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Performance of Simple and Fast Sliding Window
Detectors for Spectrum Sensing in Radar Bands

Dayan A. Guimarães and Chang H. Lim

Abstract— The recently-proposed sliding Gershgorin radii and
centers ratio (SGRCR) detector makes use of multiple sensing
rounds applying a short window that slides over the full sensing
interval, being adequate for detecting short duration signals, like
those emitted by pulse radar systems. This articles proposes
the sliding Gini index detector (SGID) as a variation of the
SGRCR and compares the performances of both in the context
of cooperative spectrum sensing for cognitive radio applications
in radar bands. These detectors have approximately the same
computational complexity, but the SGID can outperform the
SGRCR in most of the system parameterizations and scenarios.

Keywords— Cognitive radio, cooperative spectrum sensing,
GID, GRCR, pulse radar, SGID, SGRCR, sliding window.

I. INTRODUCTION

The scarcity and congestion of the radio-frequency (RF)
spectrum have become formidable obstacles to the deploy-
ment of existing wireless communication systems and to the
development of new ones such as the fifth generation (5G)
of communication networks and the Internet of things (IoT),
mainly because the unprecedented increase in the demand for
new services. The problem is aggravated by the traditional
static spectrum allocation policy, in which incumbent networks
have the exclusive right of using a given portion of frequencies.

The cognitive radio (CR) concept [1] is being considered
one of the most promising solutions to the problem of RF
spectrum scarcity and congestion. Among the attributes of a
CR, the spectrum sensing capability is of primary interest here.
In short, the spectrum sensing allows for a secondary user (SU)
to decide upon the presence or absence of the primary user
(PU) signal in a given sensed band and to access the band if
it is not occupied by the PU, thus leading to more efficient
spectrum utilization [2].

Radar bands are potential candidates for CR networks, since
they are considerably underutilized and are significant wide
[3]. As a matter of fact, the Federal Communications Com-
mission (FCC) has already regulated that wireless local area
network (WLAN) devices can detect radar signals, switching
to another channel to avoid interference with such signals [4].
Moreover, research efforts [5][6] have been made to allow the
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coexistence of radar and wireless systems for higher spectral
utilization.

A pulse radar transmits RF pulses with short duration
and low duty-cycle for probing the environment. In order to
exploit the time sparsity of the pulse radar signal for spectrum
sensing, in [7] the conventional signal detection event that
takes place during a sensing interval has been converted into
multiple short-time sliding window detections whose results
are combined to yield the final decision upon the occupation
of the sensed band.

Although there is no specific requirement for the choice of
the detectors to be adopted in the sliding window approach,
the Gerschgorin radii and centers ratio (GRCR) detector [8]
has been chosen in [7] mainly due to its low computational
complexity, which is desirable to reduce the latency of the
multiple detections. Another detector recently developed, with
an implementation complexity very close to the GRCR, is the
Gini index detector (GID) [9]. Besides having one of the low-
est computational complexities known so far, the GRCR and
the GID are completely blind, exhibit the constant false alarm
rate (CFAR) property, and are robust under noise and received
signal powers that are not the same over all SUs and are variant
over time, which is hereafter referred to as the nonuniform-
dynamical noise and signal powers. The application of the
GRCG to the sliding window spectrum sensing approach gave
rise to the term sliding GRCR (SGRCR) in [7]. Similarly, here
the application of the GID to this approach is named sliding
GID (SGID). In this paper, the SGRCR and the new SGID are
compared when applied to the detection of pulse radar signals
under different sets of system parameters and scenarios. As a
benchmark, the well-know energy detector (ED) is included
in the comparisons, identified as the sliding ED (SED).

The remainder of this paper is organized as follows. Sec-
tion II describes the system model, including the signal model,
the GRCR, the GID and the ED test statistics, and the sliding
window approach applied to these statistics. Section III is
devoted to the numerical results and Section IV concludes
with some opportunities for further related research.

II. SYSTEM MODEL

Following [7], here we also consider a cooperative spectrum
sensing (CSS) scheme with m cognitive SUs collecting mn
samples (n samples per SU) of the radar signal received during
a given sensing interval.

