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Evaluation of RF Through-The-Wall Mapping

Reconstruction Methods using an Objective Image

Quality Index
Rafael Saraiva Campos, Lisandro Lovisolo and Marcello L. R. de Campos

Abstract— This work aims at comparing four reconstruc-
tion techniques (Filtered Backprojection Reconstruction, Direct
Fourier Reconstruction, Algebraic Reconstruction Technique and
Simultaneous Iterative Reconstruction Technique) that can be
applied to RF-based through-the-wall mapping. All these methods
were originally used in computerized X-ray tomography. A
stochastic simulation model is set up, using pathloss equations
corrupted by Rayleigh noise to account for multipath reception
of the RF wave and two test floor maps are defined. From that
analysis, a metric for image quality assessment (Mean Structural
Similarity Index) is selected to allow an objective comparison of
the reconstructed images.

Keywords— through-the-wall mapping, Radon projection,
parallel-beam geometry, backprojection, algebraic reconstruction

I. INTRODUCTION

Indoor positioning techniques allow locating and tracking

RF mobile devices, which can improve tactical situation

awareness in critical conditions, such as search-and-rescue and

military operations in urban areas [1]. Situation awareness in

a tactical level is the perception of environmental variables,

in time and space, and the ability to understand and inter-

relate them, as a basis for quick decision making in crisis

intervention [2]. Situation awareness can be further improved

by techniques such as Through-the-Wall Mapping (TWM). It

aims at mapping static obstacles without sensing them directly.

Thus, it provides a non-invasive way to build a floor map.

TWM floor map reconstruction can be treated as a discrete

inverse problem [3], and employs algorithms originally applied

to X-ray Computerized Tomographic Imaging (CTI) [4].

This work focuses on RF-based TWM under a parallel-beam

acquisition geometry, such as the one depicted in Fig. 1. We

define a stochastic simulation model and select an objective

metric to evaluate and compare four different reconstruc-

tion algorithms largely used in CTI [5]: (i) Filtered Back-

projection Reconstruction (FBR) [6];(ii) Direct Fourier Re-

construction (DFR) [6]; (iii) Algebraic Reconstruction Tech-

nique (ART) [5]; (iv) Simultaneous Iterative Reconstruction

Technique (SIRT) [7].

The remainder of this work is organized as follows: Sec-

tion II defines the RF-based TWM simulation model and its

parameters; Section III explains the selection of an objective

comparison metric for the evaluation of the reconstructed

Rafael Saraiva Campos (CEFET/RJ), Lisandro Lovisolo (PRO-
SAICO/PEL/DETEL/UERJ), Marcello L. R. de Campos (PEE/COPPE/UFRJ).
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(a) (b)

Fig. 1. (a) Defining the line equation using polar parameters ρ and θ;
(b) Parallel-ray beam for θ = θk .

images quality; Section IV analyzes the simulation results.

Finally, Section V draws a brief conclusion.

II. PROBLEM MODEL

In the absence of data from field measurements, one has

to resort to computer simulations to evaluate reconstruction

algorithms applied to RF TWM. These simulations typically

rely on empirical path loss equations (offset-slope models).

These propagation models apply the geometric optics ap-

proximation, i.e., they disregard common wave propagation

phenomena such as diffraction. Furthermore, they also do

not take into account ray bending due to refraction and

multipath reception caused by multiple reflections, i.e., these

models assume single-path straight-line propagation. Rician

or Rayleigh distributions are commonly used to provide an

additional random path loss component [8] to take the effect

of multipath into consideration. Floor blueprints are provided,

so that the reconstruction techniques can be evaluated.

A. Propagation Modeling

Referring to the parallel-beam geometry depicted in Fig. 1,
one describes the mean received power Pr (dBm) at d meters
from the transmitter along the line defined by (ρj , θk), j =
1, . . . ,m and k = 1, . . . , n by means of

Pr(ρj , θk) = Pt−Lt+Gt−Ld−

∑

i

αi(ρj , θk)li(ρj , θk)+Gr−Lr

(1)

where li(ρj , θk) and αi(ρj , θk) are the length (meters) and the

attenuation factor (dB/m) across the ith obstacle, respectively.

