Combinação Linear de Estatísticas de Teste para Sensoriamento Espectral Cooperativo

Dayan A. Guimarães

Resumo— Os detectores GRCR (*Gershgorin radii and centers ratio*) e GID (*Gini index detector*) foram recentemente propostos como soluções simples e robustas para o sensoriamento espectral cooperativo centralizado. Neste artigo se propõe a estatística de teste híbrida WGG (acrônimo para *weighted GRCR-GID*), a qual é formada pela combinação linear das estatísticas de teste GRCR e GID. Demonstra-se, por meio de um elevado número de resultados numéricos, que o WGG agrega as vantagens de ambos os detectores base, atingindo desempenho pouco inferior ao GRCR na ausência de percurso dominante e pouco inferior ao GID na presença de percurso dominante.

Palavras-Chave— GID, GRCR, rádio cognitivo, sensoriamento espectral cooperativo.

I. INTRODUÇÃO

Ultimamente temos testemunhado um crescimento sem precedentes dos serviços de telecomunicações, principalmente no que se refere aos sistemas de comunicação sem fio. Como consequência, o espectro de radiofrequências tem se tornado um recurso cada vez mais congestionado ou até escasso em certas faixas, principalmente devido à adoção da política de alocação espectral que destina aos sistemas primários, de forma fixa, a porção de frequência destinada a cada serviço. O problema tende a se agravar com a massificação da Internet das coisas (*Internet of things*, IoT) e a implantação de fato da quinta geração (5G) das redes de comunicação sem fio.

O conceito de rádio cognitivo (*cognitive radio*, CR) surgiu como uma promissora solução do problema supracitado [1]. Com ele se pode implantar uma política de alocação dinâmica de espectro, na qual bandas de frequência ociosas devido a subutilização podem ser ocupadas de forma oportunista pelos terminais de usuários secundários (*secondary users*, SUs). Para que isto ocorra, é preciso que os SUs cognitivos sejam capazes de detectar a presença do sinal do usuário primário (*primary user*, PU) na banda de interesse, tarefa do processo denominado sensoriamento espectral [2], [3].

O sensoriamento espectral pode ser realizado de forma independente por cada SU cognitivo, ou pode ser cooperativo. No segundo caso eleva-se a acurácia das decisões sobre o estado de ocupação da banda sensoriada em comparação com o sensoriamento não cooperativo, fazendo-se uso da diversidade espacial promovida pelas diferentes posições geográficas dos SUs em cooperação. No sensoriamento cooperativo centralizado com fusão de dados, que é objeto do presente trabalho,

Dayan A. Guimarães, Instituto Nacional de Telecomunicações (Inatel),
Santa Rita do Sapucaí, MG, Brasil, e-mail: dayan@inatel.br. Este trabalho foi
parcialmente financiado pela RNP, com recursos do MCTIC, processo No.
01250.075413/2018-04, projeto Centro de Referência em Radiocomunicações
(CRR) do Instituto Nacional de Telecomunicações - Inatel, Brasil.

as amostras do sinal sensoriado, ou grandezas delas derivadas, são transmitidas a um centro de fusão (*fusion center*, FC), onde a decisão final ou global é tomada. Tal decisão é então informada aos SUs, os quais passam a fazer uso da banda em questão, caso esteja desocupada, por meio de alguma técnica de acesso múltiplo.

A. Trabalhos Relacionados

Os detectores GRCR (Gershgorin radii and centers ratio) [4] e GID (Gini index detector) [5] foram recentemente propostos como soluções para o sensoriamento espectral cooperativo centralizado com fusão de dados. Além de possuírem baixa complexidade computacional, apresentam robustez frente a variações de potência de ruído e de sinal recebido, possuem a propriedade de taxa de falso alarme constante (constant false alarm rate, CFAR), não necessitam de conhecimento sobre o sinal sensoriado ou sobre a potência de ruído (são cegos), e podem suplantar grande parte dos detectores cegos disponíveis na literatura em uma vesta gama de situações. O GID tem como característica principal o alto desempenho atingido quando o sinal sensoriado apresenta componente de multipercurso dominante (visada direta, por exemplo). No entanto, seu desempenho é drasticamente afetado na ausência de percurso dominante.

