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Abstract— This paper proposes two methods for acoustic
ambient noises classification. The classification is based on
the Kurtosis coefficient and the Bhattacharyya distance. Five
colored acoustic noises, some captured in different environ-
ments and a White artificially generated, were used to per-
form the classification methods. These noises were obtained
from NOISEX-92 database. Automatic speaker identification
experiments were conducted using TIMIT speech database,
corrupted with the acoustic noises. Mismatch conditions (SNR
of 10 dB, 15 dB and 20 dB) were also examined in the exper-
iments. The performances presented considerable variations
among the different acoustic noises. The results show that the
noise classification obtained with the proposed methods could
detect the differences in the speaker identification accuracies.
The MFCC (Mel-Frequency Cepstrum Coefficients) and GMM
(Gaussian Mixture Models) were applied for the identification
experiments.

Keywords— Automatic Speaker Recognition, ambient noises,
noises classification..

I. I NTRODUCTION

Biometric authentication [1] is based on human char-
acteristics, such as fingerprint, iris, face and voice. The
usage of such methods in access control applications is
being applied in systems with security concerns [2]. The
biometric solutions have many advantages in comparison to
passwords and identity cards access control methods. Speech
is considered the most natural biometric feature to recognize
a person [3].

The speech signal conveys several levels of information
such as: words, message spoken, and the identity of the
speaker. Moreover, the speech features extraction is con-
sidered simple using the available technology. Automatic
speaker recognition (ASkR) systems are widely used in
access control, data security and forensic applications [3].

Recently, the provision of robust speaker recognition to
noisy environments became an important issue [4] [5]. One
of the major challenges of this area is referred to the
variability of the acoustic environment noise statistics.Solu-
tions based on missing features and multicondition training
[4] were proposed to deal with this drawback. However,
none of these proposals explain the different recognition
performances obtained with distinct ambient noises.

This paper proposes two methods for acoustic noises
classification. These methods are based on the Kurtosis
coefficient (K) [6] and the Bhattacharyya distance (Bd) [7].

The Kurtosis coefficient measures ”heaviness of tails” of
random processes [8]. TheBd was used as a measure of
divergence among the various noisy speech signals. The
speaker identification accuracy was examined considering
the proposed noise classification.

The experiments were performed with five acoustic
noises, obtained from the NOISEX-92 database [9]. Three
different signal-to-noise ratios (SNR) were considered: 10
dB, 15 dB and 20 dB, for the mismatch conditions tests. The
TIMIT speech database [10] was applied in the experiments.
The results showed that the differences among the speaker
identification accuracies were detected by the proposed
noises classification.

The rest of this paper is organized as follows. In Section
II, the speech features and classification models used in the
ASkR systems are briefly described. Section III presents
the Kurtosis coefficient and the Bhattacharyya distance, that
were proposed for ambient noises classification. Section IV
describes the TIMIT speech database and NOISEX-92 noise
database. The experiments results and the noises classifica-
tion are also presented in Section IV. Finally, Section V
concludes the paper.

II. A UTOMATIC SPEAKER RECOGNITION

A complete ASkR system can be divided into two phases:
training and testing. During the training phase, or enroll-
ment, the speaker’s models are generated and stored in the
system. In the testing phase, the speaker is compared to the
models previously generated.

Each ASkR phase is generally composed of three con-
secutive steps: speech acquisition/pre-processing, features
extraction and classification (see Fig. 1). In the first step,the
speech signal is windowed into small time frames. For each
frame, the Mel-Frequency Cepstral Coefficients (MFCC)
[11] and the delta coefficients were used to compose the
feature vectors. These vectors are then concatenated into
a feature matrix. The classification step is responsible for
generating the speaker models based on the feature matrix.
During the testing phase, the feature matrix is compared to
those previously generated models.

The classification step is composed of two tasks: iden-
tification and verification. In the speaker verification, the
speaker makes an identity claim and the system accepts
or rejects this claim. In the speaker identification, there is
no identity claim, and the system decides who the person
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Fig. 1. The steps of an Automatic Speaker Recognition.

is from a limited set of possible speakers. The Gaussian
Mixture Models (GMM) were used in this study.

The speaker recognition system can also be classified into
text-dependent or text-independent. In the text-dependent
speaker recognition, the system previously knows which
words are being spoken by the user. In the other hand, the
speaker can use any words or phrases in the text-independent
case. This paper focus on the study of text-independent
speaker identifications.

A. MFCC Feature

The MFCC features [12] extraction schematic is depicted
in Fig. 2 [13]. These features represent the speech spectrum
in a short period of time.
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Fig. 2. Representation of the MFCC extraction.

