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Estimation of Transfer Entropy for Capturing
Connectivity and Causality in Industrial Processes
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Abstract— This paper discusses the use of two information
theory measures: transfer entropy and direct transfer entropy,
as an approach for detection of causality and connectivity
between continuous variables in industrial processes (continuous
systems). These measures are asymmetric and identify and
quantify linear or non-linear directional relationships between
two variables. To estimate these measures, we used estimators
based on distances between neighbors. The results obtained from
simulations demonstrate the applicability of the measurements
and their estimations in order to identify the connectivity map
of two systems: autoregressive model (which can be compared
with the analytical results) and four water tanks (an industrial
systems).

Keywords— Transfer entropy, causality, continuous processes,
industrial processes.

I. INTRODUCTION

Identifying the causal relationships between variables of
a system from observations of time series is challenging
when knowledge about the dynamics is partial. Although these
relationships can be detected through mathematical modeling,
for complex large-scale processes it is difficult to establish
practical and precise mathematical models.

Mechanisms to automate the detection and diagnosis of
plant wide abnormalities and disorders are challenges in
the process industry. In a complex industrial process, the
elements are not only interconnected, they are also mutually
dependent [1], [2]. Therefore, it is possible to use the concepts
of information theory to describe cause-effect relationships
between variables through directional graphs, establishing a
network called a causal map [3].

Paying attention to the detection of abnormalities in
industrial processes is one way to avoid interfering with the
overall process performance. So, identifying the spread of
failures can prevent accidents that often yield both financial
and human damages.

The concepts of information theory can also be used in this
application, among them, directional information and transfer
entropy. They have one important advantage: quantifies the
directional causal influence between two processes. This
analysis can support the diagnosis of abnormalities and
disorders throughout the plant [1], [2], [3], [4], [5] and it
has been recently used in different scientific fields, such as
neuroscience [6], [7] and biomedical data [8], [9].
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Although the directional causal influence between two
process can be detected using, for example, transfer entropy,
the challenge is to distinguish whether the causal influence
is direct or indirect. An indirect influence occurs when some
intermediate variables transfer information between the two
processes. Therefore, in a direct causality there is a direct
information without any intermediate variables.

In addition, the processes can be related to a common
source (spurious causality). In this case, if the process one
causes process two and process one causes process three, the
processes two e three can be related due to the influence of
process one in both cases. Thus, to detect whether causality
is true or spurious and/or direct or indirect is necessary for
capturing the true process connectivity.

Therefore, an extension of the transfer entropy was proposed
by [5] to detect the direct causality between two processes:
direct transfer entropy. In general, transfer entropy represents
the total causal influence and direct transfer entropy determine
whether this influence is along direct or indirect pathways.

Although the concepts in information theory are relatively
simple and mathematical formulations are objective, in
practice, their estimation can be a complex process. For
continuous variables, techniques that use nearest neighbors
distances have been used for transfer entropy estimates [8],
[10].

In such context, this paper attempts to investigate the
use of estimator based in nearest neighbors distances for
transfer entropy and direct transfer entropy and then construct
directional graphs for information flow. First, an example base
with a three dimensional autoregressive model will analyze the
perform of estimator comparing with theoretical values. Next,
an application with four water tank will be evaluated.

This paper is structured as follows. Section II organizes
notations. Section III reviews definitions of transfer entropy
and direct transfer entropy. Section IV introduces briefly
estimators for these measures based in nearest neighbors
distances. Section V presents the performed simulations.
Finally, section VI concludes the paper.