Outros detectores cegos propostos na literatura merecem destaque, dentre os quais podendo ser citados o HR (*Hadamard ratio*) [6], o VD1 (*volume-based detector 1*) [7], e aqueles baseados nos autovalores da matriz de covariância do sinal recebido [8], [9]: o GLRT (generalized likelihood ratio test), o AGM (arithmetic to geometric mean) e o MMED (maximum-minimum eigenvalue detection).

B. Contribuições e Estrutura do Artigo

Neste artigo se propõe a estatística de teste híbrida WGG (acrônimo para *weighted GRCR-GID*), formada pela combinação linear das estatísticas de teste GRCR e GID. Demonstrase, por meio de extensivos resultados numéricos, que o WGG agrega as vantagens de ambos os detectores base, atingindo desempenho pouco inferior ao GRCR na ausência de percurso dominante e pouco inferior ao GID na presença de percurso dominante.

O restante do artigo está assim organizado: a Seção II descreve o modelo de sistema, os detectores GRCR e GID, e o detector proposto WGG. Os detectores concorrentes são listados na Seção III. A Seção IV é dedicada aos resultados numéricos e interpretações. A Seção V conclui o trabalho.

II. MODELO DE SISTEMA

Neste artigo adota-se o sensoriamento espectral cooperativo centralizado com fusão de dados, realizado por m SUs, ou um SU com m antenas, coletando n amostras (por SU ou por antena) do sinal recebido em cada intervalo de sensoriamento. No FC, tais amostras formam a matriz $\mathbf{Y} \in \mathbb{C}^{m \times n}$ dada por

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{V}.$$
 (1)

Nesta equação, as amostras do sinal transmitido pelos *s* usuários primários estão dispostas na matriz $\mathbf{X} \in \mathbb{C}^{s \times n}$. Estas amostras têm distribuição Gaussiana de média nula e variância dependente da razão sinal-ruído (*signal-to-noise ratio*, SNR), representando as variações de envoltória tipicamente presentes em sinais modulados e filtrados.

A matriz de canal $\mathbf{H} \in \mathbb{C}^{m \times s}$ é formada por elementos h_{ij} , $i = 1, 2, \ldots, m, j = 1, 2, \ldots, s$, os quais representam o ganho do canal de sensoriamento entre o *j*-ésimo PU e o *i*-ésimo SU.

De forma a modelar um canal com desvanecimento Rice plano e lento, tem-se $\mathbf{H} = \mathbf{GA}$, em que $\mathbf{A} \in \mathbb{C}^{m \times s}$ tem elementos $\alpha_{ij} \sim \mathbb{CN}[\sqrt{K/(2K+2)}, 1 - (K+1)]$, sendo K o fator de Rice que estabelece a razão entre a potência de componente de multipercurso dominante e a potência dos demais componentes [5]. Assim, alterando-se K modelam-se diferentes cenários práticos de propagação.

A matriz $\mathbf{G} \in \mathbb{R}^{m \times m}$ é dada por $\mathbf{G} = \text{diag}(\sqrt{\mathbf{p}/p_{\text{avg}}})$, em que o operador diag (\cdot) gera uma matriz diagonal cuja diagonal principal é formada pelo vetor do argumento, $\mathbf{p} = [p_1, p_2..., p_m]^{\mathrm{T}}$ é o vetor que contém as potências dos sinais recebidos pelos SUs e $p_{\text{avg}} = \frac{1}{m} \sum_{i=1}^{m} p_i$ é a potência média destes sinais.

Por último, a matriz $\mathbf{V} \in \mathbb{C}^{m \times n}$ em (1) contém as amostras de ruído aditivo Gaussiano branco (*additive white Gaussian noise*, AWGN) de média nula e variância total σ_{avg}^2 dependente da SNR: dado que a potência média total dos sinais transmitidos pelos PUs é s_{avg} , tem-se que SNR = $10 \log_{10}(s_{avg}/\sigma_{avg}^2)$.