Pt (dBm) is the mean transmitted power. Lt and Lr are the

losses (dB) due to cables and connections at the transmitter

and receiver, correspondingly. Gt and Gr are the transmitter

and receiver antennas gains (dBi), in that order. Ld is the

SBrT 2019 1570556182
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propagation loss (dB) as a function of the transmitter-receiver

distance (d).
Equation (1) represents the path loss assuming single-path

straight line propagation. In such a scenario, it is clear that

∑

i

αi(ρj , θk)li(ρj , θk) = g(ρj , θk) (2)

i.e., the summation of the losses across the obstacles along
the line defined by (ρj , θk) is equal to the Radon transform [6]
of the floor blueprint f(x, y) along that same line. This comes
from the very definition of the Radon transform. Thereby,
equation (1) can be rewritten as

g(ρj , θk) = Pt − Pr(ρj , θk)− Lt − Lr − Ld +Gt +Gr (3)

Therefore, by measuring Pr(ρj , θk) for j = 1, . . . ,m, one

obtains the Radon projection g(ρ, θk) of f(x, y) at angle θk.
The value of Ld (dB) can be approximated by an empirical

model, such as the one defined by

Ld = βoffset + βslope log
(

d

d0

)

(4)

where βoffset is the propagation loss (dB) at a distance

d0 meters from the transmitter, and βslope is the path loss

exponent or slope (dB/decade). Calibration campaigns are

required to fine tune such models before they can be ap-

plied to a specific environment. During these campaigns,

at each selected measurement point, the distance d and

the mean propagation loss at that location are registered.

Then, linear regression can be used to estimate βoffset and

βslope [9]. Along a d-meter path, the ray passes through

two environments: outside and inside the floor being mapped.

If d is the transmitter-receiver distance, din(ρj , θk) is the

distance traversed inside the floor by the ray defined by

(ρj , θk), and assuming d0 = 1 meter, equation (4) be-

comes Ld (ρj , θk) = βoffset + βslope,out log

(

d
din(ρj ,θk)

)

+

βslope,in log
(

din(ρj , θk)
)

, where βslope,in and βslope,out
are the slope inside and outside the floor, respectively.

B. Maximum Supportable Over-the-Air Path Loss

The maximum supportable over-the-air path loss (dB) is
given by

Lmax = EIRP +Gr − Lr − S0 (5)

where S0 is the receiver sensitivity (dBm); the Effective
Isotropic Radiated Power (EIRP) in dBm is defined by

EIRP = Pt − Lt +Gt (6)

Using equations (5) and (6) to replace the proper terms in

equation (3), one gets g(ρj , θk) = Lmax + S0 −Pr(ρj , θk)−
Ld(ρj , θk).

Any received signal below S0 is reported as equal to S0, i.e.,

Pr(ρj , θk) ≥ S0. As a result, the maximum detectable shadow-

ing loss along the path defined by (ρj , θk) is gmax(ρj , θk) =
Lmax − Ld(ρj , θk). Thereby, during the acquisition of the

RF samples, the Radon projection is effectively “clipped” at

gmax(ρj , θk). This means that information about the obsta-

cles along the propagation path is lost, which will result in

additional reconstruction error.

C. Static Multipath Propagation

In the acquisition phase, the transmitter-receiver pair is static
during the measurements at each position. The intervening
obstacles are also not moving in relation to the transmitter-
receiver pair. Therefore, multiple reflections at the walls and
diffraction result in static multipath fading. Such condition is
deterministic, and given enough information about the environ-
ment – which is not available when one intends to map a floor
– it would be possible to estimate the several propagation paths
using ray-tracing techniques. Static multipath reception alters
the shadowing loss estimates, which has a direct effect on
the reconstruction error. The effect of multipath in stationary
links can be modeled by a Rayleigh distribution. The random
values selected from this distribution provide the additional
propagation loss, to be added to the previously calculated
average propagation loss (path loss plus shadowing). As no
ray-tracing techniques are used, one might assume that the
multipath components (amplitude and phase) are random, but
that their average is time-invariant, for any given transmitter-
receiver path through the target floor [8]. Equation (2) then
becomes

g(ρj , θk) =
∑

i

αi(ρj , θk)li(ρj , θk) + ∆b (7)

where ∆b(dB) is the multipath fading relative to the mean

received power, given by ∆b = 20 log10
(

Rb

2b

)

, where Rb is

the Rayleigh probability distribution function with parameter

b, defined by Rb =
x
b2
e

(

−x2

2b2

)

, where x is the received signal

amplitude, and b is equal to half the average received signal

amplitude, i.e, b = 1
2

√
10[0.1(Pt−Lt+Gt−Ld+Gr−Lr)].