A. Signal model

The signal samples collected by the SUs in cooperation are
forwarded to the fusion center (FC), where the received signal
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matrix Y ∈ C
m×n is formed according to

Y = hxT +V, (1)

where T denotes transposition, and h = [h1, h2, . . . , hm]T is
the channel vector with hi representing the complex channel
gains between the radar transmitter and the i-th SU receiver,
for i = 1, . . . ,m. These gains are assumed to be constant
during the sensing interval (the sensing interval is sufficiently
small compared to the channel coherence time), and indepen-
dent and identically distributed between consecutive sensing
rounds (the interval between two consecutive sensing events
is sufficiently large compared to the channel coherence time).

In order to account for possibly different received signal
powers, which characterizes the nonuniform-dynamical sig-
nal scenario, and to model a flat and slow Ricean fading
channel, it follows that, in each sensing event, h = Ga,
where a ∈ C

m×1 is the vector whose elements are
ai ∼ CN [

√

K/(2K + 2), 1−K/(K + 1)], for i = 1, . . . ,m,
which guarantees unitary second moment of the fading magni-
tude, with K being the Rice factor1. The matrix G ∈ R

m×m

is a diagonal gain matrix given by

G = diag

(
√

p

pavg

)

, (2)

with p = [p1, p2, . . . , pm]T being the vector contain-
ing the received signal power levels in each SU, where
pavg = 1

m

∑m

i=1
pi is the average received signal power over

all SUs. Assuming, without loss of generality, that the overall
channel power gain is unitary, the radar signal is transmitted
with a constant average power pavg.

The matrix V ∈ C
m×n in (1) is formed by independent

and identically distributed zero mean complex Gaussian noise
samples. Under the possibility of nonuniform-dynamical noise
variances across the SUs, the elements in the i-th row of V

have variance σ2

i , i = 1, . . . ,m.
The vector x ∈ R

n×1 in (1) represents the radar signal
samples. In practice, this signal is formed by bursts of short
time pulses with very low duty-cycle [7]. From the perspective
of the detector, the received signal from a rotating radar is seen
as a series of bursts. If the number of pulses transmitted in a
burst is N , the number of pulses eventually received by the
SU depends on the aperture of the antennas and on the speed
of the radar antenna rotation. Thus, here it is assumed that
the number of received pulses within the sensing interval is a
uniform random variable U ∼ U [1, N ] to correctly represent
the asynchronous operation between the radar bursts and the
spectrum sensing interval.

Denoting the average noise variance as σ2

avg = 1

m

∑m

i=1
σ2

i ,
the approximate received signal-to-noise ratio, in dB, averaged
over all SUs, is given by [7]

SNR ≈ 10 log
10

[

(N + 1)pavg

2Nσ2
avg

]

. (3)

1In a multipath fading channel, the Rice factor is the ratio between the
power in the dominant multipath component and the power of the remaining
ones. A larger K means a stronger line-of-sight (LoS) received signal.
If K = 0, the Ricean fading specializes to the Rayleigh fading, which
corresponds to no LoS.

This calculation is approximate due to the random number
of radar pulses seen by the SUs during a sensing interval,
which may be a non integer; expression (3) was derived
assuming that this number is integer.

B. The GRCR, the GID, and the ED detectors

At the FC, the received signal sample covariance matrix
(SCM) is computed from (1) as

R =
1

n
YY†, (4)

where † denotes the complex conjugate and transpose.
The Gerschgorin radii and centers ratio (GRCR) test statistic

defined in [8] is

TGRCR =

∑m

i=1

∑m

j=1,j 6=i |rij |
∑m

i=1
rii

, (5)

where rij is the element in the i-th row and j-th column of
R, for i, j = 1, . . . ,m.

In the case of the GID, the test statistic given in [9], apart
from a constant factor that does not influence performance, is

TGID =

∑m2

i=1
|ri|

∑m2

i=1

∑m2

j=1
|ri − rj |

, (6)

where ri is the i-th element of the vector r formed by stacking
all columns of R.