De modo a levar em conta o cenário mais realista no qual as potências de ruído e dos sinais recebidos nos SUs podem não ser iguais entre si e podem ser variantes no tempo, aqui admitiu-se que ambas são aleatoriamente determinadas para cada SU ao longo do tempo. Especificamente faz-se $\sigma_i^2 \sim \mathcal{U}[0.05\sigma_{\text{avg}}^2, 1.95\sigma_{\text{avg}}^2]$ e $p_i \sim \mathcal{U}[0.05s_{\text{avg}}, 1.95s_{\text{avg}}]$ a cada realização do sensoriamento espectral.

De posse de Y, o FC computa a matriz de covariância amostral (*sample covariance matrix, SCM*) do sinal recebido,

$$\mathbf{R} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^{\dagger}, \tag{2}$$

em que † denota a operação conjugado transposto. Em seguida, o FC computa a estatística de teste GRCR [4],

$$T_{\rm GRCR} = \frac{\sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} |r_{ij}|}{\sum_{i=1}^{m} r_{ii}},$$
(3)

em que r_{ij} é o elemento na *i*-ésima linha e *j*-ésima coluna de **R**, para i, j = 1, ..., m, e também computa a estatística de teste GID [5],

$$T_{\rm GID} = \frac{(m^2 - m) \sum_{i=1}^{m^2} |r_i|}{2 \sum_{i=1}^{m^2} \sum_{j=1}^{m^2} |r_i - r_j|},\tag{4}$$

em que r_i é vetor **r** é formado pelo empilhamento de todas as colunas da matriz **R**.

Levando-se em conta que T_{GRCR} e T_{GID} são derivadas da matriz **R** e que a obtenção desta matriz é a operação mais complexa em ambos os casos, aqui se propõe a estatística de teste híbrida WGG, a qual é formada por meio da combinação linear de T_{GRCR} e T_{GID} , ou seja,

$$T_{\rm WGG} = w_1 T_{\rm GRCR} + w_2 T_{\rm GID},\tag{5}$$

em que w_1 e w_2 são os fatores de ponderação ou pesos. Como consequência, a complexidade adicional do WGG é apenas o dobro (aproximadamente) da complexidade adicional de se computar T_{GRCR} ou T_{GID} após o cômputo de **R**.

Vale ressaltar que a estatística de teste (4) está escalonada de forma diferente de [5], mas isto não afeta o desempenho do detector GID. O novo fator de multiplicação, $(m^2 - m)/2$ em vez do original $2(m^2 - m)$, apenas coloca as estatísticas de teste T_{GRCR} e T_{GID} não muito discrepantes em termos de dispersão, também tornando não muito diferentes os pesos w_1 e w_2 , apenas por conveniência.

A decisão é global sobre o estado de ocupação da banda sensoriada é tomada a favor da presença do sinal primário (hipótese \mathcal{H}_1) se $T_{\text{WGG}} > \lambda$, em que λ é o limiar de decisão; se $T_{\text{WGG}} \leq \lambda$, declara-se banda desocupada (hipótese \mathcal{H}_0).

O desempenho do sensoriamento espectral é comumente medido por meio da probabilidade de falso alarme, $P_{\rm fa}$, e da probabilidade de detecção, $P_{\rm d}$. A primeira é a probabilidade de se tomar uma decisão global em favor da presença do sinal primário, dado que a banda sensoriada se encontra desocupada. A segunda é a probabilidade de se decidir em favor da presença do sinal primário dado que, de fato, a banda sensoriada está ocupada. É desejado que $P_{\rm d}$ seja alta para que se proteja a rede primária de interferências que seriam causadas por transmissões secundárias em bandas erroneamente consideradas desocupadas. É também desejado que $P_{\rm fa}$ seja baixa, elevando assim a probabilidade de uso oportunista do espectro, por consequência elevando a vazão de dados da rede secundária.