Equation (7) indicates that the Radon projection along the

direction defined by ρj and θk is equal to the shadowing loss

through the obstacles along that direction plus the random

term accounting for multipath reception (relative to the average

received level). However, in the practical case, it is not

possible to separate between the path loss and shadowing

loss. Therefore, the Radon projection accounts for the total

loss along the propagation path. So, the sinogram matrix [6]

forwarded to the reconstruction methods is defined by G =
[EIRP −Gr + Lr − Pr(ρj , θk)]j=1,...,m;k=1,...,n, where m is

the number of samples per Radon projection and n is the

number of projections.

D. Floor Maps

Fig. 2 shows the two maps used in the RF TWM simulations

considered in this work. These maps represent 9.2 × 9.2 m2

areas. At the center of each area there is an 8 × 8 m2 room.

All walls are assumed to be 50-cm thick and made of concrete

without steel reinforcement rods. The floor maps are stored as

128 × 128 matrices, so each pixel corresponds to 9.2/128 ≈
7.2 cm on the field.
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Fig. 2. Floor maps used in the simulations.
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E. Sinogram Acquisition

To acquire the sinogram using a parallel-beam geometry, the
transmitter and receiver pair moves along L-meter long lines.
The receiver measures the mean received power with a ∆ρ
spacing between subsequent samples. Therefore, the length of
each Radon projection is

L = (m− 1)∆ρ (8)

where m is the number of samples per projection. Notably,

for any given θ, L must be long enough to cover the whole

area being mapped. The transmitter-receiver distance is also

equal to L meters.

The samples collected along a line provide a discrete

Radon projection. Radon projections were obtained at n angles

uniformly spaced in [0,π), i.e., ∆θ = ⌊180/n⌋ degrees.

Consequently, the full sinogram has m × n samples. To

simulate lower sampling rates, proper subsets of the sinogram

are selected.

The reconstructed images’ sizes are m × m pixels, and

they represent areas larger than the original floor maps. For

example, to obtain a Radon projection of an 9.2×9.2 m2 area

at θ = 45 degrees, L ≥ 9.2
√
2 ≈ 13 meters. Therefore, the

reconstructed images represent a 13×13 m2 area. To compen-

sate that and remove the excess length, the resulting images

are cropped, such that their final size is 2
(⌊

m

2
√

2

⌋

×
⌊

m

2
√

2

⌋)

pixels.

F. Operational Frequency Selection

Table I lists the RF propagation parameters of interest at

500, 1000 and 2000 MHz: (i) the offset, i.e., the loss at

d0 = 1 meter from the transmitting antenna [10]; (ii) the

path loss exponent (attenuation slope) inside a typical office

building [10]; (iii) the attenuation factor (specific attenuation)

through concrete [11].

TABLE I

RF PARAMETERS AT 0.5, 1 AND 2 GHZ.

Frequency Offset βslope,in Specific Attenuation

(MHz) (dB) (dB/decade) through Concrete (dB/m)

500 26 36 36.0

1000 32 33 46.1

2000 38 30 57.5

The path loss exponent outside the building (βslope,out)

was assumed to be 20 dB/decade [12]. Table I indicates that

the through-wall attenuation is more than 10 dB lower at

1 GHz than at 2 GHz. Furthermore, frequencies around 2
GHz are to be avoided due to the external interference posed

by the WiFi, 3G and 4G cellular networks. At 500 MHz

the 60-cm wavelength would result in high energy diffracted

components. Pondering these issues, frequencies around 1
GHz were selected for the simulations.

III. SELECTING AN OBJECTIVE COMPARISON METRIC

The selected metric should (i) not be very sensitive to noise

in the reconstructed image; (ii) compare the similarity of the

objects’ shape in the image, and not only pixel misclassifica-

tion rate; and (iii) follow as closely as possible the subjective

evaluation of the reconstruction quality.

Metrics that just measure the pixel misclassification rate,
such as mean-squared error or sum of absolute distances,
would report a high distance between two images if one or
more boundaries in one of them are just slightly shifted. This
would happen even if such shifting preserved the shape of the
objects in the image. To avoid that, we selected the Mean
Structural Similarity Index (MSSIM) [13]. The MSSIM is
the average of the Structural Similarity Index (SSIM) values,
which are calculated within a sliding window that is shifted
pixel by pixel throughout the whole image. The SSIM is based
on the assumption that human visual perception is specialized
for the extraction of structural information from an image. The
SSIM is given by

SSIMi

(

fi, f̂i
)

=
[

l
(

fi, f̂i
)](1/a1) [

c
(

fi, f̂i
)](1/a2) [

s
(

fi, f̂i
)](1/a3)

(9)

where fi and f̂i are the contents of the original and recon-
structed image at the ith local window; functions l, c and
s are defined in [13] and account for the luminance, contrast
and structural similarities, respectively. Their outputs lie within
[0, 1]. Positive parameters a1, a2 and a3 adjust the relative
weights of the three components. The MSSIM index is then
provided by

MSSIM
(

fi, f̂i
)

=
1

M

M
∑

i=1

SSIMi

(

fi, f̂i
)

(10)

where M is the number of local windows in the image.

