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Abstract— In the field of communication warfare, the use
of transceivers with frequency hopping to avoid intensional
interference is usual. As for the immunity to interference, such
electronic countermeasure has excellent efficiency, but greatly
increases the electromagnetic emission and, therefore, the station
indiscretion. To overcome this problem, it is possible to make use
of antenna arrays and interference cancellation algorithms that
introduce nulls in the directions of interferers while keeping a
constant gain in the direction of interest. Under some conditions,
in this example or in any other antenna array application, the
solution can be sparse. In this paper, we discuss the use of L0-
nom or L1-norm constraints to obtain sparse solutions in antenna
arrays.
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I. INTRODUCTION

The ability of antenna arrays to provide efficient and flexible
ways to synthesize several beampatterns makes their appli-
cations suitable for canceling interference signals, while the
gain toward the signal of interest remains unchanged. The
classical and usual way to avoid intentional interferences is
employing transceivers with frequency hopping [1]. Although
such electronic counter-measure method ensures the commu-
nication between the stations, its use increases electromagnetic
indiscretion, allowing easy detection.

In order to allow the interference cancellation algorithms
to run on battery consumption critical devices, shrinks coeffi-
cients to zero is particularly important for its reduced compu-
tational requirements and consequent battery consumption [2],
therefore, it is desirable to have a reduced number of coeffi-
cients for the synthesis of the beampattern. We may make use
of antenna arrays and interference cancellation algorithms [3]
with L0-norm or L1-norm constraints, whose solutions, under
some conditions, can be sparse. Usually, a large number of
antennas is necessary, therefore, the algorithms shall introduce
null gains in the directions of interferences and maximize the
number of coefficients equal to zero.

Without considering sparsity solutions, the synthesis of the
beampattern could be expressed by Aw = b subject to
CHw = f , where w, A, b and C, are the coefficient vector
(solution), the array manifold matrix, the beampattern vector
and the constraint matrix, respectively. Matrix C contains the
linear constraints to assure nulls in directions of the jammers
and a constant gain in the direction of interest.
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II. BACKGROUND OVERVIEW

The idea to overcome the problem of the large number of
antennas, necessary to perform interference cancellation and
still maintain a suitable beampattern to communication system
requirements, is to use algorithms for solving systems of type
Aw = b subject to the restriction of L1 (or L0) norm and
additional linear constraints of type CHw = f . The resulting
solution has sparsity inversely proportional to the imposed L1

norm. Greater sparsity implies a smaller number of sensors
(antennas). Mathematically, the problem can be expressed as:

min
(w∈CN )

‖Aw − b‖22 st:

{
‖w‖1 ≤ t
CHw = f

(1)

or

min
(w∈CN )

‖w‖1 st:

{
‖b−Aw‖22 ≤ ε
CHw = f

(2)

The first approach, expressed by the Eq. (1), leads to the
LASSO solution [4]. The second approach is a regularization
problem [5] considering J(w) = ‖w‖1 and linear additional
constraints. The classical solution method considers J(w) =
‖b − Aw‖22, which corresponds to the Wiener solution [5],
except for the constraints CHw = f .

The L0 norm constrained problem, defined as

(P0) : min
(w∈CN )

‖w‖0 st: ‖b−Aw‖22 ≤ ε, (3)

could be another important method to be investigated. The
computational complexity to solve (P0) by exhaustive search
is huge, exponential in N , where N is the number of co-
efficients. In [5] , the (P0) problem is solved by smoothing
the L0-norm in various forms and, then, handling the revised
problem as a smooth optimization. The main idea under (P0)
problem is to minimize the cardinality of feasible solution set,
whose results are sparse. Unfortunately, the algorithms in [5]
do not cover the beampattern problem with additional linear
constraints of type CHw = f and, therefore, it is necessary
to investigate in deep these algorithms so one can carry out
necessary changes to meet the additional linear constraints.