As probabilidades $P_{\rm d}$ e $P_{\rm fa}$, por serem concorrentes (aumentando-se uma, reduz-se a outra), são comumente expressas por meio de um curva característica de operação do receptor (*receiver operating characteristic*, ROC), a qual mostra a variação de $P_{\rm d}$ em função de $P_{\rm fa}$ à medida que o limiar de decisão λ é variado.

Outra métrica de desempenho também comumente utilizada é a área sob a curva ROC (*area under the curve*, AUC), que aglutina P_d e P_{fa} em uma única medida. Tipicamente, $0.5 \le$ AUC ≤ 1 . Quando AUC = 0.5 tem-se o pior desempenho, correspondente a um detector inútil com $P_d = P_{fa}$, o que equivale a decidir-se arbitrariamente por \mathcal{H}_0 ou \mathcal{H}_1 . Quando AUC = 1 tem-se o melhor desempenho, correspondente a um detector ideal para o qual a curva ROC passa pelos pontos ($P_d = 1$, $P_{fa} = 1$), ($P_d = 1$, $P_{fa} = 0$), e ($P_d = 0$, $P_{fa} = 0$).

III. ESTATÍSTICAS DE TESTE CONCORRENTES

Conforme citado na Seção I, as estatísticas de teste GLRT, AGM, MMED, HR e VD1 formam um rol de recentes detectores cegos que podem e são utilizados neste artigo para efeito de comparação com o GRCR, com o GID e com o detector WGG proposto. Estes detectores concorrentes foram escolhidos por serem representativos do estado da arte e por terem complexidades de implementação similares. A seguir são listadas tais estatísticas de teste GLRT, AGM, MMED, HR e VD1 [6], [7], [8], [9], respectivamente:

$$T_{\rm GLRT} = \frac{\lambda_1}{\sum_{i=1}^m \lambda_i},\tag{6}$$

$$T_{\text{AGM}} = \frac{\frac{1}{m} \sum_{i=1}^{m} \lambda_i}{\left(\prod_{i=1}^{m} \lambda_i\right)^{\frac{1}{m}}},\tag{7}$$

$$T_{\rm MMED} = \frac{\lambda_1}{\lambda_m},\tag{8}$$

$$T_{\rm HR} = \frac{\det(\mathbf{R})}{\prod_{i=1}^{m} r_{ii}},\tag{9}$$

$$T_{\rm VD1} = \log\left[\det(\mathbf{E}^{-1}\mathbf{R})\right].$$
 (10)

Nestas expressões, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ são os autovalores de **R**, det(**R**) é o determinante de **R**, y_{ij} são os elementos de **Y**, r_{ij} são os elementos de **R**, e **E** = diag(**d**), sendo diag(**d**) a matriz diagonal cuja diagonal principal é formada pelos elementos do vetor **d** = $[d_1, d_2, \cdots, d_m]$, com $d_i = \|\mathbf{R}(i, :)\|_2$, sendo $\|\cdot\|_2$ a norma Euclidiana.

Em termos de complexidade computacional, tem-se [4]: o GID e o GRCR com aproximadamente a mesma complexidade, $\mathcal{O}(nm^2)$, esta principalmente devida ao cômputo de **R**. GLRT, MMED, AGM, HR e VD1 têm complexidade similar, $\mathcal{O}(nm^2) + \mathcal{O}(m^3)$, esta devida principalmente ao cômputo de autovalores e determinantes. Portanto, a complexidade computacional do novo detector WGG está entre as menores, pois também é $\mathcal{O}(nm^2)$, valor este herdado da complexidade do GRCR e do GID pelo cômputo de **R**.

IV. RESULTADOS NUMÉRICOS

Os extensivos resultados numéricos apresentados nesta seção foram gerados por simulações computacionais com 30000 eventos de Monte Carlo utilizando o software MATLAB, versão R2018a. O código MATLAB está disponível em [10].

