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Bit Error Probability of M -QAM Signals Subject to
Impulsive Noise and α-µ Fading
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Abstract— In this paper, a new closed-form expression is pre-
sented for determining the Bit Error Probability (BEP), Pe, of M -
ary Quadrature Amplitude Modulation (M -QAM) signals subject
to Double Gated Additive White Gaussian Noise (G2AWGN) and
α-µ fading, from an approach referred to as Dirac delta function
approximation. In this approach, the sampling property of the
Dirac delta function and an alternative representation of the
tail distribution function of the standard normal distribution,
known as Q-function, are used to obtain the BEP expression
as a function of the Signal to Permanent Noise Ratio (SNR),
Signal to Impulsive Noise Ratio (SNI) and the parameters that
characterizes the channel. All BEP curves shown in this article
are corroborated by simulations performed with the Monte Carlo
method.

Keywords—α-µ fading, bit error probability, impulsive noise.

I. INTRODUCTION

Industrial environments are subject to numerous interferen-
ces in the 2.4 GHz frequency range, such as the presence
of impulsive noise and the transmitted signal intensity vari-
ations, known as fading [1], [2], [3]. In the literature, some
mathematical models are described to characterize the effects
of these imperfections in these environments, such as the α-µ
distribution [4], used to characterize the fading, and Double
Gated Additive White Gaussian Noise (G2AWGN) [5], used
to characterize the impulsive noise.

The α-µ distribution is a generalized fading model used
to characterize small-scale fading without line of sight, that
includes other distributions as special cases, such as the
Weibull, Rayleigh and Nakagami-m distributions, for exam-
ple [4]. With regard to G2AWGN noise, its Probability Density
Function (PDF) is written as a Gaussian mixture, used to
characterize the noise coming from numerous noisy sources,
and encompasses, as special cases, several simpler noise
models, which, depending on the application, can be used [5].

Thus, the channel model adopted in the present work,
consisting of impulsive noise and α-µ fading, is considered
appropriate to model channels in different environments, under
different conditions, such as domestic environments, agricultu-
ral fields, shopping malls and energy substations, for example.

In this study, a new expression for the Bit Error Probabi-
lity (BEP) of the M -ary Quadrature Amplitude Modulation
(M -QAM) signals under G2AWGN and α-µ fading, written
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in terms of elementary functions, is obtained using the method
described in [6]. In this method, an alternative representation
for the Q-function and the sampling property of the Dirac delta
function are used to calculate the BEP for M -QAM signals
subject to fading and noise. This approach is called the delta
approximation and is relatively simple when compared to other
methods for performance analysis of wireless communication
channels subject to different types of fading [6], [7], [8], [9].

In addition to this introductory section, this article is divided
as follows: in Section II, the mathematical model of impulsive
noise adopted in this work is presented. In Section III, an
expression for the BEP of the M -QAM in a channel with
impulsive noise and α-µ fading, using the delta approximation,
is shown. BEP curves, corroborated by simulations performed
with Monte Carlo method, as a function of Signal to Perma-
nent Noise Ratio (SNR), are plotted under different parameters
that characterize mathematically the channel in Section IV.
Finally, the conclusions obtained from this study are presented
in Section V.

II. IMPULSIVE NOISE MODEL

The G2AWGN noise, represented by η(t), can be written
as [5, Equation 1]

η(t) = C0(t)ηg(t) + C1(t)C2(t)ηi(t), (1)

in which ηi(t) represents a white Gaussian random process
with zero mean and variance σ2

i and the signals C0(t), C1(t)
and C2(t) represent continuous-time Bernoulli random proces-
ses that take discrete values in the set {0, 1}. From the value
that the signal C0(t) assumes, other simpler noise models, en-
compassed by the general model, can be obtained. The signals
C1(t) and C2(t) are used to characterize mathematically the
random occurrences of noisy bursts and pulses, respectively;
and the term ηg(t) represents the permanent noise, defined
as the background Gaussian noise that always appears in the
system, characterized by a white Gaussian process with zero
mean and variance σ2

g .
In (1), the product C1(t)C2(t) characterizes the gated noise

ηi(t). As the noise gating of ηi(t) is double, the noise obtained
so far is called G2AWGN. The signal C1(t) in (1) is given
by [5, Equation 5]

