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Time-Deconvolutive CNMF for
Multichannel Blind Source Separation

Thadeu Luiz Barbosa Dias, Wallace Alves Martins, and Luiz Wagner Pereira Biscainho

Abstract— This paper tackles multichannel separation of con-
volutive mixtures of audio sources by using complex-valued non-
negative matrix factorization (CNMF). We extend models pro-
posed by previous works and show that one may tailor advanced
single-channel NMF techniques, such as the deconvolutive NMF,
to the multichannel factorization scheme. Additionally, we pro-
pose a regularized cost function that enables the user to control
the distribution of the estimated parameters without significantly
increasing the underlying computational cost. We also develop an
optimization framework compatible with previous related works.
Our simulations show that the proposed deconvolutive model
offers advantages when compared to the simple NMF, and that
the regularization is able to steer the parameters towards a
solution with desirable properties.

Keywords— Blind source separation, convolutive mixture,
NMF, deconvolutive NMF

I. INTRODUCTION

Source separation has several applications: a celebrated
example is the use of independent component analysis (ICA)
to separate muscular activity interference from brain activity in
encephalographic scans [1]; another interesting example is the
use of BSS in speech enhancement for hearing aid devices [2].

Among traditional techniques for source separation, non-
negative matrix factorization (NMF), a single-channel method,
has been successfully employed in literature [3]. NMF factor-
izes the input matrix comprising non-negative entries as two
smaller matrices, and is able to extract the most significant
components that explain the observed data, i.e., a model and
a set of parameters that produce a satisfactory estimate of
the data. A distinction when compared to other rank-reducing
methods, such as singular-value decomposition (SVD), is that
the extracted components are themselves composed of non-
negative entries: this is key for feature extraction when the
features are non-negative by nature, which is the case for
magnitude or power spectrograms.

In the source separation scenario, the resulting NMF factors
from a mixture spectrogram can be thought of as a set of
spectral signatures and temporal activation patterns [4]. It
is expected that subsets of the extracted signatures explain
each source, and a typical challenge is how to assign which
components belong to each source. Usually, this assignment
relies on some other prior information.
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A more powerful way to realize source separation is to
exploit spatial properties, as in the case of multichannel
processing methods. A development by [5], named complex-
valued NMF (CNMF), is the introduction of Hermitian positive
semidefinite matrices constructed from the complex spectro-
grams as data points. Building on this model, the authors
in [6] propose a geometric constraint on the CNMF parame-
ters, providing spatially-coherent factorization to enhance the
separation quality of the method.

This paper shows that the deconvolutive NMF model [7] can
be tailored to the CNMF framework with good results, and that
we may regularize the related cost function towards a sparse
solution. We describe the signal representation in Section II,
and the constrained construction of channel matrices as well as
the application of the deconvolutive model in Section III. We
derive the estimation framework for an Euclidean cost function
in Section IV, and present the results in Section V. Finally,
we briefly discuss our results and future works in Section VI.

II. SIGNAL REPRESENTATION

Considering an array with M sensors, and the propagation
media as linear time-invariant, the convolutive mixture as
acquired by the individual sensors can be written as

xm(t) =

Q∑
q=1

+∞∫
−∞

hqm(t− τ)sq(τ) dτ, (1)

where Q is the true number of sources, xm(t) is the mth sensor
measurement, hqm(t) is the impulse response relative to the
channel between the source-sensor pair (q,m), and sq(t) is the
true emission of source q. Translating this relationship to the
short-time Fourier transform (STFT) domain, each (complex)
time-frequency point measurement xilm is

xilm =

Q∑
q=1

hiqmsilq, (2)

where i denotes the frequency bin, l is an index for the time
frame, hiqm is the frequency response at bin i of the channel
relative to the source-sensor pair (q,m), and silq is the STFT
of the emission of source q at time-frequency point (i, l).

