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Deep Learning Enhanced Person Identification

based on Smartphones Inertial Sensors
Rafael Saraiva Campos and Lisandro Lovisolo

Abstract— Several works explore the use of measurements
from smartphones embedded inertial sensors (INS) to recognize
which physical activity the person carrying the device is execut-
ing, in what is generally referred to as Activity Recognition (AR).
INS readings can also be used to identify specific subjects, in what
is called Activity Recognition with Person Identification (AR-
PID). Here, we propose improving AR-PID capabilities by using
ensemble learning with bagging (bootstrap aggregating), defining
majority voting committees of deep neural networks, each of
them composed by a stack of autoencoders, followed by a softmax
layer. The individual inertial “signature” of a person is expected
to be more distinguishable while walking than in quasi-static
states (laying, sitting, standing), so we restrict our analysis to
personal identification of walkers. To evaluate the proposed Deep
Learning AR-PID (DL-AR-PID) scheme, we use a public domain
INS database, with 10299 samples collected by 30 smartphone
users. DL-AR-PID reaches accuracies above 99.6% for 29 out
of 30 users, yielding an overall person identification accuracy of
98.6%.

Keywords— activity recognition, person identification, inertial
sensors, supervised learning, bagging, deep learning, autoen-
coders, softmax layer

I. INTRODUCTION

Activity Recognition (AR) is the identification of actions

performed by humans using the information provided by

mobile sensors [1]. Those sensors might either be stand-alone

specialized ones or embedded into commercially available

smartphones. AR lies within the context of Activity-Based

computing, which aims at obtaining the state of the user and

his environment through information provided by heteroge-

neous sensors [2].

The ability to identify not only the actions performed by

whoever is carrying the sensors, but also who is executing

them, would push the applications of Activity-Based com-

puting one step further. This feature, referred to as Activity

Recognition with Person Identification (AR-PID), was orig-

inally proposed in [3]. This capability might be useful in

different areas, such as in assisted living technologies, to

provide improved care to elderly and disabled persons, or in

law enforcement and security, enabling authorities to expand

the monitoring of suspects, missing persons, and individuals

under house arrest.

Resorting to embedded sensors on-board smartphones for

AR-PID has three main advantages if compared to the use of

specialized stand-alone sensors:
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• Smartphones have become ubiquitous in the last few

years, making it unnecessary and cumbersome for the

user to be forced to carry purpose-specific sensors. For

instance, as far back as 2013, 91% of USA inhabitants

already had a cell phone, of which just 55% were

smartphones [4]. By the end of 2016, these figures had

raised to 95% and 77%, respectively [5];

• Smartphones can easily report measurements through

cellular and WiFi networks, while specialized stand-

alone sensors would require additional communication

interfaces;

• Smartphones primary use is not to monitor persons, there-

fore they allow uncooperative individuals (e.g., suspects

being investigated and individuals under house arrest) to

be unknowingly surveilled (if the proper legal warrants

have been issued, of course).

This work aims at enhancing the results achieved by AR-

PID with the use of DL autoencoders. To train and test

the proposed DL-AR-PID feature, we use an online avail-

able database containing thousands of samples collected by

different smartphone users while performing six different

activities (laying, sitting, standing, walking on a horizontal

surface, walking upstairs, walking downstairs) [6].

The remainder of this work is organized as follows. Sec-

tion II lists and briefly discusses some works dealing with

activity recognition and person identification through walking

patterns. Section III describes the experimental setup and data

processing carried out by the authors in [6] to build the

INS database, as well as the features we selected from this

original database for DL-AR-PID. Section IV briefly addresses

the shallow multiclass classifier used for recognition of the

aforementioned six activities, and also the shallow binary

classifier for discriminating between walking and stationary

states – the predictive success of which is a sine qua non

condition for the envisioned DL-AR-PID scheme to work

properly. Following, Section V delves into the details of the

deep learning framework used to implement DL-AR-PID, and

presents the achieved experimental results. Finally, Section VI

brings a brief conclusion.