Alternatively, a small number of sensors (antennas) can
be obtained from the LASSO solution, through a projection
on the L1 Ball [6]-[7], whose result is projected onto the
intersection of hyperplanes of the constraints CHw − f = 0.
This intersection is feasible only for certain values of L1 norm
and, therefore, the algorithm shall find points with lower MSE
on the polyhedral surface g(w) = ‖w‖1−t = 0 as function of
L1 norm. This intuitive method could be called as “Successive
L1 Ball and Hyperplane Projection Method”. Fig. 1 illustrates
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a simple example in R3, where the sparse solution XSP =
[0.000 0.000 1.250]T is obtained from the Least Squares (LS)
solution XLS = [−0.512 −0.400 0.808]T using the Successive
L1 Ball and Hyperplane Projection Method. The L1 norm and
linear constraints are maintained. The main weakness of this
algorithm is the need to conduct a line search over a non-
continuous feasible set (L1-norm values), which results in a
huge computational effort.
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Fig. 1. Solution subject to L1-norm and linear constraints calculated from
LS solution.

III. THE ANTENNA ARRAY PATTERN

A. Signal Model

Consider a uniform linear array (ULA) composed by N
receiving antennas (sensors) and q receiving narrowband sig-
nals coming from different directions φ1, · · · , φq . The output
signal observed from N sensors during M snapshots can be
denoted as x(t1),x(t2), · · · ,x(tM ). The N × 1 signal vector
is then written as:

x(t) =

q∑
k=1

a(φk)sk(t) + n(t) , t = t1, t2, · · · , tM (4)

or, using matrix notation,

X = [x(t1)x(t2) · · · x(tM )] = ΨS + N, (5)

where matrix X is the input signal matrix of dimension N ×
M . Matrix Ψ = [a(φ1), · · · ,a(φq)] is the steering matrix of
dimension N × q, whose columns are denoted by

a(φ) = [1, e−j(2π/λ)d cos(φ), · · · , e−j(2π/λ)d(N−1) cos(φ)]T .
(6)

S, in (5), is a q × M signal matrix, whose rows refer to
snapshots. N is the noise matrix of dimension N ×M ; λ and

d are the wavelength of the signal and the distance between
antenna elements (sensors), respectively.

Based on definition above, the covariance matrix R, defined
as E[x(t)xH(t)], can be estimated as

R̂ = XXH = ΨSSHΨH + NNH , (7)

which, except for a multiplicative constant, corresponds to the
time average

R̂ =
1

M

M∑
k=1

x(tk)x
H(tk). (8)

From the formulation above and imposing linear constraints,
it is possible to obtain a closed-form expression to wopt [3],
the LCMV solution

wopt = R−1C
(
CHR−1C

)−1
f , (9)

such that CHwopt = f , C and f given by [8]

C = [1, e−j(2π/λ)d cos(φI), · · · , e−j(2π/λ)d(N−1) cos(φI)]T
(10)

and
f = 1. (11)

In Eq. (10), the angle φI indicates the interest direction.
In order to consider interfering signal directions φJ , new
constraints shall be considered as additional rows in C and
f .

Fig. (2) shows the geometry of a Uniform Linear Array
(ULA) of sensors.

Sensor1 Sensor2 Sensor(N-1) SensorN

d d(N-3)d

I I I I

Fig. 2. The Geometry of a Uniform Linear Array (ULA) of sensors.

B. Antenna Beampattern

Considering a harmonic plane wave with wavelength λ
incident from direction φ, that propagates across a linear array
of N isotropic antennas at locations p1, p2, · · · , pN ∈ R2, the
beampattern is given by

B(φ) =

N∑
k=1

wke
−j 2π

λ pk cos(φ) , (12)

where wk is the k-th component os vector w.
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For a planar uniform rectangular array (URA) containing
N ×M antennas placed on a geometric grid with N columns
and M rows, the beampattern could be expressed as

B(φ) =

N∑
k=1

M∑
l=1

wk,le
−j 2π

λ

[
pxk cos(φ)+pyl sin(φ)

]
. (13)

In order to make a link between beampattern defini-
tion given by Eq. (13) and the formulation stated by
Eqs. (1) and (2), an equivalent matrix formulation can be
stated.

b(φ) = A(φ, p)w, (14)

where elements of w and A(φ, p) are complex quantities with
w given by w = [w1, w2, · · · , wN ]T .