The energy detector test statistic is simply

TED =

m
∑

i=1

1

σ2

i

n
∑

j=1

|yij |
2, (7)

where yij is the element on the i-th row and j-th column
of Y. It is clear that the ED is not completely blind, since
it uses the noise variance σ2

i at the input of the i-th SU
receiver. In practice, σ2

i is estimated and, as a consequence,
the performance of the ED significantly depends on the quality
of the estimate.

As reported in [8], [9], the computational complexity of
the ED is O(nm), which is the smallest one. The GRCR has
roughly the same complexity of the GID, which is O(nm2),
mainly owing to the computation of the matrix R. Hence, to
the best of the authors’ knowledge, the GRCR and the GID
are the least complex blind detectors available in the litera-
ture, making them attractive to the sliding window approach
described in the sequel in order to reduce latency.

C. The sliding window approach

The sliding window detection approach works by succes-
sively shifting a small sensing window through the whole
sensing interval [7]. An intermediate decision on the presence
or absence of the radar signal is made for each step of the
sliding window. When the window reaches the end of the
sensing interval, an operation is made among the intermediate
decisions to yield the final global decision.

Working under the divide-and-conquer principle, the sliding
window technique exchanges the reduced performance of
individual smaller sensing windows by an increase of the

2
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captured energy of a radar pulse that by chance falls into one or
more intermediate sensing windows. This is combined with the
fact that the noise energy during such small sensing windows
is smaller than the one present in the whole sensing interval,
potentially resulting in some performance improvement of the
radar signal detection.

From Figure 1 of [7], it can be found that the number of
samples collected by each SU, n, the number of radar pulses
per burst, N , the radar pulse width, Wp, and the radar signal
duty-cycle, D, are related via

n =
WpN

D
. (8)

Moreover, the number of steps Sn, which is the total number
of sensing rounds made during the entire sensing interval, is
given by [7]

Sn =
n− Sw

Ss
+ 1, (9)

where Sw is the sliding window size, and Ss is the step size.
In each sensing event, the SGRCR, the SGID or the SED

test statistic is formed respectively from (5), (6) or (7),
computed from Sn received signal matrices Y shorter than (1),
having order m× Sw instead of m× n.

The global decision is made after the OR-logic operation
among all intermediate decisions. This is equivalent to say
that the decision will be made in favor of the presence of
the radar signal if max{T (1), T (2), . . . , T (Sn)} > γ, where γ
is the decision threshold, and T (k) denotes the test statistic
computed at the intermediate sensing round number k, with
k = 1, . . . , Sn.

III. NUMERICAL RESULTS

The metrics often used to assess the spectrum sensing per-
formance are the probability of detection and the probability
of false alarm, defined as Pd = Pr(decision = H1|H1) and
Pfa = Pr(decision = H1|H0), respectively, where H1 and H0

are the hypotheses of the presence (i.e. Y = hxT + V) and
absence (i.e. Y = V) of the radar signal, respectively, and
Pr(·) is the probability of the underlying event.

A typical graphical tool for analyzing Pd and Pfa simulta-
neously is the receiver operating characteristic (ROC) curve,
which trades Pfa versus Pd by varying the decision threshold γ.

A condensed metric also often used is the area under the
ROC curve (AUC). The worst and useless performance, which
corresponds to a ROC curve with Pd = Pfa, gives AUC = 0.5.
The best performance corresponds to a ROC curve attaining
Pd = 1 and Pfa = 0, yielding AUC = 1.

In the following we present results of the AUC as a function
of variations in all system parameters that are relevant to the
spectrum sensing performance. These results were produced
by computer simulations using the MATLAB version R2018a,
from 20000 Monte Carlo events in which the received signal
matrix Y was generated under the hypothesis H1 (to estimate
Pd) and H0 (to estimate Pfa). The AUCs were computed using
the built-in MATLAB function −trapz(Pfa, Pd). When a
given parameter is not the one that is varied, its value was
set to: m = 5 SUs, radar signal with duty-cycle D = 5%,
maximum of N = 4 pulses per burst during the sensing

interval under the H1 hypothesis, n = 1200 samples collected
by each SU, Wp = 15 samples per radar pulse, sensing
window size Sw equal to Wp and equal to the step size of
the sliding window, Ss, average SNR = −18 dB, and sensing
channel Rice factor K = 6.