II. NOTATION AND TERMINOLOGY

In this paper, we denote random variables by uppercase
letters, their realizations by lowercase letters, stochastic
processes by uppercase bold letters and realizations of a
d-dimensional random variables by lowercase bold letters. The
n-th output the process is indicated by subscripts, e. g., X,,.
The finite length sequence of a random variable is defined by
subscript and superscript, e. g., X” , = {X,—g, -, Xn}-
Probability density function is denoted by f(-) and the set
where f(-) > 0 is called the support set.
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III. TRANSFER ENTROPY AND
DIRECT TRANSFER ENTROPY

Transfer entropy is a nonlinear measure of information
theory introduced by Thomas Schreiber [11]. It quantifies the
exchange of information, depending on directional coupling,
between two random processes when they are not independent
and can be approximated by a stationary Markov process. In
other words transfer entropy is an asymmetric measure which
can determine linear or nonlinear coupling of two variables by
quantifying the information transferred between them.

Initially, transfer entropy was defined for discrete processes
[11] and extended for continuous processes [12]. Throughout
this article, this measure will be used to detect causal
relationships and information flow for continuous processes.

An interpretation about transfer entropy is: measure of the
amount of information that future samples of one process
contains about past samples of another process given the past
samples of the first.

Before introducing its mathematical interpretation it is
necessary to define the concept of entropy. For discrete random
variables, entropy is a measure of the average uncertainty
and the number of bits on average required to describe them.
When the random variable is continuous we have differential
entropy. It is related to the shortest description length of these
variables. Considering a continuous random variable X with
density f(x) differential entropy is defined as [13],

hX) = - /5 f(2) log f(z)de, )

where S is the support set of the random variable. Unlike
entropy for discrete variables, differential entropy can be
negative.

Now let’s consider two continuous processes, the transfer
entropy between them is defined as [12],

Txy = /f(Yn+1aY7?—l+1vX7?—k+1)

S Va0, X0 )
f (Yo lY40)

where V denotes the random vector [Yy, 11, Y, X7, ]
and k£ and [ are the embedding dimension of X and Y
respectively. In this paper k =1 = 1.

However, the transfer entropy is not sufficient to detect the
connectivity. In order to detect the direct causality between two
process with some possible intermediate variables, the direct

transfer entropy should be used and it is defined as [5],

log

dv, 2

n n n n
DX*)Y = /f(Yn+17Yn7l+1vzn7j1+17"' 7Zn7jq+l7Xn7k+1)

n n n n
f (Yn+1|Yn—l+17 Z7L*j1+17 e 7Z7L7j(1+17 Xn—k+1)

/ (Ynﬂ‘yﬁizﬂvzﬁﬁlﬂv T ,Z;}quH)

where W denotes the random vector [Yni1, Y.,
Z’:Ll—jl—&-lu"'7Z’:Ll—jq+1’X;Ll—k+1:|’ g is the number of
intermediate processes and k, ! and j;,---,j, are the
embedding dimension of X, Y and Zq,--- ,Zq respectively.

In this paper k=1l =j; =--- = j, = L.

dW (3)

log

Transfer entropy and direct transfer entropy can be rewritten
as a sum of entropies or a conditioned mutual information.
This will be useful during the study of estimators. To the first
we have,

h(X) e, Yo ) +h (Y Yo )
—h (Yor1, X0, Yalggn) = h (Yiliga)
= I(Yo1; X0 plYnis), “4)

and, similarly, can be extended to direct transfer entropy,

h( :Ll—k+17}/7:l—l+17ZZ—j+1)

+h (Yog1, Y i1 Z i)

—h (Yor1, X it Yoiins Zojin)

—h (Yo i1 Zn—ji)

= IV X0 oYVl Zn ). )

Suppose three continuous process where Tx_,v, ITx_z,
and Tz_,y are all larger than zero then, X causes Y, X causes
Z, and Z causes Y. However, this result does not indicate
whether the information flow from X to Y is along a direct
or indirect pathway, in other words, if Z is an intermediate
variable. For check that, the direct transfer entropy can be
used. If Dx_,v is greater than zero, then there is a direct
pathway between the process, otherwise, the causal influence
is via the intermediate variable.

In addition, if there is direct causality from X to Y it is
possible that Z is not a cause of Y and this spurious causality
is generated by a common source of both, X. Therefore,
Dz _,v needs to be calculated. After this procedures, the
connectivity of the system can be reproduced in a directional
causal map.