II. RELATED WORK

A. INS-based Activity Recognition

There are many papers on INS-based activity recognition,

either using solely accelerometer data [7][8][9] or both ac-

celerometer and gyroscope data [1][6].

In [7], the authors carried out the classification of three

postures (sitting, standing, lying) from data collected by six
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elderly subjects carrying a waist-mounted triaxial accelerom-

eter. Using a Gaussian Mixture Model (GMM) based system,

they achieved a mean accuracy of 91.3%.

In [8], the authors also used data from a triaxial accelerom-

eter. The data was collected by two subjects while performing

eight different activities (standing, walking, running, walking

upstairs, walking downstairs, sitting, vacuuming, and brushing

teeth). An accuracy of 99.57% has been reported using plu-

rality voting with multiple classifiers (k-Nearest Neighbors,

Support Vector Machines, Naive Bayes, among others). How-

ever, the small number of test subjects (only 2) reduces the

significance of the results.

In [9], the authors proposed using Jerk-based feature extrac-

tion for activity recognition of cattle from acceleration data.

Therefore, instead of directly using features from the triaxial

accelerometer data, they employed jerk signals, i.e., changes

of accelerations. A triaxial accelerometer was placed on the

top of the neck collar of 21 cows, and the objective was to

recognize the cows’ main activities (standing, lying, walking).

The authors reported an overall accuracy of 92.5% using a

decision tree classifier.

In [1], the authors used both accelerometer and gyroscope

data. They built an INS-measurements database and made it

available online [6]. Section III-A provides more details on

that, as we use their database to evaluate our DL-AR-PID

scheme.

B. INS-based Person Identification

There is much research on person identification based

on walking patterns (such as gait) extracted from video

images [10][11][12] or using footstep induced floor vibra-

tion [13][14]. Nonetheless, we were not able to find in the

literature any previous works on INS-based person identifica-

tion, except for the aforementioned work by the authors on

AR-PID [3].

III. FEATURES FOR HUMAN ACTIVITY RECOGNITION AND

PERSON IDENTIFICATION

A. INS Measurements Database

The authors in [1] compiled a human activity database and

made it available online [6]. They instructed 30 individuals

to carry a smartphone (Samsung Galaxy II) while performing

six different activities: laying, sitting, standing, walking over

a plane surface, walking upstairs and walking downstairs. The

30 individuals were then split into two disjoint sets, used in [1]

as the train and test sets, respectively:

• Set A: 20 individuals, who collected 7352 samples;

• Set B: 10 individuals, who collected 2947 samples;

While performing the aforementioned activities, triaxial accel-

eration and angular velocity from the smartphone embedded

INS sensors (accelerometer and gyroscope) were collected at

a sampling rate of 50 Hz. These signals were then low-pass

filtered for noise reduction using a 3rd order Butterworth filter

with 20 Hz cutoff frequency. This was assumed to be adequate

to capture body motion, as 99% of its energy is below 15
Hz [15]. Additional signals are derived from these triaxial

components, calculating their Euclidean norm and the rates

of change of both linear acceleration and angular velocity.

The signals were then used to build 2.56-sec blocks, with

50% overlap between adjacent blocks. Several statistics of the

signals in time and frequency domain were obtained (mean,

median, standard deviation, kurtosis, among others) for each

block. This resulted in 561-feature vectors. Each vector is

accompanied by two labels indicating the activity being per-

formed and the person who was carrying the smartphone. A

more complete description of the features can be found in [6].