Como a estatística de teste T_{WGG} definida em (5) estabelece uma combinação linear de $T_{\text{GRCR}} e T_{\text{GID}}$, há que se determinar os valores dos pesos $w_1 e w_2$. A Fig. 1 permite analisar a solução de compromisso entre o desempenho do detector WGG em função do peso w_2 , para $w_1 = 1$. Nota-se que se $w_2 = 3$ já se atinge melhoria significativa do detector WGG em comparação com o GID na situação de ausência de percurso dominante (K = 0), adicionalmente não se produzindo queda de desempenho significativa do WGG em relação ao GRCR na situação de forte percurso dominante (K = 10). Assim, deste ponto em diante adotou-se $w_1 = 1$ e $w_2 = 3$ como adequada solução de compromisso.

Devido ao fato de os detectores GRCR e GID possuírem a importante propriedade de CFAR, a qual permite que $P_{\rm fa}$ seja independente da potência de ruído no SU, é esperado que a combinação linear de $T_{\rm GRCR}$ e $T_{\rm GID}$ faça com que $T_{\rm WGG}$ tenha tal propriedade. Para confirmar, a Fig. 2 mostra

Fig. 1. AUCs em função do peso w_2 , para $w_1 = 1$, s = 1, m = 6, n = 50, e potências de ruído e sinal não uniformes e dinâmicas: K = 10 e SNR = -11 dB (esquerda); K = 0 e SNR = -7 dB (direita).

as funções densidade de probabilidade (*probability density functions*, PDFs) empíricas de T_{WGG} sob \mathcal{H}_0 e \mathcal{H}_1 , para dois valores distintos de variância de ruído σ_{avg}^2 . Como os suportes das PDFs não foi alterado por σ_{avg}^2 , conclui-se que o detector WGG possui a propriedade de CFAR.

Fig. 2. PDFs empíricas da estatística de teste T_{WGG} sob diferentes potências médias de ruído, para SNR = -3 dB, s = 1, m = 6, n = 10, K = 0, e potências de sinal e ruído não uniformes e dinâmicas.

A Fig. 3 apresenta um primeiro resultado comparativo de desempenho entre os detectores sob análise, em termos de curvas ROC, para a mesma configuração sistêmica adotada em [4, Fig. 8]. Esta figura serve para validação das simulações utilizadas para compor os resultados deste artigo, à medida que reproduz aqueles em [4, Fig. 8] para os detectores GRCR, HR, VD1, GLRT, AGM e MMED, bem como para que se contrastem tais resultados com o GID e com o detector WGG aqui proposto.

Observa-se também na Fig. 3 que o GRCR apresenta o melhor desempenho, enquanto o GID é fortemente penalizado devido à ausência de percurso dominante (K = 0), como também constatado em [5]. Por outro lado, nota-se que o WGG tem desempenho pouco inferior ao GRCR, o que é uma primeira demonstração da eficácia da combinação linear (5). Os desempenhos dos detectores HR e VD1 se encontram não muito abaixo do WGG, mas vale lembrar que a complexidade do WGG é significativamente menor que do HR e do VD1.

Na Fig. 4 tem-se as AUCs em função do fator de Rice do canal de sensoriamento, K. Mais uma vez nota-se a

Fig. 3. ROCs para SNR = -3 dB, s = 1, m = 6, n = 10 e K = 0, potências de sinal uniformes e potências de ruído não uniformes e dinâmicas.

penalização de desempenho do GID quando K = 0, o que é melhorado significativamente com o WGG, que se aproxima em desempenho ao GID e suplanta os demais detectores para K > 1, aproximadamente. A figura também demonstra a robustez dos detectores GRCR, GID, WGG, HR e VD1 frente a potências de ruído e sinal desiguais e variantes no tempo. Os detectores GLRT, MMED e AGM se revelaram não robustos.

Fig. 4. AUC em função do fator de Rice (K), para s = 1, m = 6, n = 100 e SNR = -10 dB: potências de ruído e sinal uniformes (esquerda); potências de ruído e sinal não uniformes e dinâmicas (direita).