The direct transfer entropy represents the information about
a future observation of a process Y obtained from the
simultaneous observation of past values of another process
X and possible intermediate processes Z, after discarding the
information about the future of Y obtained from the past of
Z alone [5].

Txy =

Dxy =

IV. ESTIMATION OF TRANSFER ENTROPY

The process of estimating Information Theory measures for
continuous variables requires attention, simple solutions such
as discretization of the data can compromise the estimates.

Among four estimators discussed in [14], the differential
entropy estimator proposed by Kozachenko and Leonenko
(1987) [15] was the one that presented the best performance
for entropy estimation. This estimator considers that the
probability distribution of the distances between z; and its
k-th nearest neighbor is trinomial and estimates the Shannon
entropy by,

h(X k N)+1 !5 loge(i), (6

(X) = =(k) + (N) + ogchrN; oge(i), (6)

where 1(-) is digamma function, N is the sample size, cg is

the volume of the d-dimensional unit ball (for the maximum

norm ¢y = 2" and for Euclidean norm ¢y = 7%2/T'(1+d/2))
and €(7) is twice the distance from x; to its k-th neighbor.
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Two classes of improved estimators for mutual information
based on Kozachenko and Leonenko estimator was presented
by [16]. We have concentrated our applications using only the
estimator given by,

LX) = 9(k) = (e + 1) +9(ny + 1) +9(N), (7
where (-) denotes the mean and n, and n, are the number of
samples within the region delimited by k-th nearest neighbor.

Using the same idea, it was possible develop an estimator
for transfer entropy as [17],

Txoy = I1(X;Y|2)
= (k) + ((n. +1)
—h(ngz +1) — ¢(nyz +1)), (8)

where n, n;. and n,, are the number of samples within
the region delimited by k-th nearest neighbor. By analogy
with equation (4), X, Y and Z represents X, 11 Yot
and Y ., respectively. Likewise, direct transfer entropy
estimator can be defined as,

~

Dxoy = I(X;Y|Z,W)
= Y(Ngzw +1) — w(nyzw +1)), 9

where 1.4, Nz and ny, are the number of samples
within the region delimited by k-th nearest neighbor. Again,
by analogy with equation (5), X, Y, Z and W represents

n n n ]
Xy k1> Ynt1, Zy_j4q and Y)1' ) respectively.

V. TRANSFER ENTROPY FOR DETECTION OF
INFORMATION FLOW PATHWAYS

In this section, two applications for continuous processes
will be described. First, an example base with a three
dimensional autoregressive model will analyze the perform
of estimator comparing with theoretical values. Next, an
application with four water tank system will be evaluated. For
both we will use the estimators already presented in order
to describe, through directional graphs, the direct information
flow of the systems.

For computational reasons, the embedding dimension of
random variables sequences in equations (4) and (5) were
considered equal to 1. Furthermore, for equations (8) and (9),
we considered k& = 4. The choice is based on [16] which
suggests that in practical applications, one should choose
k > 1 to reduce statistical errors, avoid high values of k
and typically use £ = 2, 3, or 4. When the estimates were
negative or positive on the order of 10~ we discard any causal
relationship between the processes (in this case, we consider
that the coupling between variables is very small).

A. Three-Dimensional Autoregressive Model

First we discuss an application of estimator to correlated
Gaussians because we can compare with analytic results. So,
we choose a system of equations which consists of three
correlated Gaussians processes satisfying,

Xppy1 = aX, + 177}1(
Zpiw = 0Y, + €Z, + n?

Fig. 1. Directional information flow graph for the three-dimensional
autoregressive model with o« = 0.8, 3 = 0.6, v =04, =0.5e e = 0.
The first two graphs are the result of calculating the transfer entropy that
represents the total causality of the system. The last graph is obtained after
the analysis with the direct transfer entropy and corresponds to the direct and
true causality, interpreted as the connectivity of the system.
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Fig. 2. Convergence of transfer entropy estimator to analytical values of
TX—)Y = 0.2365, TY—)Z = 0.2516 and TX—)Z = 0.0666.

where 7.5, nY . nZ ~ N(0,0.1). For 0 < a, 3,7, 6,¢ < 1 there
is direct information transfer from X to Y and from Y to Z
and the information transfer from X to Z is indirect through
an intermediate variable Y.