C1(t) =
∞∑

k=−∞

mkPR1
(t− kT1), (2)

in which mk is the k-th bit of the alphabet {0,1} with
probability distribution p(mk = 1) = p1 and p(mk =
0) = 1 − p1. The pulse PR1

(t) of duration T1 assumes
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unit amplitude in 0 ≤ t ≤ ∆2T1, with ∆2 assuming values
between zero and one. The signal C2(t) assumes the values
zero and one randomly and is given by [5, Equation 2]

C2(t) =
∞∑

l=−∞

mlPR2(t− lT2), (3)

in which ml is the l-th bit of the alphabet {0,1} with probabi-
lity distribution p(ml = 1) = p2 and p(ml = 0) = 1− p2.
The pulse PR2(t) of duration T2 assumes unit amplitude in
0 ≤ t ≤ ∆1T2, with ∆1 assuming values between zero
and one.

III. BEP OF M -QAM SIGNALS IN A CHANNEL SUBJECT
TO IMPULSIVE NOISE AND α-µ FADING

It was shown in [10, Equation 26] that the BEP of M -
QAM signals, with the channel subject to G2AWGN noise and
fading, conditioned to the intensity of the fading envelope, z,
denoted by P (e|z), can be written as

P (e|z) = 2√
M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0

w(i, k,M)

×

{
∆1∆2p1p2Q

(√
a(i,M)z2

δgδi
δg + δi

)

+ (1−∆1∆2p1p2)Q

(√
a(i,M)z2δg

)}
, (4)

in which

w(i, k,M) = (−1)

⌊
i·2k−1
√

M

⌋
·
(
2k−1 −

⌊
i · 2k−1

√
M

+
1

2

⌋)
, (5)

a(i,M) =
3(2i+ 1)2

(M − 1)
log2M, (6)

M is the order of the constellation, δg is the SNR, defined as
the ratio of the signal power to the power of the background
Gaussian noise that is always present in the system, and δi is
the Signal to Impulsive Noise Ratio (SNI), defined as the ratio
of the power of the signal to the power of the impulsive noise
that acts in the system.

For the model of received signal [8],

Y (t) = z(t)X(t) + η(t), (7)

in which X(t) is the transmitted signal, Y (t) is the received
signal, z(t) is the fading and η(t) is the G2AWGN noise, the
corresponding BEP, Pe, can be obtained weighting (4) by the
PDF of the fading factor z, that is, [8, Equation 8.102]

Pe =

∫ ∞

0

P (e|z)fZ(z)dz. (8)

In (7), the fading is considered slow and non-selective in
frequency, implying that the multiplicative parameter z can
be considered constant during a signaling interval.

Considering that the PDF of α-µ distribution is given by [4,
Equation 1]

fZ(z) =
αµµzαµ−1

ẑαµΓ(µ)
exp

(
−µ

zα

ẑα

)
u(z), (9)

in which u(·) represents the unit step function, Γ(·) represents
the Gamma function, the parameter α is related to the non-
linearity of the function that characterizes the fading envelope,
µ is associated with the number of multipath groupings,

ẑ = α
√

E (zα) (10)

and

µ =
E2 (zα)

V (zα)
, (11)

in which E(·) and V (·) denote the operators expectance and
variance, respectively, it follows that the BEP of M -QAM
signals, under G2AWGN noise and α-µ fading, is given by

Pe =
2√

M log2
√
M

αµµ

ẑαµΓ(µ)

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0

w(i, k,M)

×

{
∆1∆2p1p2

∫ ∞

0

Q

(
z

√
a(i,M)

δgδi
δg + δi

)

× zαµ−1exp

(
−µzα

ẑα

)
dz

+ (1−∆1∆2p1p2)