In order to represent the overall measurements as Hermitian
matrices, we take the outer product of the vector xil formed by
the measurements across all sensors in a single time-frequency
point, forming the matrices

Xil =

Q∑
q=1

Q∑
q′=1

hiqh
H
iq′silqs

∗
ilq′ . (3)
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Considering uncorrelated sources, we may invoke uncorrelat-
edness between the STFT coefficients, ∀q 6= q′, E [silqs

∗
ilq′ ] =

0, and neglect the crossed terms. Furthermore, with the inten-
tion of factorizing the magnitude spectra, as proposed in [5],
the STFT coefficients are mapped through a magnitude square-
root function: φ(z) = z√

|z|
. Then we can rewrite (3) as

Xil ≈
Q∑
q=1

hiqh
H
iq|silq|, (4)

and define Hiq = hiqh
H
iq as a matrix that encodes the phase

properties of source q at bin i. The entries of Hiq encode
the phase difference between the responses of a channel
pair. By the outer product construction, Hiq preserves phase
information without actually modeling the absolute phase
of the measurements. Expression (4) then motivates a joint
factorization of the sources’ magnitude spectra and spatial-
property matrices.

III. FACTORIZATION MODEL

The main idea is to explore the compressibility of the
magnitude representation in order to find K components that
best explain the measurements. In the context of CNMF, we
seek to explain the measured data points Xil as non-negative
combinations of positive semidefinite matrices. We assign to
each NMF component a family of spatial-property matrices,
and cluster components based on their spatial properties when
reconstructing the sources. The overall model for the measured
data points can be written as

Xil ≈
K∑
k=1

Hikšilk, (5)

where Hik encodes spatial properties for a component and
šilk is a magnitude estimate computed through the NMF
framework. In the following, we detail how the parameters
are obtained.

A. Magnitude activation model

In the single channel case, the standard NMF finds a low
rank approximation to some data matrix S ∈ RI×L+ as the
product of two smaller non-negative matrices B ∈ RI×K+ and
G ∈ RK×L+ , where, usually, K � Rank(S). If the input
data matrix consists of a magnitude spectrogram, with bins as
rows and time frames as columns, a useful interpretation of
the extracted matrices arises: the columns bk ∈ RI+ of B are
spectral signatures present in the measurements, and the rows
gk ∈ RL+ of G are activation patterns for such signatures
across time frames. The application of the simple NMF to
the CNMF model would lead to the magnitude estimate
šilk = bikgkl. We propose the estimation of šilk through a
deconvolutive NMF model: the extracted signatures have a set
length T ≥ 1, being represented as small matrices Bk ∈ RI×T+

such that the collection of spectral signatures is the tensor
B ∈ RI×T×K+ . The magnitude estimates are obtained through

multiplication of the sub-components bkt ∈ RI+ of B by time-
shifted versions of gk, such that the instantaneous magnitude
estimate due to the kth component is

šilk =
T∑
t=1

bitk[
t−1→
gk ]l, (6)

where the shift operator
t→
[·] is equivalent to a post multiplication

by a subdiagonal shift matrix (after a shift of length t, the first
t columns are filled with zeroes).

In effect, the standard form of the CNMF with the decon-
volutive model can be written as

X̂il =
K∑
k=1

Hik

T∑
t=1

bitk[
t−1→
gk ]l, (7)

which shares the single channel deconvolutive NMF properties
of being able to efficiently extract spectral patterns that vary
with time. Considering that continuous emissions are a prop-
erty present in many audio signals, this model is appropriate
when moving to a more powerful separation model.

B. Spatial covariance model

We apply the direction-of-arrival (DoA) based factorization
method introduced in [6] to the channel matrices Hik. An
issue with the unconstrained estimation of matrices Hik is
that there is no guarantee that the set of matrices Hk (all
matrices Hik with fixed k) actually encodes a single coherent
single-input multiple-output channel between some component
and the sensor array. Instead, the set Hk is constructed as
a non-negative linear combination of geometrically-defined
beamforming kernel matrices Wio.

Consider the scheme depicted in Fig. 1: with a sufficiently
far emission source somewhere along the direction of ko (a
unit length vector), such that the wavefronts can be considered
planar, the difference in propagation length can be calculated
through the inner product 〈pm′ − pm,ko〉 so that the relative
time-difference of arrival (TDoA) is simply τmm′(ko) =
〈pm′−pm,ko〉

c , where c denotes the wave propagation velocity.

pm

pm′

ko

φ

d d sinφ

Fig. 1. TDoA as function of array geometry and wave incidence direction.