To calculate the SSIM, both f(x, y) (the original image)

and f̂(x, y) (the reconstructed image) must have the same

dimensions, and their luminance values must be normal-

ized to the same range. The MSSIM was calculated using
2
3

(⌊

m

2
√

2

⌋

×
⌊

m

2
√

2

⌋)

local windows, with a1 = 1, a2 = 2

and a3 = 4.

IV. SIMULATION RESULTS

For all simulations, Gt = Gr = 14 dBi (isotropic gain

of transmitter and receiver antennas), Lt = Lr = 3 dB (cable

and connector losses at the transmitter and at the receiver) and

Pt = 40 dBm (transmitter output power). In subsection IV-C,

the receiver sensitivity (S0) varies to allow evaluation of pro-

jection clipping in the reconstruction. In all other subsections,

S0 = −110 dBm. Furthermore, L = 13 meters and m = 256
samples per projection. Rearranging the terms in equation (8),

one gets an inter-sample distance ∆ρ = L/(m − 1) = 5
cm. The histograms of all reconstructed images have been

equalized for contrast enhancement and better visualization.

FBR and DFR employed linear interpolation.

A. ART and SIRT Convergence

Fig. 3 shows the convergence of algebraic methods ART

and SIRT [15] with n = 80 projections when applied to the

reconstruction of the floor maps depicted in Fig. 2. A vector

with all elements set to zero has been arbitrarily chosen as the

initial solution of both iterative methods. The convergence is

expressed as a function of the similarity between the original

and reconstructed images, calculated using the MSSIM. The

behavior presented by both ART and SIRT is typical of regu-

larization methods which show semi-convergence [3]. Notably,

ART reaches the optimal solution in the first iteration, which

can be explained by a geometric interpretation of Kaczmarz’s

3
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method: the greater the angle between the hyperplanes defined

by adjacent lines of A, the faster the algorithm converges to the

optimal solution. If the hyperplanes defined by adjacent lines

of A are nearly orthogonal, then the algorithm might converge

in just one iteration [7]. In the reconstruction problem analyzed

in this section, due to A’s sparsity (only 0.49% of non-null

elements), this condition is observed (most angles lie in the

interval [84.9, 90] degrees range).

2 4 6 8 10

Number of Iterations
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0.4

0.45

0.5
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S
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SIRT
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0.4
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S
IM

(b)

ART

SIRT

Fig. 3. ART and SIRT convergence (averaged over 100 runs) in the
reconstruction of floor maps (a) 1 and (b) 2.

Fig. 4 displays the ART and SIRT reconstruction of floor

maps 1 and 2. The behavior described by the MSSIM curves

in Fig. 3 is observed in the ART and SIRT images: (i) ART

with four iterations is slightly noisier than with one iteration,

as Figs. 4a,b and Figs. 4e,f indicate; this is typical of the semi-

convergence [3] inherent to regularization techniques such as

ART, where, as the number of iterations increase after a certain

point, noise starts to dominate the output; (ii) SIRT greatly

improves when the number of iterations rises from one to

four: with only one iteration, SIRT reconstructed images are

considerably blurred, as Figs. 4c,g show; with four iterations

that blurring is greatly reduced, as Figs. 4d,h indicate.

Floor 1 - ART Floor 1 - SIRT

(a) (b) (c) (d)

Floor 2 - ART Floor 2 - SIRT

(e) (f) (g) (h)

Fig. 4. Reconstructed floor maps 1 and 2: ART with 1 (a,e) and 4 (b,f)
iterations; SIRT with 1 (c,g) and 4 (d,h) iterations.

In all simulations in the remaining sections, the number of

iterations used in ART and SIRT is one and four, respectively.

B. Reconstruction Quality versus Number of Projections

Fig. 5 shows the MSSIM of the reconstructed floor maps

for all methods as a function of n. Fig. 5a refers to floor

map 1 and Fig. 5b to floor map 2. In both cases, FBR,

DFR [16], and SIRT MSSIM increase with n. However, the

MSSIM increment is negligible when n rises from 40 to 80
projections. This can be verified comparing Fig. 6d (n = 40)

and Fig. 4d (n = 80), which show SIRT reconstructions

of floor map 1: they are quite similar. The same applies to

Fig. 6h (n = 40) and Fig. 4h (n = 80), which illustrate SIRT

reconstructions of floor map 2.

