparing the two
figures. Therefore, the obtained conclusions are always drawn
with respect to the corresponding OPTA.

VI. CONCLUSION

In light of the growing demand for MTC applications
requiring low latency, we have evaluated the performance
of analog JCSS schemes considering sets of temperature
and humidity samples collected by sensors, which have non-
Gaussian distributions, common to MTC scenarios. Then, two
distinct analog coding methods have been considered, denoted

by parametric and non-parametric schemes. The former has
low implementation complexity, but it has low performance
when operating with non-Gaussian sources. Therefore, we
have proposed the use of the Box-Cox transformation in order
to improve performance. The latte scheme was implemented
based on the PCCOVQ algorithm, which yields optimized
mappings, resulting in a performance quite close to the theoret-
ical limit, at the cost of a higher implementation complexity.
Our results have shown that the Box-Cox transformation is
able to considerably increase the performance of the paramet-
ric method, being at a distance of 6 dB from the OPTA when
CSNR = 15 dB. Furthermore, the non-parametric scheme is
able to improve performance even further, reducing this gap
ith respect to the OPTA to 5.2 dB.
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