It is straightforward to find the frequency-dependent phase
lag using Fourier transform properties, and from the non-
normalized STFT bin frequencies, the per-bin phase lag can
be calculated as

θmm′(fi,ko) = −2πfiτmm′(ko). (8)
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The idea for modelling H is to sample O directions from
the unit sphere around the array and form the beamforming
kernels Wio for all STFT bins for each DoA sample. The
beamforming kernels are M × M Hermitian matrices con-
taining the relative phase shifts (for a set frequency fi and
direction ko) as complex factors:

Wio =


1 ejθ12(fi,ko) · · · ejθ1M (fi,ko)

ejθ21(fi,ko) 1 · · · ejθ2M (fi,ko)

...
...

. . .
...

ejθM1(fi,ko) ejθM2(fi,ko) · · · 1

 .
Finally, the channel matrices Hik can be modeled in terms

of the DoA kernels as non-negative linear combinations

Hik =
O∑
o=1

zkoWio, (9)

where the factors zko ∈ R+ are shared across all frequencies
for a given component, making this a spatially coherent factor-
ization. Additionally, this model allows the spatial properties
encoded by the vectors zk to be clustered, since it is expected
that components with similar spatial signatures belong to the
same source.

C. Complete model

The complete model for the measured covariance matrices
in terms of deconvolutive CNMF parameters can be written as

X̂il =
K∑
k=1

O∑
o=1

zkoWio

T∑
t=1

bikt[
t−1→
gk ]l . (10)

This factorization is unique up to scaling factors, so additional
constraints are used, namely

∑
o z

2
ko = 1,

∑
l g

2
kl = 1,

and ‖Wio‖F = 1, where ‖A‖F =
√

tr(AHA) denotes the
Frobenius norm of a matrix. In order to find the best estimates
for the parameters, a statistical model can be assigned, and an
estimation framework can be structured.

D. Source reconstruction

Given the CNMF parameter estimates, the per-source spec-
tral images can be reconstructed through a Wiener filter

yilq = xil

∑
k,o βqkzko

∑
t bikt[

t−1→
gk ]l∑

q,k,o βqkzko
∑
t bikt[

t−1→
gk ]l

, (11)

where βqk are learned membership coefficients relating a given
component k with source q. The membership coefficients can
be obtained through a regular clustering algorithm, such as k-
means, c-means, or even NMF (considering that the spatial
factors zko are also non-negative). The overall effect is to
multiply the input spectrograms with a mask of ratios of
estimated spectral magnitudes, preserving the original phase.

IV. PARAMETER ESTIMATION

Following previous works [5], [6], the considered generative
model for the entries of the data matrices Xil are that of
independent complex Gaussian variables with unit variance.
What follows is that the maximum likelihood estimate is
obtained through a squared error minimization problem. In
fact, the likelihood function for the parameters, considering
the overall measurement can be written as

L(Z,W ,B,G) ∝
I∏
i=1

L∏
l=1

exp

(
−‖Xil − X̂il‖2F

2

)
. (12)

It can be useful to embed some prior on the parameters. This
knowledge can be directly related to a regularization factor,
steering the algorithm towards a solution with some desirable
properties. In this paper we consider the generative model
for the spectral signatures bikt as a one-sided exponential
distribution with some scaling factor αB, leading to the
regularized likelihood

LR ∝ exp (−αB‖B‖1)L(Z,W ,B,G) (13)

and regularized cost function

`R(Z,W ,B,G) = 2αB‖B‖1 +
I∑
i=1

L∑
l=1

‖Xil − X̂il‖2F, (14)

corresponding to the negative log-likelihood function (with
omitted constants and rescaled for convenience), where the
tensor `1-norm is defined as

∑
i,k,t bikt. This is inspired by a

LASSO [8] regression, where selectiveness of the signatures
Bk (consequently, a more sparse representation) is desired.

A. Minimization procedure
While (14) is non-convex relative to the CNMF parameters,

it is individually convex over Z,W ,B, and G. Thus, a block
relaxation minimization scheme [9] to obtain good solutions
may be employed. We consider an auxiliary function to (14),
namely:

`+R =2αB‖B‖1+
∑

i,l,k,o,t

1

rilkot
‖Silkot−zkoWiobikt[

t−1→
gk ]l‖

2
F, (15)

where rilkot are any positive variables satisfying∑
k,o,t rilkot = 1, and Silkot are Hermitian matrices

satisfying
∑
k,o,t Silkot = Xil. It can be proven that

`+R(S,Z,W ,B,G) ≥ `R(Z,W ,B,G), and (16)

min
S
`+R(S,Z,W ,B,G) = `R(Z,W ,B,G). (17)