Some degree of aliasing is inevitable in the reconstructed

maps, as the original images are not band-limited. However,

for a lower number of projections, the aliasing artifacts become

more evident, as Fig. 7 shows. Despite that, the reconstructed

floor maps are still recognizable with only 10 projections.

The MSSIM curves in Fig. 5 indicate that DFR has the

worst performance. This can be promptly confirmed observing

Fig. 6f (n = 40) and Fig. 7f (n = 10), where DFR fails

to clearly reproduce a key feature of floor map 2: the door

interconnecting the two rooms.

Finally, Fig. 5 shows that ART MSSIM has an “anomalous”

behavior: it decreases as n augments. Comparing Fig. 6c and

Fig. 7c (floor map 1), one sees that for n = 40 there is more

“background” noise in the ART reconstructed image. The same

applies when comparing Fig. 6g and Fig. 7g (floor map 2).

This effect can be understood through the fact that lowering the

number of samples results in low pass filtering. This reduces

the high-frequency noise due to multipath. However, details

of the floor maps are also lost. In fact, with n = 10, the

aliasing artifacts corrupt the image significantly. Therefore, in

that particular case, MSSIM failed to follow the subjective

image quality evaluation.
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Fig. 5. MSSIM (averaged over 100 runs) versus number of projections in
the reconstruction of floor maps (a) 1 and (b) 2.

Floor 1

(a) FBR (b) DFR (c) ART (d) SIRT

Floor 2

(e) FBR (f) DFR (g) ART (h) SIRT

Fig. 6. Reconstruction of floor maps 1 and 2 (n = 40).
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Floor 1

(a) FBR (b) DFR (c) ART (d) SIRT

Floor 2

(e) FBR (f) DFR (g) ART (h) SIRT

Fig. 7. Reconstruction of floor maps 1 and 2 (n = 10).

C. Effect of Projection Clipping on Reconstruction Quality

All previously reconstructed images in this work were

obtained for a maximum supportable over-the-air path loss

of Lmax = 172 dB. This resulted in only 1.4% and 3.0%
of clipped samples in floor maps 1 and 4, respectively. To

better assess the effect of projection clipping on reconstruction

quality for all methods, this section evaluates the MSSIM as

a function of Lmax. To increase the value of Lmax from

172 dB down to 92 dB, the receiver sensitivity rose from

−110 dBm up to 10 dBm. Fig. 8 displays the results for

both floor maps. SIRT clearly outperforms all other evaluated

methods for all values of Lmax. However, as the receiver is

desensitized, SIRT’s quality approaches that of FBR.

Table II informs the percentage of clipped samples at each

floor map for each value of Lmax. For Lmax ≤ 92 dB,

the floors features cannot be recognized on the reconstructed

images. That is why MSSIM for all methods (except ART)

falls just slightly when Lmax decreases from 92 dB to 52 dB.
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Fig. 8. MSSIM (averaged over 100 runs) versus Lmax in the reconstruction
of floor maps (a) 1 and (b) 2.

TABLE II

PERCENTAGE OF CLIPPED SAMPLES FOR DIFFERENT VALUES OF LMAX .

Lmax Percentage of
(dB) clipped samples

Floor 1 Floor 2

172 1.4% 3.0%

132 12% 19%

92 55% 67%

52 80% 83%

V. CONCLUSIONS

This work conducted a comparative evaluation of the quality

of reconstructed images provided by four methods originally

applied in X-ray CTI: FBR, DFR, ART, and SIRT. For that,

a path-loss model was defined to simulate RF propagation.

The offset and slope coefficients were empirically defined,

using values published in the literature for typical office

buildings. The equations were corrupted by Rayleigh noise,

to emulate the effect of multipath reception. Besides that,

projection clipping due to receiver’s limited sensitivity was

also considered.

The simulations show the superiority of SIRT quality in the

intended RF application. The Landweber’s regularization [7]

mitigates noise more efficiently than ART, at the expense

of a slightly longer convergence. In fact, ART, due to the

quasi-orthogonality of the hyperplanes defined by the system

matrix, converges in only one iteration. DFR reconstruction

had the worst performance for any number of projections,

failing to clearly identify a key feature in floor map 2: the door

interconnecting two rooms. MSSIM provided an objective

quality metric for the reconstructed images comparison, and,

for the most part, followed the subjective evaluation closely.
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