IV. BEAMPATTERN SYNTHESIS AS A CONVEX
OPTIMIZATION PROBLEM

An important and powerful beampattern synthesis tool is
Convex Optimization [10]-[11]. This tool could be used to
solve the problem stated by Eqs. (1) and (2). In reference [9], a
comprehensive summary about this application is presented. In
this section, based on the theory presented in [9], a formulation
used in our problem will be derived. A technique to solve
optimization problems with complex variables is known as
Second-Order Cone Programming (SOCP) [11], therefore, the
problem defined in (2) should be reformulated in order to be
solved using SOCP.

In (2), all matrices and vectors are complex. The first step
to re-write this problem is to convert the formulation to real
variables

w˜ =

[
<(w)
=(w)

]
∈ R2N×1 (15)

b˜ =

[
<(b)
=(b)

]
∈ R2M×1 (16)

f˜=
[
<(f)
=(f)

]
∈ R2NC×1, (17)

where M and NC are the size of b and the number of linear
constraints, respectively.

T˜ =

[
<(A) −=(A)
=(A) <(A)

]
∈ R2M×2N (18)

P˜ =

[
<(CH) −=(CH)
=(CH) <(CH)

]
∈ R2NC×2N (19)

Then, Eq. (2) can be re-expressed as

min ‖t‖1 s.t.

{
‖T˜w˜ − b˜‖2 ≤ ‖b˜‖2δ1,‖P˜w˜ − f˜‖2 ≤ ‖f˜‖2δ2, (20)

where ‖t‖1 =
∑N
i=1

√
w˜2
i + w˜2

i+N .

The formulation in (20) faithfully represents the complex
L1 norm of (2). Unfortunately, minimizing the L1 norm of a

real vector w˜ does not guarantee sparsity of real and imaginary
components simultaneously, similarly to the method presented
in [12]. In order to guarantee simultaneous real and imaginary
sparsity, the constraints should be re-written as follows

min ‖t‖1 s.t.


√

[<(wi)]2 + [=(wi)]2 ≤ ti, i = 1, ..., N

‖T˜w˜ − b˜‖2 ≤ ‖b˜‖2δ1‖P˜w˜ − f˜‖2 ≤ ‖f˜|2δ2
(21)

Now considering the following auxiliary variables

y =

[
w
t̃

]
∈ R3N×1 (22)

Si =

ei 0
0 ei
0 0

 ∈ R3N×2 (23)

qi =

0
0
ei

 ∈ R3N×1 (24)

SLS =

[
T˜T0

]
∈ R3N×2M (25)

SC =

[
P˜T0

]
∈ R3N×2NC , (26)

where ei ∈ RN×1 is a vector composed by zeros, ex-
cept the i-th component that is one, and defining g =
[0, 0, · · · , 0, 1, 1, · · · , 1]T3N×1, with the 2N first components
equal to zero and the other ones equal to one, the problem
could be reformulated as

min
w˜ gTy st:


‖STi y‖2 ≤ qTi y i = 1, · · · , N
‖STLSy − b˜‖2 ≤ ‖b˜‖2δ1‖STCy − f˜‖2 ≤ ‖f˜‖2δ2

(27)

The problem stated in (27) is known as Second Order Cone
Programming (SOCP).

To illustrate how the formulation presented above allows
to null both real and imaginary components of the coefficient
vector w, a simple development of Eq. (27), for N = 2, is
presented bellow:

min {t1 + t2} s.t.


√

[<(w1)]2 + [=(w1)]2 ≤ t1√
[<(w2)]2 + [=(w2)]2 ≤ t2

‖STLSy − b˜‖2 ≤ ‖b˜‖2δ1‖STCy − f˜‖2 ≤ ‖f˜‖2δ2
(28)

V. NUMERICAL RESULTS

A. 2-dimensional Array Constrained Synthesis using “Succes-
sive L1 Ball and Hyperplane Projection Method”.

As the first numerical simulation example, we designed an
L1-norm constrained problem to a 2-dimensional constrained
array with 36 elements spaced by 0.25λ. The direction of the
signal of interest is 103◦ and the directions of the interferences
are 15◦, 50◦, 140◦ and 160◦.



XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’11, 02-05 DE OUTUBRO DE 2011, CURITIBA, PR

0 30 60 90 120 150 180 210 240 270 300 330 360
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Azimuth q (in degrees)

|B
(q

)| dB

 

 

Linearly Constrained Solution
Linearly plus L1−norm Constrained Solution

Fig. 3. 2D Constrained Array Synthesis via “Successive L1 Ball and
Hyperplane Projection Method”.

The plots of Fig. 3 compare the design solutions with
and without additional L1-norm constraint. The L1 norm
constrained resulted in 17 null coefficients, according to Fig. 4.
It is important to notice that even with 17 null coefficients, the
constraints are satisfied. Unfortunately, depending on the array
configuration and on the linear restrictions, a sparse solution
may not be possible.
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Fig. 4. 2D Constrained Array Null Sensors (O) Placement.

B. Constrained Uniform Linear Array Synthesis using SOCP.

The second simulation result is shown in Fig. 5. The antenna
array considered was an ULA with N = 200 elements spaced

by λ
2 . The L1-norm minimization constraint was considered.

As linear constraints, we considered the signal of interest
direction of 103◦ and the directions of interferences equal
to: 15◦, 50◦, 140◦ and 160◦. A 3-dB bandwidth of 2◦ was
considered. The L1 norm constraint converged to unit. This
simulation shows a typical application of Convex Optimization
on synthesis of Antenna Arrays with sharp constraints as, for
example, a 3-dB bandwidth of 2◦.
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Fig. 5. Constrained Uniform Linear Array Synthesis using SOCP.

Analyzing the plot presented in Fig. 5, it is possible to
observe that all linear constraints were satisfied, but, unfor-
tunately, it was not possible to obtain a sparse solution. The
L1-norm constraint converged to unit and no null coefficient
was obtained.

C. Constrained URA Synthesis using SOCP.

In a third simulation result, shown in Fig. 6, we imposed
additional constraints to Eq. (2) in order to solve the problem
described in subsection V-A. These constraints were imposed
such that 16 coefficients, located according to Fig. 7, were
forced to be null, which corresponding to 44% of total
number of coefficients. As can be seen in the figure, the
linear constraints, responsible for the interference cancellation,
were satisfied, but the secondary lobe levels have increased
destroying the beamforming original pattern. Depending on
the application, it may be acceptable to lose the antenna radi-
ation characteristic. For the focused application, the important
requirement is to suppress all the jammers signals.

VI. CONCLUSIONS

In this paper, we have presented some classical shrinkage
numerical techniques and preliminary simulation results for
obtaining solutions to the problem of sparse antenna array
design. When using SOCP, depending on the configuration
of the antenna array under investigation, one could achieve
a sparse solution. One way to force a sparse solution is to
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Fig. 6. 2D Constrained Array Synthesis via SOCP.
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Fig. 7. 2D Constrained Array Null Sensors (O) Placement.

solve the problem applying a L0-norm minimization. The
solution for (P0), unfortunately, has computational complexity
that increases exponentially with the number of coefficients.
To overcome the huge computational effort, techniques and
Greedy algorithms defined in [5] are employed. Unfortunately,
these algorithms do not cover the beampattern problem with
additional linear constraints of type CHw = f and, therefore,
it is necessary to investigate in deep these algorithms so one
can carry out necessary changes to meet the linear additional
constraints.

Since the L1-norm constrained problem associated to ad-
ditional linear constraint is essentially a convex problem for
some L1-norm and linear constraint values, its application in
the complex field should be better investigated.

As appropriate tool to solve problems of L1-norm mini-
mization, one can make use of convex optimization techniques.
When dealing with problems in solving complex variables and
additional linear constraints, the SOCP could be applied.

In practice, the use of L1-norm constrained algorithms to
cancel interfering signals allows to run beampattern synthesis
softwares on systems with limited power capacity, since a
reduced number of coefficients can be employed. As can be
seen in Section (V-C), the price to be paid to a reduced number
of coefficients is a temporary degradation of the radiation
pattern of the array of antennas, that will occur during the
presence of an interfering signal, when the anti-jamming
algorithm shall be in use. Sometimes, in battlefield, it is better
to receive a message with some noise, while canceling the
jamming signals, than to be exposed by emissions of frequency
hopping systems.
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