A Mel-Frequency filterbank (Fig. 2) is understood as hav-
ing linear spacing below 1000 Hz and logarithmic spacing
above 1000 Hz. These frequencies can be obtained from a
linear-frequency scale through the following relation:

FMel = 1127· ln

(
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FHz

700

)

(1)

The MFCC coefficients are calculated according to Eq. 2:
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, j = 1,2, . . . ,D (2)

where M is the number of filters in the Mel-Frequency
filterbank,Xk is the log-energy output of thekth filter, and
D is the number of cepstrum coefficients.

For each time frame, aD-dimensional feature vector~x is
formed with the coefficients calculated in Eq. 2. For each
speech segment, composed ofT frames, the obtained feature
vectors are concatenated into aD×T feature matrix. This
feature matrix is then used in the classification models.

B. Delta Feature

The delta coefficients capture the dynamic information
and remove the time-invariant spectral information of the
feature vectors [5]. In this work, the delta coefficients
are obtained as the time differences between the MFCC
coefficients. Thus, for a set of MFCC feature vectors~xi ,
the delta features are formed as follows.

∆~xi =~xi − ~xi−W (3)

The delta coefficients are called dynamic features, while
the MFCC are called static features. The dynamic features
are generally used in ASkR together with the static feature
vectors.

C. GMM

The GMM (λ ) is composed of a weighted sum ofM
densities, given by

p(~x|λ ) =
M

∑
i=1

pibi(~x) (4)

where~x is a random vector of dimensionD, pi , i = 1, ...,M,
are the mixture weights, andbi(~x), i = 1, ...,M, are the
density components. Each component density is aD variate
Gaussian function of the form

bi(~x) =
1
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with mean vector~µi and covariance matrixKi , where T
denotes the transpose operation and|.| is the determinant.

A Gaussian Mixture Model is completely parametrized
by mean vectors, covariance matrices, and mixture weights
presented in Eqs. 4 and 5:

λ = {pi,~µi ,Ki} i = 1, ...,M (6)

The GMM parameters are estimated using a special case
of the expectation-maximization (EM) algorithm [5]. For a
feature matrixX, composed of a sequence ofT independent
vectorsX = {~x1, ...,~xT}, the normalized log-likelihood of the
GMM is given by

logp(X|λ ) =
1
T

T

∑
t=1

logp(~xt |λ ) (7)

During the training phase, the model parameters are
chosen as the ones that maximize the likelihood in Eq. 7.
During the testing phase, the speaker identification system
chooses the speaker model for which the likelihood value in
Eq. 7 is maximum.
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III. N OISE CLASSIFICATION

This Section presents the proposed two different measures
that were used to classify the acoustic noises: the Kurtosis
coefficient [6] and the Bhattacharyya distance [7]. The
results of these measures are presented in Section IV.

A. Kurtosis Coefficient

The Kurtosis coefficient of a random process measures
how its values fall a long way from the mean [8]. It is
defined as follows [6].

K =
E[(X(t)−mX)4]

σ4
X

(8)

where mX and σX are, respectively, the mean and the
standard deviation of a random processX(t), andE[.] means
the first order moment of the dispersion.

For a Gaussian random process, we haveK = 3. The
Kurtosis is used to measure how similar a random process is
from having a Gaussian distribution. If a random process has
K ≈ 3, its distribution is considered similar to a Gaussian.
In the other hand, random processes withK 6= 3 present
distributions not similar to a Gaussian one. An artificially
generated White Gaussian noise is used as a reference to
the Kurtosis classification results.

B. Bhattacharyya Distance

Given two random variables,X1 andX2, with probability
density functionsp1(x) and p2(x), respectively, the Bhat-
tacharyya coefficient (ρ) is defined as

ρ =

∫ ∞

−∞

√

p1(x) · p2(x) ·dx (9)

From Eq. 9, it follows that

Bd(X1,X2) = −lnρ = −ln
∫ ∞

−∞

√

p1(x) · p2(x) ·dx (10)

The Bd obeys the following properties:
• 0≤ Bd < ∞;
• Bd(X1,X2) = 0⇔ p1(x) = p2(x) for all x.
The properties above show that, as theBd value increases,

the distance between the distributions of the random pro-
cessesX1 andX2 also increases.

