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A Numerically Stable Algorithm for the Analysis of
Surface Wave Propagation on a Metallic Cylinder

Buried in a Biaxially Anisotropic Medium
Julio A. Rams, Guilherme S. Rosa, and Glaucio L. Siqueira

Abstract— In this paper, we present a new semi-analytic formu-
lation for analyzing the electromagnetic field propagation along a
metallic cylindrical rod immersed in a biaxially anisotropic and
lossy media. This geometry can be employed for investigating the
propagation around a circular well with important engineering
applications for the oil and gas industry. The excitation of surface
waves is explored herein by using current loop sources via a
spectral domain approach where a novel Hankel-based integral
transform is introduced. We present a series of validation results
which show that our technique is numerically stable and robust
for modeling several representative problems.

Keywords— Surface waves, anisotropic medium, semi-analytic
formulation.

I. INTRODUCTION

Surface waves are electromagnetic waves that travel in-
timately tied to the interface of two different materials [1,
Ch. 5]. The majority of the energy of such waves is concen-
trated close to the interface, rendering a promising mechanism
for communication and telemetry for long distances.

Oil and gas industry has many interests on wireless teleme-
try due its economical advantages compared to the conven-
tional wired technology [2], [3]. The electromagnetic problem
usually consider the propagation in two different conditions:
a) guided waves inside the production pipe and b) surface
waves around the metallic casing of a oil well. Cased boreholes
having a tubing string support the propagation of guided waves
(in the annular region of the well) but it is strongly affected
by losses in the annular region [4]. In contrast, surface waves
have been explored by many authors [5]–[7] as a promising
communication channel from the Earth’s surface to downhole
instrumentation. In this case, the propagation is along the
surface of a metallic stem embedded in a dispersive hosting
rock.

Even though the media around the conductor tube is very
lossy, the metallic tube has a much higher refractive index
than the surrounding rock. This make it possible to use the
interface between the conductor and rock as a single conductor
transmission line (SCTL) which is known to support slow
surface waves in the axial direction, in such a way that axial
currents along the metal tube propagate to the surface where
they can be detected, as in Fig. 1.
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Several computational electromagnetics (CEM) techniques
have been used for modeling wave propagation through highly
conductive media. This problem, however, requires a ro-
bust treatment of the large conductivity contrasts present in
complex geophysical formations. In addition, the presence
of anisotropic rocks brings more difficulties when we try
to solve the Maxwell’s equations using brute-force CEM
solutions based on finite-elements or finite-differences. High
cost computational resources are required for the discretization
process and the low-frequency instabilities becomes critical for
such large-scale problems.

Bearing in mind the recurring issues of brute-force CEM,
the main purpose of this paper is to provide a robust and
accurate semi-analytical solution for the analysis of the elec-
tromagnetic propagation of surface wave along a metallic
cylinder in a biaxial anisotropic medium. The remainder of this
paper is organized as follows. In Section II, we introduce the
mathematical formulation of the problem via a spectral domain
solution. Section III presents the numerical results to validate
our technique and demonstrates it accuracy and low cost in
terms of CPU time and RAM memory. Finally, Section IV
provides the concluding remarks.

II. FORMULATION OVERVIEW

Throughout this work we adopted a notation similar to that
used in [8], where the time dependence e−iωt is assumed and
suppressed. Also, the problem at hand has a geometry with
boundaries conformal with cylindrical coordinate surfaces.
As a consequence, the cylindrical coordinate system were
employed.

The Maxwell’s equations in linear, homogeneous and dissi-
pative biaxial anisotropic media satisfy

∇× E = ¯̄z ·H− Jm, (1)
∇×H = −¯̄y · E + Je, (2)

∇ · (¯̄ε · E) = ρe, (3)
∇ · (¯̄µ ·H) = ρm, (4)

where E is the electric field in V/m, H is the magnetic field
in A/m, Je is the impressed electric current density in A/m2

and Jm is the impressed magnetic current density in V/m2, ρe
is the electric charge density in C/m3, and ρm is the magnetic
charge density in Wb/m3. The impeditivity and admitivity
tensors are given by ¯̄z = iω ¯̄µ and ¯̄y = iω¯̄ε , and are expressed
in terms of impedance per meter and admittance per meter
dimensions, respectively.
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XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2019, 29/09/2019–02/10/2019, PETRÓPOLIS, RJ
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Fig. 1. Current loop antenna radiating in the vicinity of an impenetrable
cylinder.