∫ ∞

0

Q

(
z
√
a(i,M)δg

)
× zαµ−1exp

(
−µzα

ẑα

)
dz

}
. (12)

Defining

I1 =

∫ ∞

0

Q

(
x

√
a(i,M)

δgδi
δg + δi

)
xαµ−1

× exp
(
−µ
(x
ẑ

)α)
dx (13)

and considering that [6, Equation 4]

Q(x) ≈ 1√
2π

x−1e−
x2

2 − 1√
2π

(x+ 1)−1e−
(x+1)2

2 , (14)

one can write (13) as

I1 =
1√
2π

(
a(i,M)

δgδi
δg + δi

)− 1
2

×
∫ ∞

0

x−1exp

(
−a(i,M)

2

δgδi
δg + δi

x2

)
× xαµ−1exp

(
−µ
(x
ẑ

)α)
dx

− 1√
2π

∫ ∞

0

(
x

√
a(i,M)

δgδi
δg + δi

+ 1

)−1

× exp

−1

2

(
x

√
a(i,M)

δgδi
δg + δi

+ 1

)2


× xαµ−1exp
(
−µ
(x
ẑ

)α)
dx. (15)

If

v(x) = x2, (16)

such that

dv = 2xdx (17)
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and

dx =
1

2
v−

1
2 dv, (18)

it follows that

I1 =
1

2
√
2π

(
a(i,M)

δgδi
δg + δi

)− 1
2

×
∫ ∞

0

exp

(
−a(i,M)

2

δgδi
δg + δi

v

)
v

1
2 (αµ−1)−1

× exp

(
−µ

(√
v

ẑ

)α)
dv

− 1

2
√
2π

∫ ∞

0

exp

(
−a(i,M)

2

δgδi
δg + δi

v

)

× v
1
2αµ−1

(√
va(i,M)

δgδi
δg + δi

+ 1

)−1

× exp

(
−1

2

(
1 + 2

√
va(i,M)

δgδi
δg + δi

))

× exp

(
−µ

(√
v

ẑ

)α)
dv. (19)

If

v(y) = yN , (20)

such that

dv = NyN−1dy, (21)

it follows that

I1 =
1

2
√
2π

(
a(i,M)

δgδi
δg + δi

)− 1
2

×
∫ ∞

0

exp

(
−a(i,M)

2

δgδi
δg + δi

yN
)
Ny

1
2 (αµ−1)N−1

× exp

(
−µ

(√
yN

ẑ

)α)
dy

− 1

2
√
2π

∫ ∞

0

exp

(
−a(i,M)

2

δgδi
δg + δi

yN
)
Ny

1
2αµN−1

×

(√
yNa(i,M)

δgδi
δg + δi

+ 1

)−1

× exp

(
−1

2

(
1 + 2

√
yNa(i,M)

δgδi
δg + δi

))

× exp

(
−µ

(√
yN

ẑ

)α)
dy. (22)

According to Jang [6, Equation 8], if

g(yN ) = exp(−ayN )NycN−1, (23)

then ∫ ∞

0

g(yN )dy =
Γ(c)

ac
. (24)

Hence,

lim
N→∞

g(yN ) =
Γ(c)

ac
δ
(
yN − c

a

)
(25)

and

I1 =
2−

1
2

2
√
2π

Γ

(
1

2
(αµ− 1)

)(
a(i,M)

2

δgδi
δg + δi

)−αµ
2

× exp

− µ

ẑα

(√
(αµ− 1)

a(i,M)

(
1

δg
+

1

δi

))α


− 1

2
√
2π

Γ
(αµ

2

)
(
√
αµ+ 1)

−1
exp

(
−1

2
(1 + 2

√
αµ)

)
×
(
a(i,M)

2

δgδi
δg + δi

)−αµ
2

× exp

− µ

ẑα

(√
αµ

a(i,M)

(
1

δg
+

1

δi

))α
 . (26)

Defining

β1 =
1

4
√
π
Γ

(
1

2
(αµ− 1)