Dado que já se sabe quais detectores são robustos ou não, deste ponto em diante os resultados estão apresentados considerando-se apenas o caso de mais sentido prático, no qual as potências de ruído e de sinal recebido nos SUs são desiguais e variantes no tempo. Tais resultados mostram a variação de desempenho, em termos de AUC, dos detectores sob análise em função de parâmetros sistêmicos, em três distintas situações em termos de visada direta ou percurso dominante: sem percurso dominante (K = 0), com percurso pouco dominante (K = 10). Os parâmetros sistêmicos, quando não variados são: s = 1 PU, m = 6 SUs, n = 100 amostras e SNR = -10 dB.

As Figs. 5, 6, 7 e 8 apresentam AUCs em função do número

de amostras n, da SNR média nos SUs, do número de SUs m, e do número de PUs s, respectivamente. Recomenda-se que estas figuras sejam visualizadas em cores e, preferencialmente, ampliadas. As seguintes interpretações ou conclusões podem ser obtidas a partir destas figuras:

Fig. 5. AUC em função do número de amostras (n), para s = 1, m = 6 e SNR = -10 dB: K = 0 (esquerda), K = 2 (centro), K = 10 (direita).

Fig. 6. AUC em função da SNR média nos SUs, para $s=1,\ m=6$ e $n=100;\ K=0$ (esquerda), K=2 (centro), K=10 (direita).

Fig. 7. AUC em função do número de SUs (m), para s = 1, n = 100 e SNR = -10 dB: K = 0 (esquerda), K = 2 (centro), K = 10 (direita).

• Como esperado, nota-se que o aumento de n, SNR ou

Fig. 8. AUC em função do número de PUs (s), para n = 100, m = 6 e SNR = -10 dB: K = 0 (esquerda), K = 2 (centro), K = 10 (direita).

m melhora monotonicamente o desempenho de todos os detectores robustos (GRCR, GID, WGG, HR e VD1).

- O aumento de n pouco influencia o desempenho dos detectores GLRT, MMED e AGM. Dentre estes, o MMED e o AGM também sofrem pequena influência de m, e o GLRT, embora melhore monotonicamente com m, o faz com desempenhos significativamente abaixo dos detectores robustos.
- O aumento da SNR também afeta o desempenho dos detectores não robustos (GLRT, MMED e AGM), mas de maneira não monotônica e com desempenhos consideravelmente inferiores aos detectores robustos, atingindo AUCs maiores que 0,85 apenas para SNRs maiores que ≈ 0 dB, ≈ -2 dB e ≈ -5 dB, respectivamente.
- Em termos do número de PUs, nota-se na Fig. 8 que há considerável piora de desempenho dos detectores robustos com o aumento de *s* para K = 0. Para $K \ge 2$ os desempenhos de todos os detectores pouco são afetados com *s*. Novamente, os desempenhos dos detectores não robustos se localizam significativamente abaixo dos demais devido à influência das potências de ruído e de sinal desiguais entre os SUs e variantes no tempo.
- Pode-se notar que o GID tem desempenho superior na maior parte das faixas de variação de todos os parâmetros analisados quando K ≥ 2. Por outro lado, este é o detector que é mais penalizado quando K = 0, apresentando o pior desempenho dentre os detectores robustos na maior parte das faixas de variação dos parâmetros em análise.
- O GRCR se mantém sempre entre os melhores desempenhos, independente do fator de Rice do canal de sensoriamento, mas não atinge desempenhos tão expressivos quanto o GID quando há percurso moderadamente (K = 2) ou fortemente (K = 10) dominante.
- Quando K ≥ 2 o detector WGG aqui proposto está classificado em segundo lugar em termos de desempenho para a maior parte das faixas de variação de todos os parâmetros em análise, mas muito próximo do primeiro colocado, o GID. Em outras palavras, nota-se que o WGG já é capaz de chegar próximo do seu melhor desempenho a partir de valores de K consideravelmente baixos.
- Quando K = 0, o WGG supera consideravelmente

o GID, apresentando desempenhos muito próximos do GRCR em grande parte das faixas de variação dos parâmetros analisados.