IV. EXPERIMENTS

This Section presents the identification results considering
various speaker identification tests, using both clean and
noisy speech signals. From the five acoustic noises used for
this purpose, a white Gaussian one was artificially generated.
The other noise signals were captured in four different
real noisy environments. The noise corruptions were done
using three different SNR: 10 dB, 15 dB and 20 dB (i.e.,
mismatch condition experiments). The differences among
the identification performances obtained for the different
noises are compared and interpreted using the proposed
Kurtosis and the Bhattacharyya distance classifications.

A. Speech Database

The TIMIT speech database [10] was used in the speaker
identification experiments. The experiments were conducted
using all 630 TIMIT speakers (438 male and 192 female).
Each speaker recorded ten speech utterances with duration
of about 3 seconds. Fig. 3(a) depicts the spectrogram of one
of these utterances. The database was recorded at a sampling
rate of 16 kHz, 1-channel PCM, and 16-bit resolution. All
the 6300 utterances were recorded using the same handset.

For the identification experiments, 8 speech utterances of
each speaker were concatenated to be used in the training
phase. The other 2 utterances were used in the testing
phase. Thus, the experiments were conducted with long-time
duration for training (about 24s) and short-time duration for
tests (about 3s). Each experiment had 630 speakers× 2 test
utterances per speaker= 1260 tests. The same configuration
was used in [4].

B. Noise Database

The NOISEX-92 [9] database is originally composed of
15 different acoustic noises and it is freely available at the
IEEE Signal Processing Information Base. A subset of this
database was used in the experiments conducted in this
study. All the noises were captured with a sampling rate
of 19.98 kHz, 16-bit resolution and 235-second duration.

Tab. I describes the five ambient noises that were used
to corrupt the TIMIT speech utterances. The noises were
re-sampled to a 16 kHz sampling rate before being added
to the speech utterances. Fig. 3(b)-(f) show the spectrogram
of a speech utterance corrupted by the five acoustic noises
with SNR of 10 dB.

TABLE I
FIVE NOISES EXTRACTED FROM THENOISEX-92DATABASE

Noise Description
Volvo A car at 120 km/h, asphalt road and rainy conditions
Factory Noise recorded in a car production hall
M109 A M109 tank moving at a speed of 30 km/h
White Artificially generated white Gaussian noise
Destroyer Noise recorded in the engine room of a Destroyer

C. Speaker Identification Accuracy Results

For the identification experiments, each speech utterance
was divided into frames with duration of 20 ms. The frames
were obtained using Hamming windows with 50% super-
position. The feature matrices were primarily composed of
12-dimensional MFCC vectors, obtained from 26 filters (see
Eq. 2).

The GMM speaker models were obtained using 32 Gaus-
sians. The identification tests were also performed with clean
speech signals. Tab. II shows the results obtained from these
identification scenarios.

It can be seen from Tab. II that the identification accura-
cies were very affected by the acoustic noises. While clean
speech tests presented 93.89% accuracy, the identification
results in noisy environment achieved from 20.53% to
42.62% in average. Moreover, the noise sources led to very
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Fig. 3. Spectrogram of a TIMIT speech utterance corrupted bythe each of the acoustic noises: (a) clean; (b)Volvo; (c) Factory; (d) M109; (e) White
and (f) Destroyer.

TABLE II
IDENTIFICATION ACCURACY(%) FOR 12-DIMENSIONAL MFCC

FEATURE VECTORS

Noise SNR Average10 dB 15 dB 20 dB

Clean 93.89
Volvo 26.19 40.79 60.87 42.62
Factory 17.06 38.10 60.63 38.60
M109 10.87 30.87 54.76 32.17
White 10.56 28.49 57.14 32.06
Destroyer 5.16 15.95 40.48 20.53
Average 13.97 30.84 54.78 33.20

different identification results. The worst result was achieved
with the Destroyernoise, with SNR of 10 dB. This means
a reduction of 88.73% in the identification accuracy. The
results shown in Tab. II are presented according to the
noisy experiments performances (from the best accuracies
on the top to the worst results on the bottom). The greatest
differences between noisy performances were achieved with
VolvoandDestroyernoises. This difference was about 25%
with SNR of 15 dB.

In order to achieve better recognition results under noisy
conditions, the experiments were repeated including the
delta features vectors (12 MFCC + 12 delta coefficients).
Tab. III presents the results obtained for these experiments.

Note that, in general, the delta coefficients improved the
performances in comparison to the use of single MFCC
coefficients. The average accuracy increased from 33.20%,
with 12 MFCC, to 35.49%, with 12 MFCC + 12 Delta.