)
(27)

and

β2 =
1

2
√
2π

Γ
(αµ

2

)
(
√
αµ+ 1)

−1

× exp

(
−1

2
(1 + 2

√
αµ)

)
, (28)

one can write I1 as

I1 =

(
a(i,M)

2

δgδi
δg + δi

)−αµ
2

×

β1exp

− µ

ẑα

(√
(αµ− 1)

a(i,M)

(
1

δg
+

1

δi

))α


−β2exp

− µ

ẑα

(√
αµ

a(i,M)

(
1

δg
+

1

δi

))α
 . (29)

Defining

I2 =

∫ ∞

0

Q

(
x
√
a(i,M)δg

)
xαµ−1exp

(
−µ
(x
ẑ

)α)
dx

(30)

and considering that Q(·) is defined by (14), it is possible to
write (30) as

I2 =

(
a(i,M)

2
δg

)−αµ
2

(
β1exp

(
− µ

ẑα

(√
(αµ− 1)

a(i,M)δg

)α)

−β2exp

(
− µ

ẑα

(√
αµ

a(i,M)δg

)α))
, (31)

in which β1 and β2 are given respectively by (27) and (28).
Thus, the BEP of M -QAM with the channel subject to

G2AWGN noise and α-µ fading is given by

Pe =
2√

M log2
√
M

αµµ

ẑαµΓ(µ)

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0

w(i, k,M)

× {∆1∆2p1p2I1 + (1−∆1∆2p1p2)I2} , (32)
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in which I1 and I2 are given respectively by (29) and (31).

IV. RESULTS

In this section, theoretical and approximate BEP curves are
presented for different parameters that characterize mathema-
tically the channel. The values considered for the G2AWGN
noise are based on the simulation conditions described in [5]
for impulsive noise. In the simulations, the Monte Carlo
method was applied. Additionally, for comparison purposes,
the BEP curve for a channel subject to α-µ fading and only
AWGN noise was included in all figures. This curve is a lower
bound to the system performance.

In Fig. 1, curves of BEP, Pe, of 64-QAM modulation
scheme under impulsive noise and α-µ fading, as a function
of the SNR, δg , are presented, considering four values of SNI,
∆1 = ∆2 = p1 = p2 = 0.5, µ = 2.5, α = 1.5 and ẑ = 1.0.
The BEP curves, corroborated by computational simulations,
are obtained by using delta approximation as well as by the
expression of Pe, given by (12). It is observed that the curves
obtained using the delta approximation approach practically
overlap the one obtained with (12). It is also observed that the
BEP decreases with the increase of the SNR, for fixed values
of the SNI. For δi = 5 dB as well as for δi = 10 dB, the
BEP is not less than 10−3 for δg < 40 dB. Notice that, for
δg < 10 dB, the four values of δi under consideration take
practically the same values of Pe.

δg (dB)
0 5 10 15 20 25 30 35 40

P
e

10
-4

10
-3

10
-2

10
-1

10
0

δi = 5.0 dB(Theoretical)
δi = 10.0 dB (Theoretical)
δi = 15.0 dB (Theoretical)
δi = 20.0 dB (Theoretical)
AWGN
Approximation
Simulated

Fig. 1. BEP of 64-QAM scheme under G2AWGN noise and α-µ fa-
ding, for different values of signal to impulsive noise ratio, considering
∆1 = ∆2 = p1 = p2 = 0.5, µ = 2.5, α = 1.5 and ẑ = 1.0.

It should be mentioned that the BEP curves obtained in this
article, by using delta approximation, have a good adherence
to theoretical curves, both for low and for high values of SNR.
In [6], a good adherence for the BEP is also presented, with the
channel subject to AWGN noise and Nakagami-m, Nakagami-
q or Nakagami-n fading.