Through a constrained minimization using Lagrange multi-
pliers, the optimal values for Silkot can be derived as

S∗ilkot = zkoWiobikt[
t−1→
gk ]l − rilkotEil, (18)

where Eil is the error matrix Xil − X̂il. Combined with the
majorizer conditions (16) and (17), individual minimization
of (15) across the CNMF variables with S set as S∗ is
guaranteed non-increasing. With the auxiliary definition

x̂il =
∑
k,o,t

zkobikt[
t−1→
gk ]l, (19)
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a useful way to define rilkot arises, namely

rilkot =
zkobikt[

t−1→
gk ]l

x̂il
. (20)

Although this definition is not strictly positive, it is safe to
ignore the zeroed values, since

lim
rilkot→0

1

rilkot
‖S∗ilkot − zkoWiobikt[

t−1→
gk ]l‖

2
F = 0,

and this definition allows for implicit computation of the S∗ilkot
factors.

Replacing S∗ and rilkot with their definitions, the multi-
plicative rules for non-negative factors can be obtained:

zko ←− zko

∑i,l,t (x̂il + tr (EilWio)) bikt[
t−1→
gk ]l∑

i,l,t x̂ilbikt[
t−1→
gk ]l

 , (21)

bikt ←− bikt

∑l,o (x̂il + tr (EilWio)) zko[
t−1→
gk ]l

αB +
∑
l,o x̂ilzko[

t−1→
gk ]l

 , (22)

gkl ←− gkl


∑
i,o,t([

t−1←
x̂i ]l + tr([

t−1←
Ei ]lWio))zkobikt∑

i,o,t [

t−1←
x̂i ]lzkobikt

 . (23)

The update process for the kernel matrices is slightly
different, as only optimization of the magnitudes are allowed,
and the positive semidefinite constraint must be accounted
for. What follows is an optimization scheme similar to a
projected gradient algorithm: the possibly unfeasible point that
minimizes the cost function is calculated as

Ŵio ←−
∑
l,k,t zkobikt[

t−1→
gk ]l[x̂ilWio + Eil]∑

l,k,t x̂ilzkobikt[
t−1→
gk ]l

; (24)

this point is projected onto the positive semidefinite space by
rectification of its eigenvalues:

VioΛioV
H
io ←− Ŵio (25)

Ŵ+
io ←− VioΛ

+
ioV

H
io ; (26)

finally only the entries’ magnitudes are updated, as the true
update is obtained as

Wio ←− abs(Ŵ+
io )� sign(Wio), (27)

in which both abs(·) and sign(·) operate elementwise on
their arguments, and � denotes the matrix Hadamard product.
Concerning the scaling factors, after each update zk and gk
are normalized to unity, while the reciprocal correction factor
is applied to Bk, that is:

vk ←− ‖zk‖2 : zk ←−
zk
vk

Bk ←− vkBk, and

vk ←− ‖gk‖2 : gk ←−
gk
vk

Bk ←− vkBk.

Similarly, Wio is rescaled to unity Frobenius norm, but no
rescaling of other parameters is needed:

Wio ←−
Wio

‖Wio‖F
.

V. NUMERICAL RESULTS

The program developed to assess the performance of the
proposals was coded in Python, using TensorfFlow v1.4,
and executed on an Intel Xeon Gold 5120. We consider
the separation of two sound sources positioned 90° apart,
with two mixtures synchronously captured by omnidirectional
microphones placed 8 cm apart from each other, as illustrated
in Fig. 2. The considered tracks are two vocal samples,
about 11 s long, sampled at 22.05 kHz, drawn from the
DSD100 dataset [10]. A closed room with RT60 ≈ 300 ms
was simulated using CATT-Acoustic v9.0c [11], and the two
sources were positioned on the central horizontal plane of
the room. The microphone pair was positioned at the center
of the room. Since only two sensors were used, a geometric
ambiguity arises, and it is enough to sample directions from
any half-plane defined by the segment connecting the sensor
pair. Thus, the DoA sampling scheme depicted in Fig. 2 was
used, with O = 60 directions.

0 1

−0.5
0

0.5

1

1.5

x

y

Fig. 2. DoA sampling and array geometry: sensor positions in orange, DoA
in blue, and true sources in green.