B. Selected Features

To simplify data processing and the training of the deep

learning classifiers, we selected a subset of the 561 input vari-

ables used in [6]. This subset comprises just 81 variables. All

these variables are calculated within each 2.56-sec block (i.e.,

over 128 samples, as the sampling rate is 50 Hz). Each 81-

component feature vector contains [3]:

• accelerometer and gyroscope measurements for each di-

rection (x, y, z): (1) mean, (2) standard deviation, (3) me-

dian absolute deviation, (4) maximum value, (5) mini-

mum value, (6) energy, (7) interquartile range, (8) signal

entropy and (9) inter-direction correlation (xy, xz, yz);

this yields 2 sensors × 3 directions/sensor × 9 vari-

ables/direction = 54 variables;

• the Euclidean norm (considering the three components)

of the first eight variables listed above, i.e.,

vnorm,i,j =

√

√

√

√

3
∑

k=1

v2i,j,k (1)

where vi,j,k is the k-th component of the i-th variable

measured by the j-th sensor, with k = 1, 2, 3 (correspond-

ing to directions x, y, and z, respectively), i = 1, . . . , 8
and j = 1 (accelerometer) or 2 (gyroscope); this yields

2 sensors × 8 variables/sensor = 16 variables;

• the signal magnitude area (SMA) of the acceleration and

angular velocity, considering all triaxial components, i.e.,

SMAj =
1

128

128
∑

l=1

3
∑

k=1

sl,j,k (2)

where sl,j,k is the l-th sample of the j-th sensor in the

k-th direction, with k = 1, 2, 3 (x, y, and z), j = 1, 2 (ac-

celerometer and gyroscope) and i = 1, . . . , 128 (the

number of samples per block); this yields 2 additional

variables;

• SMA of the Euclidean norm (considering the three com-

ponents) of acceleration and angular velocity, i.e.,

SMAnorm,j =
1

128

128
∑

l=1

snorm,l,j (3)

where snorm,l,j is the l-th sample of the j-th sensor,

taking the Euclidean norm considering components x, y,

and z, with j = 1, 2 (accelerometer and gyroscope) and

i = 1, . . . , 128; this yields 2 additional variables;

• the angles between the gravity field and the following

vectors: (i) mean linear acceleration, (ii) mean linear

2
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acceleration rate of change (dv/dt, a.k.a. jerk signal [9]),

(iii) mean angular velocity, (iv) mean angular velocity

rate of change (dw/dt, also a jerk signal), (v) to (vii) di-

rections x, y, and z, respectively; this yields 7 additional

variables.

IV. HUMAN ACTIVITY RECOGNITION: DISCRIMINATION

BETWEEN WALKING AND STATIONARY STATES

The individual inertial “signature” of a person is expected

to be more distinguishable while walking than in quasi-static

states (laying, sitting, standing). Therefore, this work aims to

identify specific subjects through INS-based patterns generated

while walking. For such a scheme to work properly, the ability

to discriminate between stationary and walking states with a

very high degree of accuracy is essential, before forwarding

walking measurements to the deep learning classifiers that

shall recognize specific persons. So, the proposed DL-AR-PID

scheme has two main stages: (i) discrimination between sta-

tionary (laying, sitting, standing) and walking states (walking

over a plane surface, walking upstairs, walking downstairs);

(ii) person identification using ensembles of deep learning

classifiers.

For the first stage, we use the shallow binary classifier built

in [3]. Sets A and B (see Section III-A) are used to train and

test the classifier. Set A provides the training and validation

sets (the samples are randomly distributed as follows: 75%
for training and 25% for validation), while set B provides the

test set. Note that the input vectors have only 81 components,

as described in Section III-B. Table I summarizes the results

reported in [3]. The classification accuracy reaches 99.9%,

with just 2 misclassifications. This result satisfies the premise

previously laid out for the viability of the proposed DL-AR-

PID scheme: a very high accuracy in the separation between

walking and stationary states.

TABLE I

AR CONFUSION MATRIX (WALKING VERSUS STATIONARY STATES)

Output Target Precision
Class Class (%)

Stationary Walking

Stationary 1559 1 99.9

Walking 1 1386 99.9

V. DEEP LEARNING ENHANCED ACTIVITY RECOGNITION

WITH PERSON IDENTIFICATION

To implement DL-AR-PID, we use ensemble learning with

bagging (bootstrap aggregating) [16]. In this technique, M
subsets of the training data are randomly formed by sampling

with replacement, and each subset trains a different supervised

classifier. The output of the M classifiers is then combined

using majority voting. Outputs of majority voting committees

are expected to have a lower variance than outputs of single

binary classifiers, smoothing the stochastic component inher-

ent to the deep learning neural network training and providing

a more reliable and stable classification [17].