The media is characterized by the complex magnetic per-
meability and electric permittivity tensors

¯̄µ =

µρ 0 0
0 µφ 0
0 0 µz

 and ¯̄ε =

ερ 0 0
0 εφ 0
0 0 εz

 , (5)

respectively, with the complex permeability and permittivity

µ{ρ,φ,z} = µ0µr{ρ,φ,z}, and

ε{ρ,φ,z} = ε0εr{ρ,φ,z} +
i

ω
σ{ρ,φ,z}.

(6)

It can be shown that in case of having the radiation of
electric source only or magnetic source only, the vector wave
equations satisfied by the electric field or the magnetic field
are, respectively

∇× ¯̄µ−1 ·∇× E− ω2¯̄ε · E = iωJe, for Jm = 0, (7)

∇× ¯̄ε−1 ·∇×H− ω2 ¯̄µ ·H = iωJm, for Je = 0. (8)

Mostly induction telemetry systems use transmitter and
receiver coils fed by current sources. The main reason for
the use coils is that they fit the geometry naturally. Therefore,
loop currents antennas are appropriated for the problem in
consideration, besides being very simple, cheap and versatile.

Through this work we considered the radiation of electric
or magnetic current loops. Because the two problems are dual
of each other, the field solutions for a current loop may be
easily adapted for the other one.

An electrical or magnetic current loop source (e.g., coil
antenna), which is axially symmetric along the z axis, can
be expressed as

J{e,m} = J{e,m}φ̂. (9)

where J{e,m} is the azimuthal component of the source.
Let us assume the transmission antenna is an electric or

magnetic current loop (filament coil) placed at ρ = ρ′ and
z = z′, and described by the current density

J{e,m} = I{e,m}(φ)δ(ρ− ρ′)δ(z − z′), (10)

where I{e,m}(φ) is the current distribution in the azimuthal
direction and δ(·) is the Dirac delta.

Under these simplifications, equations (7) and (8) can be
recast into a simplified form[
pρ
pz

∂

∂ρ

1

ρ

∂

∂ρ
ρ+

∂2

∂z
+ k2

]
Aφ = −iωpρIδ(ρ− ρ′)δ(z − z′),

(11)
where we have introduced the wavenumber

k = ±ω√qφpρ, (12)

and where Aφ = Eφ, p = µ, q = ε, and I = Ie for
the electric current loop. In contrast Aφ = Hφ, p = ε,
q = µ, and I = Im for the magnetic current loop. Hence,
in a planar, two-dimensional inhomogeneity and excited by
an azimuthally independent azimuthal source, the vector wave
equations reduce to two simpler scalar wave equations, which
determines a transverse electric (TEz) and transverse magnetic
(TMz) wave to the z direction.

The complete solution for (11) can be constructed by
solving first the homogeneous equation, and then by enforcing
the jump condition at the source. After some simple but
tedious manipulation, we obtain a field solution in terms of
the following Hankel-based integral transform:

Aφ = −ωpρρ
′I

2

∫ ∞
0

dkρ
kρ
kz
F̂1(kρρ)F̂1(kρρ

′)eikz|z−z
′|,

(13)
where F̂1(kρρ) is defined as

F̂1(kρρ) =
J1(kρρ) +BY1(kρρ)√

1 +B2
. (14)

The axial wavenumber is given by

kz = ±

√
k2 −

(
pρ
pz

)
k2ρ, (15)

where the square root branch is selecting according to

Im(kz) > 0,when z → +∞, and (16)
Im(kz) < 0,when z → −∞. (17)

The above is obtained by enforced the Sommerfeld radiation
condition.