Square-rooted Hanning windows were used for STFT analy-
sis and synthesis, with 50% overlap. Frame length was chosen
as 1024 samples, corresponding to approximately 46 ms, I =
513 bins, and L = 490 frames. We considered a factorization
using K = 60 components, and deconvolutive length T = 5.

The algorithm ran for 500 iterations, with αB = 0.5. The
DoA sampling scheme allows for an ordered indexing of the
samples based on the angle w.r.t. the sensor axis, and the
obtained spatial features Z are depicted in Fig. 3. Two fairly
distinct clusters can be observed, with high activations around
directions 50 and 20, corresponding to the directions East and
North, respectively, in Fig. 2.
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Fig. 3. Per-component spatial features. Most components have a localized
DoA composition, corresponding to tight ‘bouquets’ around a particular DoA.

We performed weighted k-means on the vectors zk, with
weights corresponding to the component energy ‖Bk‖2F. The
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source-component membership coefficients βqk were set to 1
or 0 based on the obtained clustering, and the two centroids
zq corresponding to the averaged spatial properties for each
source are depicted in Fig. 4.

0 10 20 30 40 50 60

0

0.1

0.2

0.3

Direction index

z q
o

Fig. 4. zq spatial features: cluster 1 in blue, and cluster 2 in orange. The
true directions of the sources are depicted in dashed lines.

The centroids’ peak activations closely match the true
directions for each source, such that a rough estimate of the
sources directions can be obtained from the method, although
the estimate is likely to deteriorate in heavily reverberant
environments.

The separation quality was measured using the mir eval
suite [12], and we benchmarked our results against a non-
regularized, non-deconvolutive CNMF (T = 1 and αB =
0). The per-source signal-to-distortion ratio (SDR) scores for
the proposed method were 7.36 dB and 4.08 dB, while the
reference scored 6.17 dB and 2.92 dB, respectively. The
evaluated source-to-interference ratios (SIR) for the proposed
model were 15.03 dB and 4.66 dB; the reference scores were
11.93 dB and 3.20 dB, respectively.

The proposed method, therefore, outperformed the bench-
mark in the tested setups at the expense of a slight increase
(measured around 30%) in computational time.

We additionally tested the effects of regularization on the
energy distribution between components with three different
αB values. The histogram in Fig. 5 shows the sparsity-
inducing effects, especially in the more strictly regularized
case, effectively annihilating some components, which could
be interpreted as an enforced selectiveness on the components.

0 500 1,000 1,500 2,000
0

5

10

‖Bk‖2F

Fr
eq
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nc
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αB = 0.0
αB = 0.5
αB = 50

Fig. 5. Component energy distribution with different regularization values.
Overregularization can be observed with αB = 50, as several components
were reduced to insignificant energy.

In general terms, one would desire sparse signatures if the
data has a sparse nature; this property is usually manifested in
tonal emissions, where the emitted energy is well localized
in the frequency domain. In this sense, it is expected that

the imposed regularization enhances the algorithm’s precision
for tonal emissions, while some degradation can occur in
percussive or other non tonal emissions.

VI. CONCLUSIONS

We proposed an extended version of the CNMF algorithm,
leveraging the efficient representation from the deconvolutive
NMF model. We also provided user with control on the
distribution of the extracted signatures through regularization,
which steers the method towards a sparse solution. Our pro-
posed method is a generalization of the baseline algorithm,
with added flexibility, able to efficiently factorize signals with
complex spectral signature.

The simulations indicate that the proposed technique enjoys
superior capabilities regarding the separation task, although a
more extensive evaluation to explore the large number of hy-
perparameters is needed before drawing definitive conclusions.

Future works include the extension of these ideas to other
NMF models, such as multi-layer or projective NMF, and
different cost functions, such as Itakura-Saito divergence and
other generalized αβ-divergences.
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Separation (LVA/ICA), P. Tichavský, M. Babaie-Zadeh, O. J. Michel, and
N. Thirion-Moreau, Eds. Cham: Springer, August 2017, pp. 323–332.

[11] “CATT-Acoustic,” (Visited on 10-Feb-2019). [Online]. Available:
http://catt.se

[12] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang,
D. P. Ellis, and C. C. Raffel, “Mir eval: A transparent implementation
of common MIR metrics,” in 15th International Society for Music
Information Retrieval Conference (ISMIR), Taipei, Taiwan, October
2014, pp. 367–372.

5