A. Input Vectors Repository

For AR-PID, it makes no sense employing sets A and B (see

Section III-A) separately for training and testing, respectively,

as they have samples from distinct users (20 users in set A

and 10 users in set B). Therefore, we take A ∪ B, where

#(A∪B) = 10299 input vectors (the symbol # indicates the

cardinality of a set, i.e., its number of elements). Following,

we select only the input vectors corresponding to walking

states (walking horizontally, walking upstairs, and walking

downstairs), which yields set C, where C ⊂ (A ∪ B) and

#C = 4672 input vectors distributed among 30 users, as Fig. 1

shows. Set C is the repository of input vectors for training and

testing the classifiers [3].

5 10 15 20 25 30

User

120

140

160

180

200

Fig. 1. Number of input vectors (walking states only) per user. The dashed
horizontal line indicates the average number per user (approx. 156 input
vectors)

B. Train and Test Sets

To compose the train set D, 85% of the samples in C are

randomly selected. However, as Fig. 1 indicates, the number

of walking samples per user in C is not uniform. Then, to

prevent any biasing in the DL classifiers, for each user some

samples are randomly selected and replicated, so that all

users contribute with the same number of input vectors in the

training set D. The majority voting committee has M = 15
classifiers, and 15 bootstrap samples are generated, each with

#D samples. So, each classifier is trained by a different set

of input vectors.

C. Neural Networks Topology

Autoencoders (AEs), convolutional neural net-

works (CNNs), deep belief networks (DBNs), and recurrent

neural networks (RNNs) are the most commonly used DL

architectures [18]. In this work, we use sparse AEs: each of

the M = 15 classifiers in the majority voting committee is

obtained by stacking two sparse autoencoders and a softmax

layer.

Fig. 2 shows a schematic representation of an AE, with its

two stages: the encoder and the decoder. The encoder can learn

a more compact representation of the input data (if there are

fewer neurons in the hidden layer than in the input layer), so

one of its main uses is for dimensionality reduction [19]. The

decoder attempts to recover the original data from the encoder

output.

Each deep neural network in the majority voting committee

is built by stacking two AEs. Following, a softmax layer is

3
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Fig. 2. Autoencoder topology, where m is the number of input nodes (i.e.,
the number of components of the input vector p); k is the number of neurons
in the hidden layer; W1 and W2 are the synaptic weights matrices of the
encoder and decoder; b1 and b2 are the bias vectors of the encoder and
decoder; f and g are the activation functions of the neurons in the hidden
and output layers, respectively. The decoder yields an approximation p̂ of
input vector p.

added. Fig. 3 depicts the deep neural network topology. For

the first AE, one has m = 81, as it receives samples from

set D as input, and k = 37. For the second AE, one has

m = 37, as it receives as inputs the outputs of the first encoder,

and k = 15. The activation functions f and g of the hidden

and output layers of both autoencoders are the sigmoid and

linear functions, i.e., f(h) = 1/(1+ exp(−h)) and g(h) = h.

The final layer has 30 neurons (one for each class, i.e., user)

with softmax transfer functions. Thus, the output si of the i-th
neuron is given by

si =
exp (hi)

∑30
j=1 exp (hj)

(4)

where hi is the aggregate input of the i-th neuron. The output

class is indicated by the neuron with the highest output value

in the softmax layer [16].

Fig. 3. Topology of the deep neural network, where S indicates a softmax
layer.

D. Neural Networks Training

1) AEs: the first AE is trained using set D. The second

AE is trained using the outputs of the first encoder. The loss

function used for batch training both AEs is the mean squared

error (MSE) with L2-norm and sparsity regularization

E =
1

n

n
∑

j=1

m
∑

i=1

(xij − x̂ij)
2
+ λΩ+ βΨ (5)

where n is the number of vectors in the training set, m is the

number of attributes per vector in the training set, Ω is the

L2-norm regularization term, Ψ is the sparsity regularization

term, λ = 1 and β = 0.001, X = [xij ]i=1,...,m;j=1,...,n is the

training set, and X̂ = [x̂ij ]i=1,...,m;j=1,...,n is the output set.