The coefficient B in (14) is specified according the radial
boundary conditions at ρ = a. Without loss of generality, let
us assume that the high conductivity cylinder can be well
approximated as a perfect electrical conductor (PEC). By
imposing the tangential electric field and the normal magnetic
flux continuity at the interface ρ = a (over 0 < φ < 2π and
−∞ < z <∞), we can write [9]

ρ̂× E
∣∣
ρ=a

= 0, and

ρ̂ · B
∣∣
ρ=a

= 0.
(18)

As a result, we can readily find the coefficient B:

B = −Js(kρa)

Ys(kρa)
, (19)

where a is the radius of the cylinder, and s = {1, 0} for the
TEz and TMz modal fields, respectively.

It should be observed that the above solution reduces to the
one found in [10, eq. 9] for isotropic media. The above for-
mulation can also be employed for modeling sources when the
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metallic cylinder is absent. In this scenario, we can verify that
B in (14) must be identically null; restoring the conventional
Hankel transform usually employed in homogeneous media [8,
p. 143].

A. Convergence of the Solution

As can be seen from (13), in order to compute the field
quantities, an integral over kρ must be calculated. The conver-
gence of the numerical integration plays key influence on the
operation speed of the solution.

To accelerate the convergence of the semi-infinite integrals
over kρ, an adaptive Gauss-Kronrod quadrature algorithm is
used. This algorithm attempts to approximate the integral
of a scalar-valued function using high-order global adaptive
quadrature and default error tolerances, which incorporates
less effective points for the integral.

III. NUMERICAL RESULTS

In this section we present some simulation results (via
Matlab) obtained using the solution described in (13). The
source is modeled as a 10-in-radius electric (magnetic) coil
(where 1 in = 2.54 × 10−2 m) with a constant electric
(magnetic) current of 1A (1V) that is placed surrounding a
metal pipe with radio a = 9 in, as in Fig. 1.

These examples are meant to verify and analyze the
accuracy of the solution derived. The results were bench-
marked against solutions obtained using the COMSOL Multi-
physics [11] via a finite element solver.

A. Isotropic Formation

First, we consider an isotropic lossy medium is modeled and
described by its electrical conductivity with value 0.5 S/m.
The operation frequency for this example is 200 kHz. The
relative dielectric and magnetic constants are unity, i.e., the
vacuum dielectric and magnetic constants. In Fig. 2 we present
the amplitude and phase of the azimuthal component of the
electrical (magnetic) field Eφ (Hφ).

The bigger concentration of samples near the origin in the
COMSOL solution is due to the grid selection we made to
analyze better the field near the source position.

It is observed that although totally different methods are
used, both solutions converge to the same results, validating
that the presented solution can accurately model the electro-
magnetic surface wave propagation excited by a azimuthally
symmetric magnetic current loop in a conductive media.

By defining the attenuation as

Att(dB) = −20log10

∣∣∣∣A(ρ, z)

Asource

∣∣∣∣ , (20)

where A(ρ, z) represents the magnetic or electric field as
a function of the position and Asource is such maximum
amplitude near the source, we can analyze the dispersion
suffered by an electromagnetic wave as a function of the
distance away from the source, as in Fig. 3. We also compared
the results of the wave propagation in the presence and absence
of the metallic cylinder. In Fig. 4 is presented a comparison
between these results.
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Fig. 2. Absolute and phase values of the azimuthal components of the
electrical (magnetic) field Eφ (Hφ) in an isotropic formation with an
embedded cylinder (200 kHz).

It can be noticed that the attenuation for the TMz reduces
drastically due the presence of the metallic cylinder, while for
the TEz mode it increases slightly. If the operation frequency is
reduced to 1 kHz, also the attenuation is reduced considerably,
as in Fig. 5. The TMz mode still experiments less attenuation
that the TEz mode when the cylinder is presented.

The presence of the cylinder makes the attenuation of the
TMz mode have a linear behavior, while the TEz mode has
a logarithmic behavior near the source, and far away from it
behaves as linear.