- Embora o GID seja fortemente penalizado quando K = 0, sua taxa de variação de desempenho em função de s é a menor dentre os detectores robustos, significando que a queda de desempenho do GID quando K = 0 é pequena se o número de transmissores primários for elevado.
- Por fim, é notável o bom desempenho do detector HR, se mantendo na primeira colocação quando K = 0 e na terceira quando quando K ≥ 2, para a a maior parte das faixas de variação dos parâmetros em análise.

V. CONCLUSÕES

Neste artigo foi proposta a estatística de teste híbrida WGG, formada pela combinação linear das estatísticas de teste GRCR e GID. Em resumo, o WGG apresentou desempenho classificado entre os melhores detectores concorrentes analisados, para qualquer valor dos parâmetros sistêmicos e para qualquer fator de Rice no canal de sensoriamento. Vale lembrar que o WGG, a exemplo do GRCR e do GID, possui uma das mais baixas complexidades de implementação dentre os detectores conhecidos, é cego, robusto frete a potências de ruído e sinal recebido desiguais e variantes no tempo, e possui a propriedade de taxa de falso alarme constante.

Como oportunidade para novas pesquisas, cogita-se poder aplicar a ideia de combinação linear aqui proposta a outras estatísticas de teste que tenham a mesma raiz (por exemplo, aquelas baseadas em autovalores da matriz de covariância do sinal recebido) e que tenham deficiências ou vantagens complementares para certos parâmetros sistêmicos ou de canal.

REFERÊNCIAS

- J. Mitola III and G. Q. Maguire Jr., "Cognitive radio: making software radios more personal," *IEEE Personal Commun. Mag.*, vol. 6, no. 4, pp. 13–18, Aug. 1999.
- [2] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, "Cooperative spectrum sensing in cognitive radio networks: A survey," *Elsevier Physical Comm.*, vol. 4, pp. 40–62, Mar. 2011.
- [3] Y. Arjoune and N. Kaabouch, "A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions," *Sensors*, vol. 19, no. 1, 2019. [Online]. Available: http://www.mdpi.com/1424-8220/19/1/126
- [4] D. A. Guimarães, "Robust test statistic for cooperative spectrum sensing based on the Gerschgorin circle theorem," *IEEE Access*, vol. 6, pp. 2445–2456, 2018.
- [5] D. A. Guimarães, "Gini index inspired robust detector for spectrum sensing over Ricean channels," *Electronics Letters*, November 2018. [Online]. Available: https://digital-library.theiet.org/content/journals/10. 1049/el.2018.7375
- [6] D. Ramirez, G. Vazquez-Vilar, R. Lopez-Valcarce, J. Via, and I. Santamaria, "Detection of rank-*p* signals in cognitive radio networks with uncalibrated multiple antennas," *IEEE Trans. Signal Process.*, vol. 59, no. 8, pp. 3764–3774, Aug. 2011.
- [7] L. Huang, H. So, and C. Qian, "Volume-based method for spectrum sensing," *Digital Signal Processing*, vol. 28, pp. 48–56, 2014.
- [8] B. Nadler, F. Penna, and R. Garello, "Performance of eigenvalue-based signal detectors with known and unknown noise level," in *IEEE Int. Conf. Communications*, Jun. 2011, pp. 1–5.
- [9] R. Zhang, T. J. Lim, Y. C. Liang, and Y. Zeng, "Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach," *IEEE Transactions on Communications*, vol. 58, no. 1, pp. 84–88, Jan. 2010.
- [10] D. A. Guimarães. (2019, May) Performance of the weighted GRCR-GID (WGG) and competing detectors for spectrum sensing. [Online]. Available: https://www.dropbox.com/s/7wsyp7xwitmex6p/ Weighted_GRCR_GID.m?dl=0