The theoretical analysis of causality and connectivity of
this system begins with the arbitrary definition of the set of
parameters that describe it. Although, for this system, from
any set of parameters can be made the analyzes, here we let’s
consider that « = 0.8, 5 =0.6, vy =0.4, 6 = 0.5 and ¢ = 0.

The analytical values for transfer entropy in this system are:
Tx_y = 0.2365, Ty 7z = 0.2516, Tx_,z = 0.0666 and all
others relationships are equal to zero. Under these conditions,
it is concluded that X causes Y, Y causes Z and X causes
Z and three path way for information flow is assumed, but it
is not the true direct connectivity.

We need to determine whether there is direct causality from
X to Z or if Y is just an intermediate variable. According to
direct transfer entropy definition Dx_,z = 0 so, there is no
direct causality from X to Z. Finally, the theoretical analysis
is completed with directional graph of system connectivity,
shown in Figure 1.

To analyze the convergence of the estimators, 8000 samples
of each process were simulated, among which the first
3000 were discarded to guarantee the stationarity of the
autoregressive processes [5]. The causal relationships were
identified by the estimator of equation (8). The Figure 2
shows the convergence of estimated values to analytical values,
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when the estimates are greater than zero, as a function of the
increasing number of samples analyzed (after discarding the
3000 samples).

As well as for theoretical values, we need to determine
whether there is direct causality from X to Z. According to
equation (9) the direct transfer entropy Dx_,z = —0.0066.
So, in this case, there is no direct causality from X to
Z. The directional graph of connectivity of this system,
obtained through simulation and disregarding any statistical
knowledge of the processes, is exactly the same as that
obtained analytically and shown in Figure 1.

B. Simulation Case Study: Four Water Tank System

The system consists of four connected water tanks as shown
in Figure 3. The pump pumps water to tanks 4 and 3, and the
outflow of these tanks is conducted to the inlets of tanks 1
and 2, respectively.

For each tank water enters from the top at a rate proportional
to the voltage applied to the pump and leaves through an
opening in the tank base at a rate proportional to the square
root of the water height in the tank. The differential equation
that describe each tank is,

%Vol = A% =br —avh
where Vol is the volume of water (m?), A is the height of water
(m), x is the flow rate of the water out of the pump (m>/s),
A is the cross-sectional area (m?), b is a constant related to
the flow rate into the tank and a is a constant related to the
flow rate out of the tank. The presence of the square root in
the water flow rate results in a nonlinear plant.

The Table I describes the operation parameters used during
the simulations of system. The simulations were performed
using MATLAB software. The pump have normal random
behavior, the flow rate of the water out of the pump varies
with mean value 4 m3/s and variance 0.1 m?/s.

After simulating the processes of the system, causality
and connectivity analysis are performed disregarding any
knowledge about it. Therefore, the first step is to estimate the
transfer entropy between each pair of processes x, hy, hs, hg
and hy. So, the directional graph of the information flow for
this system corresponds to the first graph of Figure 4 results
from Table II.

However, the goal is to identify the true connectivity of
the system, i.e., to determine if these relations are direct or
indirect. The steps of identifying these information flow paths
are shown in Figure 4 and in Table III.

It was first checked whether the causality between hy and
h, is true and straightforward considering hgz as the possible
intermediate variable and hy and x as possible common source
variables. Since the direct transfer entropy between h; and
h, is very small, we conclude that there is no direct causality
between them.