In order to visualize the propagation behavior of the elec-
tromagnetic field around a finite cylindrical metallic tube of
150 m, Fig. 6 shows the magnitude of the magnetic field
component Hφ computed with COMSOL at 1 kHz as a
function of the radial and the vertical distance from the source
(place at z = 0). It can be observed that the fields are radially
concentrated around the metallic cylinder as a consequence of
the high conductivity of the surrounding medium.
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Fig. 3. Attenuation experimented by the azimuthal components of the
electrical (magnetic) field Eφ (Hφ) in an isotropic formation with an
embedded cylinder (200 kHz).
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Fig. 4. Comparison of the attenuation experimented by the azimuthal
components of the electrical (magnetic) field Eφ (Hφ) in an isotropic
formation with and without the metallic cylinder (200 kHz).

B. Biaxial Anisotropic Formation

In order to analyze the effect of the fully biaxial anisotropy
on the wave propagation, we analyze three cases, determined
by a permutation of the values in the conductivity tensor,
which takes the values of:

¯̄σ1 =

0.5 0 0
0 0.3 0
0 0 0.1

 , (21)

¯̄σ2 =

0.1 0 0
0 0.5 0
0 0 0.3

 , (22)

¯̄σ3 =

0.3 0 0
0 0.1 0
0 0 0.5

 . (23)

The operation frequency for this example is 1 kHz. In Fig. 7
is presented the attenuation experimented by the azimuthal
component of the electrical (magnetic) field Eφ (Hφ) for
different anisotropic configurations and the isotropic case.
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Fig. 5. Comparison of the attenuation experimented by the azimuthal
components of the electrical (magnetic) field Eφ (Hφ) in an isotropic
formation with and without the metallic cylinder (1 kHz).

Fig. 6. Azimuthal component of the magnetic field Hφ in an isotropic
formation with a metallic cylinder (1 kHz) (simulated with COMSOL).

The legend in Fig. 7 is ordered with the smaller attenua-
tion first, for the respective electromagnetic mode. It can be
noticed that for the TEz mode, the attenuation increases as
the azimuthal component of the conductivity increases, with
independence of the others components. Similarly, for the TMz

mode, the attenuation increases as the radial component of
the conductivity increases. This occurs as a consequence of
the propagation constant k in (12), that depends just of the
azimuthal and radial component of the conductivity tensor for
each mode, respectively. When the conductivity component
increases, the propagation constant increases, and therefore
the attenuation. It is important to note that the attenuation
for the TEz mode with anisotropy described by ¯̄σ2 is the
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Fig. 7. Attenuation experimented by the azimuthal component of the elec-
trical (magnetic) field Eφ (Hφ) for different configuration of the anisotropy
(1 kHz).

TABLE I
COMPUTATIONAL COSTS OF COMSOL AND THE IMPLEMENTED

SOLUTION.

Our approach COMSOL

RAM memory 15.78 MB 52.83 GB

CPU time 23.42 s 116.3 s

same as in the isotropic case with conductivity 0.5 S/m. This
behavior is due the fact the only component of the electrical
permittivity that is involved in the wave equation for the TEz

is the azimuthal one, the others have no effect on the wave
propagation.

In Fig. 7 can also be appreciated that the attenuation
experimented by the TEz , regardless of the ordering of the
values in the conductivity tensor, is always higher than the
attenuation suffered by the TMz wave. This difference in the
attenuation values for both modes is considerable (about 175
dB).

Table I compares the computational costs for COMSOL
and the employed solution, from which it can be seen that
the provided solution is more computationally efficient. It is
important to mention that the solution obtained with COMSOL
uses a two-dimensional (2D) axisymmetric modeling, which
is less computationally intense when compared with the three-
dimensional (3D) model.

IV. CONCLUSIONS

A numerically stable method for solving Maxwell’s equa-
tion in a biaxially anisotropic media was introduced in this

work. To reduce the complexity, the initial 3D problem was
simplified to a equivalent 2D one by assuming that the media
and the sources are axially symmetric. A novel Hankel-
based transform was introduced and we presented a series of
validation results against brute-force finite-element solvers that
demonstrate the ability of our technique for analyzing surface
wave propagation in complex media via a numerically stable
and robust semi-analytic algorithm. We have analyzed the
effect of the anisotropy in the wave propagation. In addition,
we showed that the presence of a metallic tube severely
impacts the attenuation of electromagnetic fields. In such
scenario, the excitation of TMz fields is more advantageous
compared to TEz ones.
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