In Fig. 2, BEP curves for G2AWGN noise and α-µ fading
for four different values of M , considering δi = 20 dB, µ = 1.5,
α = 2.0, ẑ = 1.0 and ∆1 = ∆2 = p1 = p2 = 0.5 are shown.
Since the parameter α in this simulation is equal to 2.0, one

has, as a special case, the Nakagami-m distribution. In this
distribution, the parameter m is equivalent to the parameter µ
in the distribution α-µ. In Fig. 2, it is noted that the less dense
the constellation is, the smaller the BEP obtained, since the
symbols are more spaced and therefore less susceptible to the
effects of noise. It is observed that a BEP equal to 10−3 is
obtained with δg ≈ 20.9 dB for M = 16 while it is obtained
with δg ≈ 35.4 dB for M = 256.

It should be mentioned that the curves shown in Fig. 2
are the same as those presented in [11, Fig. 3]. In [11], an
expression for the BEP is presented considering the channel
subject to G2AWGN noise and Nakagami-m fading, written
is terms of Gauss hypergeometric function. In [11], the BEP
expression is obtained by a method in which the multiplicative
fading is transformed in an additive noise R obtained by
dividing the received signal by the estimated fading envelope.
This method can be applied to reduce the computational
complexity of signal detection in the presence of fading,
when compared to the conventional method that consists of
multiplying the transmitted signal by the fading added to noise.

δg (dB)
0 5 10 15 20 25 30 35 40

P
e

10
-4

10
-3

10
-2

10
-1

10
0

M = 16 (Theoretical)
M = 64 (Theoretical)
M = 256 (Theoretical)
M = 1024 (Theoretical)
AWGN
Approximation
Simulated

Fig. 2. BEP of M -QAM scheme under G2AWGN noise and α-µ fading, for
different values of the order of the constellation M , considering δi = 20 dB,
µ = 1.5, α = 2.0, ẑ = 1.0 and ∆1 = ∆2 = p1 = p2 = 0.5.

Fig. 3 shows the BEP curves of the 64-QAM modulation
scheme under G2AWGN noise and α-µ fading. The curves are
plotted against the SNR, for different values of the parameter
α, with δi = 20 dB, ∆1 = ∆2 = p1 = p2 = 0.5, µ = 1.0 and
ẑ = 1.0. As the parameter α is related to the non-linearity of
the function that characterizes the fading envelope, it follows
that as α increases, lower values of BEP are obtained for fixed
values of δg . It is also observed that BEP = 10−3 is obtained
with δg ≈ 23.3 dB for α = 4.0 whereas it is obtained with
δg ≈ 34.6 dB for α = 3.0. For the configuration of parameters
α = 2.0 and µ = 1.0, as presented in one of the BEP curves in
Fig. 3, we have, as a particular model of the α-µ distribution,
the Rayleigh distribution, used to characterize mathematically
cases in which the fading in the channel acts more severely.
For δg = 40 dB, a BEP difference of one order of magnitude is
observed in the curves corresponding to α = 1.0 and α = 3.0.

4
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Fig. 3. BEP of 64-QAM scheme under G2AWGN noise and α-µ fading, for
different values of α, with δi = 20 dB, ∆1 = ∆2 = p1 = p2 = 0.5, µ = 1.0
and ẑ = 1.0.

V. CONCLUSION

In this paper, a new closed-form expression is presented
for the computation of the Bit Error Probability (BEP), Pe,
of M -ary Quadrature Amplitude Modulation (M -QAM) sig-
nals subject to impulsive noise and α-µ fading. The novel
expression was obtained by an approach referred to as delta
approximation, which consists in using an approximation for
the Q-function and the sampling property of the Dirac delta
function. Exact BEP curves and approximated BEP curves
using this approach, as a function of the Signal to Permanent
Noise Ratio (SNR), were obtained and plotted for different
parameters that characterize mathematically the channel. All
BEP curves shown in this article are corroborated by simula-
tions performed with the Monte Carlo method.

As future works, the authors intend to determine new
expressions for calculating the BEP of the modulation scheme
M -QAM, with the channel subject to impulsive noise and α-
η-κ-µ [12] fading.
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