Then, we investigated four other direct causal relations of
hs — hy, hy — hs, hg — h; and h; — hg, however, all
these estimates are either negative or small, thus excluding the
connectivity of these variables (see Table III). In addition, it
is not necessary to detect whether there is causality between

Y

by — Tank 4 Tank 3 J bsx
hy hs
asiv/hy { Tank 1 Tank 2 J asv/hs
I |
hy ha
| —r] [—I— |
€T al\/hT azx/sz
Pump
Fig. 3. Schematic of the system with four tanks (reservoirs) with water and

a pump whose water flow rate varies with mean value 4m3/s and variance
0.1m%/s.

TABLE I
PARAMETER VALUES FOR FOUR WATER TANK SYSTEM IN WHICH
i=1,2,3,4.

[ Parameter || Value ]

A; (m?) 1.44; 1.44; 2.25; 2.25
a; 1;1;2;2
b; 0.85; 0.6; 0.4; 0.9

TABLE I
TRANSFER ENTROPY ESTIMATIONS USING EQUATION (8) BETWEEN EACH
TWO VARIABLES FOR FOUR WATER TANK SYSTEM.

l H Tiin—scol

hy hy hs hy X
hy - 0.1017 0.0171 0.0086 | -0.0024
ho 0.3618 - 0.0013 | -0.0051 | -0.0003
h3 0.3136 0.4269 - -0.0037 | 0,0004
hy 0.2001 0.2858 | -0.0045 - -0.0018
X -0.0487 | -0.0462 | 0.9229 1.0876 -

TABLE III

DIRECT TRANSFER ENTROPY ESTIMATIONS USING EQUATION (9) FOR
DIRECTIONAL RELATIONS THAT MAY HAVE ONE OR MORE INTERMEDIATE

VARIABLES.

H Intermediate Processes | Dx_,vy
h; — hsa hs, hg, x 0.00005
ha — hy h4, x -0.0002
hg — hso hi, hs, x 0.0002
hz — hy ha, x 0.0071
h; — hs X 0.0001
hy = hy ho 0.0432
hs — hso h; 0.0689
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x — hg and x — hy4 since there is no intermediate variable
or a variable that is common source in its pathways.

Finally, on the basis of all estimates, it is concluded that,
except for the causality of hy — h; and hg — hg, the other
causalities detected are indirect or spurious. The last graph of
Figure 4 corresponds to the true connectivity of the system.

VI. CONCLUSIONS

The identification of the causal relationships and the
connectivity between continuous signals of a complex system
is challenging, since, in general, knowledge about the
underlying dynamics is partial. However, information theory
can provides a variety of approaches to measure such
relationships between multivariate time series, for example,
transfer entropy.

Identify true connectivity of a system is important to
distinguish whether causal influence occurs along a direct
path without any intermediate variables, or indirectly through
intermediate variables and/or variables that are common.

In this paper, the concepts of transfer entropy and
direct transfer entropy were used to identify causality
and connectivity relations, respectively, between continuous
variables. According to the presented approach, non-zero
transfer entropy values indicate a causal relationship between
the analyzed signals and non-zero direct transfer entropy
values indicate connectivity between the signals.

The analytical study of causality and connectivity of
the three-dimensional autoregressive system, combined with
simulations that disregard any statistical knowledge of the
processes, is essential to demonstrate, in these cases, the
reliability of the estimators based on distances of neighbors,
(8) and (9).

In the study case, four water tank system and pump, it
was possible, using information theory approaches and those
estimators for connectivity analyzes, to faithfully recover the
connectivity of the system. Considering this base application
it is possible to continue the discussion about the applicability
of this method in another industrial process.

REFERENCES

[1] F. Yang, P. Duan, S. L. Shah, and T. Chen, Capturing Connectivity and
Causality in Complex Industrial Processes. SpringerBriefs in Applied
Sciences and Technology, Springer International Publishing, 1 ed., 2014.

[2] P. Duan, F. Yang, S. L. Shah, and T. Chen, “Transfer zero-entropy
and its application for capturing cause and effect relationship between
variables,” IEEE Transactions on Control Systems Technology, vol. 23,
pp. 855-867, may 2015.