When noise and signal powers are uniform (the same across
the SUs and constant over time), σ2

i = σ2

avg = 1, and pi = pavg

according to the desired SNR; see (3). In the more realistic
scenario in which noise and signal powers are nonuniform-
dynamical (different across the SUs and time-varying),
σ2

i ∼ U [0.05σ2

avg, 1.95σ
2

avg] and pi ∼ U [0.05pavg, 1.95pavg] in
each spectrum sensing event.

Since the radar burst and the sensing interval are not
synchronous to each other, the beginning of the first radar
pulse over the sensing interval is random. By restricting its
beginning to be uniformly distributed over [0, n−Wp − 1], it
is guaranteed that, under H1, at least a single entire pulse is
present during the whole sensing interval.

Figure 1 gives the AUC as a function of the sliding window
size Sw, assuming uniform noise and received signal powers
(left), and nonuniform-dynamical noise and received signal
powers (right). In this case, n = 1200 samples, and Sn = 80,
40, 20, 10, 5, 2, and 1 sensing rounds per sensing interval, re-
spectively for Sw = Ss = 15, 30, 60, 120, 240, 600, and 1200
samples.

A first conclusion obtained from Figure 1 is that the
detection of a radar signal benefits from the sliding window
technique, since the spectrum sensing performance may be
improved especially for small window sizes. It is worth
highlighting that, as we noted in the previous paper [7], the
computational complexity for obtaining Sn SCMs in terms
of complex multiplications is SnSwm

2, which turns out to
be nm2 when Sw = Ss; see (9). Thus, when Sw = Ss

the computational complexity does not vary with the sliding
window size Sw.

Another interesting conclusion that can be drawn from
Figure 1 is that only the SGRCR shows almost the same per-
formances for the two situations of uniform and nonuniform-
dynamical signal and noise powers, meaning that its robustness
to variations of noise and signal levels over time was inherited
from the robustness of the GRCR detector demonstrated in [8].
Unexpectedly, the SGID inherited the robustness of the GID
demonstrated in [9] only for small window sizes, as will be
confirmed by all subsequent results. However, the justification
for this behavior is still unknown by the authors.

Still from Figure 1, it can be inferred that the SGID can
beat the SGRCR, and even the SED when noise and received
signal powers across the SUs are uniform. Here, the SED is
assumed to have the perfect knowledge of noise powers, which
needs to be taken into account for performance comparisons.

The AUC versus the sensing channel Rice factor K is
presented in Figure 2. It confirms that the superiority of the
GID with respect to the GRCR is maintained in the SGID and
SGRCR variants when some line-of-sight component exists
in the received radar signal. The GID exploits the degree
of variation of the elements of an SCM for deciding on the
presence of a PU signal, and may benefit from higher values
of K that may decrease the denominator of its test statistic (6).
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Fig. 1. AUC versus window size (Sw): uniform signal and noise powers
(left), nonuniform-dynamical signal and noise powers (right). The smallest
window size is Sw = Wp = 15 samples; the largest is Sw = n = 1200.

In the results presented hereafter, it has been adopted K = 6
to represent a mild line-of-sight situation.

Still referring to Figure 2, again it can be verified that the
SGID can beat even the SED in the case of uniform noise
and received signal powers. Moreover, as anticipated in the
comments regarding Figure 1, it can be seen in Figure 2 that
the SGID is quite robust against nonuniform-dynamical noise
and received signal powers for small sensing window sizes
(Sw = 15 in this case).
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Fig. 2. AUC versus Rice factor (K): uniform signal and noise powers (left),
nonuniform-dynamical signal and noise powers (right).