TABLE III
IDENTIFICATION ACCURACY(%) FOR 24-DIMENSIONAL MFCC +

DELTA FEATURE VECTORS

Noise SNR Average10 dB 15 dB 20 dB

Volvo 31.03 47.86 66.98 48.62
Factory 19.52 40.56 62.78 40.95
M109 12.14 32.14 57.22 33.83
White 10.79 27.86 55.00 31.22
Destroyer 5.56 17.62 45.32 22.83
Average 15.81 33.21 57.46 35.49

While the Volvo noise presented an average improvement
of 6.00%, the obtained withM109 was only about 1.66%.
However, for theWhite noise, the delta coefficients did
not improve the identification accuracies. In this case, the
average results decreased from 32.06% to 31.22%. It can
also be seen that the greatest accuracy difference in the
results of the noisy tests achieved more than 30% (47.86%
with Volvoand 17.62% withDestroyer) with SNR of 15 dB.

D. Noise Classification

This Section presents the noise classification results. The
proposed noises classification is used to explain the differ-
ences in the speaker identification performances.

1) Kurtosis: Tab. IV presents the Kurtosis coefficients
(K) for the five acoustic noises.

Considering the obtainedK values, the noises were clas-
sified into three categories: noises withK ≈ 3 (Gaussian
distribution); K < 3 andK > 3. As expected, the Kurtosis
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TABLE IV
THE KURTOSIS MEASURES FOR THE FIVE ACOUSTIC NOISES

Noise Kurtosis Ratio (K)
Volvo 3.445
Factory 3.097
M109 2.959
White 2.984
Destroyer 2.870

value of White noise wasK ≈ 3, since it was artificially
generated with a Gaussian distribution. The identification
results withFactory and M109 were quite similar to those
with White. This is due to the fact that they presentedK ≈ 3.
Volvo noise, with K > 3, presented the best identification
accuracies.Destroyernoise presentedK < 3 and the worst
results.

2) Bhattacharyya distance:Five randomly selected
speech utterances were used for theBd evaluation. These
utterances were spoken by five different speakers (3 male
and 2 female). TheBd was evaluated for each pair of clean
speech utterances. The measures were also obtained using
the speech utterances corrupted by the different noises with
SNR of 10 dB, 15 dB and 20 dB, keeping the same five
speakers. Tab. V presents the mean values of theBd for the
noisy and clean utterances.

TABLE V
THE MEAN VALUES OF THE BHATTACHARYYA DISTANCES FOR FIVE

SPEECH UTTERANCES AND DIFFERENT NOISE CORRUPTIONS(SNROF

10 DB, 15 DB AND 20 DB)

Noise SNR
10 dB 15 dB 20 dB

Clean 0.0326
Volvo 0.0298 0.0297 0.0304
Factory 0.0278 0.0283 0.0292
M109 0.0263 0.0268 0.0279
White 0.0256 0.0268 0.0280
Destroyer 0.0261 0.0270 0.0284

The results show that theBd measured for the noisy
speech signals, were lower than theBd value of the clean
speech signals. This means that the speech utterances be-
come closer (smaller distances) when corrupted by the am-
bient noises. It can be noted thatVolvonoise, that presented
the greatestBd values, has also the best identification accu-
racies. This relationship was also achieved for theFactory,
M109 andWhitenoises. This means that the higher theBd
values, the best accuracies.Bd values forDestroyernoise
were not interesting to explain the identification accuracy.

Although theBd did not present the relationship between
its values and the identification results for all the acoustic
noises, it could be used together with the Kurtosis coefficient
for the noises classification. So, the classification based on
the Kurtosis coefficient and the Bhattacharyya distance were
able to detect the variable speaker identification accuracies
due to the ambient noises.

V. CONCLUSION

Two methods for ambient noises classification were pro-
posed in this paper. They are based on the Kurtosis co-

efficient and the Bhattacharyya distance. The methods were
applied to five different acoustic noises. Identification exper-
iments were conducted using the MFCC (12-dimensional)
and MFCC+Delta (24-dimensional) feature vectors, and the
GMM classifier. In the experiments, the acoustic noises were
added to the speech database. Three different mismatch
conditions with SNR 10 dB, 15 dB and 20 dB were also
examined during the tests.

The speaker identification results showed that the acoustic
noises led to severe performance degradation. Moreover,
different noises presented a great variability in the identifi-
cation results. Some of these differences in the experiments
performances achieved more than 30%.

The classification with Kurtosis enabled the definition of
three different noise classes. Noises within the same class
presented similar identification results. The Bhattacharyya
distance results showed that the best identification values
were achieved for the highestBd values. The proposed clas-
sification showed to be very promising to classify acoustic
noises. Moreover, it enables to understand the noises impact
on the speaker identification accuracies.
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