[3] M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F.
Thornhill, “Finding the direction of disturbance propagation in a
chemical process using transfer entropy,” IEEE Transactions on Control
Systems Technology, vol. 15, pp. 12-21, Jan 2007.

[4] F. Yang and D. Xiao, “Progress in root cause and fault propagation
analysis of large-scale industrial processes,” Journal of Control Science
and Engineering, vol. 2012, pp. 1-10, 2012.

[5] P.Duan, F. Yang, T. Chen, and S. L. Shah, “Direct causality detection via
the transfer entropy approach,” IEEE Transactions on Control Systems
Technology, vol. 21, pp. 2052-2066, nov 2013.

[6] J. M. de Assis and F. M. de Assis, “An application of directed
information to infer synaptic connectivity,” in Anais do XXXIV Simpdsio
Brasileiro de Telecomunicagées e Processamento de Sinais, Santarém,
Brazil, p. 528-532, 2016.

D—OOox103 —02><103
/h_/l"hl /h,l /
e I l X
\h34'h2 \h34'h2
D=0,1x1073 ﬁ:71x10*3 D =0,2 -3
/}L4 h1 4—'}L1
R R
\h 12 3—'h2 \}134'}12
D = 43,2 9)-3 D=68,9x1073
/h44’h1 /h44’h1 /}L44’h1
X X T

N S

h, \h

3Ny 3 3N

Fig. 4. Directional graphs of the information flow for the system with four
tanks with water. The first graph is the result of calculating the transfer entropy
that represents the total causality of the system. The following graphs are
obtained sequentially from the connectivity analysis of the variables that are
interconnected by means of a red arrow. The last graph corresponds to direct
and true causality, interpreted as the connectivity of the system. In graph,
we denote the processes analyzed by bold letters and possible intermediate
processes by blue letters.

[7]1 R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer entropy—a
model-free measure of effective connectivity for the neurosciences,”
Journal of Computational Neuroscience, vol. 30, pp. 45-67, Feb 2011.

[8] M. M. Arruda, L. R. Veloso, and F. M. de Assis, “Transfer entropy
characterization of tbi cases,” in Anais do XXXV Simpdsio Brasileiro
de Telecomunicagoes e Processamento de Sinais, Sdo Pedro, Brazil,
pp. 625-628, 2017.

[9]1 F. Marzbanrad, Y. Kimura, M. Endo, M. Palaniswami, and A. H.

Khandoker, “Transfer entropy analysis of maternal and fetal heart rate

coupling,” in 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pp. 7865-7868,

Aug 2015.

J. M. de Assis, M. O. Santos, and F. M. de Assis, “Auditory stimuli

coding by postsynaptic potential and local field potential features,” PLOS

ONE, vol. 11, p. e0160089, aug 2016.

T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett., vol. 85,

pp. 461-464, Jul 2000.

A. Kaiser and T. Schreiber,

processes,” Physica D: Nonlinear Phenomena, vol.

pp. 43-62, 2002.

C. E. Shannon, “A mathematical theory of communication,” The Bell

System Technical Journal, vol. 27, pp. 379-423, july, october 1948.

M. M. Arruda, L. R. Veloso, and F. M. de Assis, “Differential entropy

estimation via one-class svm,” in Anais do XXXVI Simpdsio Brasileiro de

Telecomunicagdes e Processamento de Sinais, Campina Grande, Brazil,

pp. 697-701, 2018.

L. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy

of a random vector,” Problemy Peredachi Informatsii, vol. 23, no. 2,

pp. 9-16, 1987.

A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual

information,” Phys. Rev. E, vol. 69, p. 066138, Jun 2004.

S. Frenzel and B. Pompe, “Partial mutual information for coupling

analysis of multivariate time series,” Physical Review Letters, vol. 99,

nov 2007.

[10]

[11]

[12] “Information transfer in continuous

166, no. 1-2,
[13]

[14]

[15]

[16]

[17]