Figures 3 and 4 give the AUC as a function of the average
SNR across the SUs, and as a function of the number m
of SUs, respectively. As expected, larger values of SNRs
or m yield better spectrum sensing performances, but in a
diminishing-return fashion. The SGID is shown to be superior
to the SGRCR for most of the SNRs. A very small advantage
of the SGRCR over the SGID is observed in the scenario of

nonuniform-dynamical noise and received signal powers, for
SNRs around −12.5 dB and above. The SGID can outperform
the benchmark SED under uniform noise and received signal
powers, for SNRs around −15 dB and below.
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Fig. 3. AUC versus average SNR over all SUs: uniform signal and noise
powers (left), nonuniform-dynamical signal and noise powers (right).

Regarding the number of SUs (see Figure 4), the SGID
outperformed the SGRCR for all analyzed values of m. The
SGID can even beat the SED for m ≥ 4, in the uniform
noise and received signal powers setting. The robustness of the
SGRCR and the SGID is once again confirmed in Figures 3
and 4, with a slight advantage of the SGRCR.
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Fig. 4. AUC versus the number of SUs (m): uniform signal and noise powers
(left), nonuniform-dynamical signal and noise powers (right).

Finally, the AUC versus the radar signal duty-cycle D, and
versus the radar pulse width Wp are shown in Figures 5 and 6,
respectively. In the case of Figure 5, it follows that n = 6000,
3000, 1200, 600, and 300 samples, and Sn = 400, 200, 80,
40, and 20 sensing rounds, respectively for D = 0.01, 0.02,
0.05, 0.1, and 0.2. In the case of Figure 6, it follows that
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n = 160, 240, 400, 800, 1600 and 2400 samples, respectively
for Wp = Ss = Sw = 2, 3, 5, 10, 20 and 30 samples, with a
fixed Sn = 80 sensing rounds.

The most important conclusion obtained from Figure 5
and Figure 6 does not come from the absolute performance
variations, but from the relative ones. This is because the
variation of D and Wp are accompanied by the variation
of other performance-relevant parameter, n, according to (8)
and (9). It can be observed that the SGID can outperform
the SGRCR and even the SED for a wide range of D; the
performance differences become smaller as D becomes small.
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Fig. 5. AUC versus radar signal duty-cycle (D): uniform signal and noise
powers (left), nonuniform-dynamical signal and noise powers (right).
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Fig. 6. AUC versus the the radar pulse width (Wp): uniform signal and noise
powers (left), nonuniform-dynamical signal and noise powers (right).

IV. CONCLUSIONS

This paper applied the sliding window approach, originally
proposed with the GRCR detector, to the GID and the ED, and
presented extensive comparisons between the performances of

the resultant detectors under variations of all performance-
relevant system parameters.

In spite of winning in some situations, the SED has shown
to be sensitive to the nonuniform and dynamical noise and
received signal powers in all situations investigated throughout
the paper. Nevertheless, one must recall that the SED has been
included in the comparisons just as a benchmark, since it is
not fully blind: it needs the knowledge of the noise variances
across the SUs, while the SGID and the SGRCR do not.

It has been shown that the SGRCR maintains the robustness
of the GRCR with respect to received signal and noise power
variations in any circumstance, while the SGID is robust only
for the most practical appealing situation of small sensing
window sizes. It has also been demonstrated that the SGID can
outperform the SGRCR in most of the situations, if the sensing
channel has some dominant multipath component (recall that
the GID was developed to work in this scenario). Hence,
considering that the SGRCR and the SGID have approximately
the same computational complexity and are completely blind,
the SGRCR is preferred in the non line-of-sight sensing
channel, whereas the SGID is more attractive for a Rician
fading channel with a dominant path component, as happens
during a line-of-sight propagation condition.

Since the GRCR and the GID test statistics are derived
from the sample covariance matrix, they might have some
complementary property. Thus, as an opportunity for further
developments, one could think of combining these detectors
into a hybrid one, aiming at improved performance, mainly
under small Rice factors. As other possibilities targeting the
same objective, one could switch between the GRCR and the
GID in successive intermediate sensing rounds, or run both
detectors in parallel throughout these rounds, combining the
decisions of both at the end.
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