The L2-norm regularization term Ω penalizes solutions with

larger weights, which would make the AE unstable. This term

is given by

Ω =
m
∑

j=1

k
∑

i=1

(

w
(1)
ij

)2

+
k

∑

j=1

m
∑

i=1

(

w
(2)
ij

)2

(6)

where W1 = [w
(1)
ij ]i=1,...,k;j=1,...,m and W2 =

[w
(2)
ij ]i=1,...,m;j=1,...,k are the encoder and decoder weight

matrices, respectively.
The sparsity regularization term Ψ is larger when the

average activation value (output) of the neurons in the hidden
layer (averaged over the entire training set in batch training)
are distant in value from the desired average value ρ. The term
Ψ is given by the Kullback-Leibler divergence [20], i.e.:

Ψ =

k
∑

i=1

KL (ρ||ρ̂i) =

k
∑

i=1

[

ρ log

(

ρ

ρ̂i

)

+ (1− ρ) log

(

1− ρ

1− ρ̂i

)]

(7)

where ρ̂i is the average activation value of the ith neuron

in the hidden layer, and ρ = 0.05. Low average activation

values mean that the neurons fire just to a few samples in

the training set. So, adding a sparsity regularization term to

the cost function helps the encoder to learn a representation

where each neuron responds to just a small subset of training

examples, specializing in some features that are present only

in that subset.

2) Softmax layer: the softmax layer is trained using the

output of the second encoder; the cost function used to train

it is the cross-entropy, defined by E = −T log(Y), where

matrices T and Y are the targets and the softmax layer output,

respectively.

3) Deep neural network: finally, the network formed by

stacking the aforementioned layers (as in Fig. 3) is trained

using scaled conjugate gradient descent learning method and

cross-entropy cost function (defined by the softmax layer).

Early stopping was not used (as no part of the training set was

reserved for validation), so the stop criterion is the maximum

number of epochs (1000).

E. Results

Figs. 4 and 5 depict the classification metrics for the AR-

PID [3] and DL-AR-PID schemes. The improvement achieved

using deep learning is clear: Figs. 4(a,c) shows DL-AR-PID

accuracies (rate of correct classifications) and specificities (rate

of true negatives) close to 100% for all users, and Fig. 4(b)

indicates that DL-AR-PID precision (rate of true positives) is

above 95% for 28 out of 30 users. Fig 5 indicates that the

DL-AR-PID accuracy, precision and specificity median values

are equal to 100%.
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Fig. 4. Classification metrics per user: (a) accuracy, (b) precision, (c) speci-
ficity.

Fig. 5. Boxplot of classification performance metrics: (a) AR-PID, (b) DL-
AR-PID.

VI. CONCLUSION

In this work, we introduced enhancements to the previously

proposed INS-based Activity Recognition with Person Iden-

tification (AR-PID) scheme, which resulted in a significant

reduction of classification error. This improvement was imple-

mented using deep neural networks, formed by stacking sparse

autoencoders, followed by a softmax layer. The Deep Learning

AR-PID (DL-AR-PID) is an extension to Activity Recogni-

tion (AR), allowing the identification of specific subjects. DL-

AR-PID uses majority voting committees of deep learning

classifiers. Each DL classifier is formed by stacking sparse

autoencoders, followed by a softmax layer. Its performance is

markedly superior in comparison to that of shallow ensemble

learning. Using a public domain INS database with 10299

samples collected by 30 subjects carrying a smartphone, the

proposed scheme achieved a person identification accuracy

above 99.6% for 29 out of 30 users. The results show the

validity and effectiveness of the proposed approach. This paves

the way for DL-AR-PID being employed for security tasks,

such as identification and authentication.
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