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Abstract—Many problems in communications and computer
science require the characterization and enumeration of se-
quences. The purpose of this paper is to demonstrate the
application of enumeration techniques to two such problems,
enumeration of run length limited sequences, as used in computer
memory systems, and the characterization error sequences as
they occur in the analysis of bursty or fading channels.

I. INTRODUCTION

Many problems in communications and computer science
require the enumeration and characterization of sequences.
Two such problems are considered here: i) the enumeration
of run length limited (RLL) sequences in universal usage
for data storage on hard disks and tape drives and ii) the
enumeration and characterization of error sequences that occur
with modulation systems on fading and bursty channels. The
analysis of these systems critically depends on the solution to
these enumeration and characterization problems.

In this paper we apply powerful enumeration techniques
to enumerate and characterize sequences associated with the
problems mentioned. While the techniques are standard in
current combinatorial usage, their application to the problems
mentioned is novel and provides solutions that are superior and
more elegant than those previously applied, often obtaining
simpler and closed form solutions to problems that previously
had to rely on recursions and simulations.

The capacity of constrained (e.g. RLL) codes is an important
parameter in their application to computer memory devices.
The capacity of such a code S, denoted as C, was defined by
Shannon [1] as:

C = lim
n→∞

log2 cn
n

, (1)

where cn is the number of sequences in S of length n
satisfying the constraint. Shannon proposed a technique for
determining cn based on a finite state diagram (FSD) repre-
sentation of the code S. The standard method of evaluating
the capacity is to take log2 λ, where λ is the largest real
eigenvalue of the adjacent matrix. In the first part of this paper
a standard enumeration technique is given to find a simple
formula for a formal power series, the generating series, for
some classes of constrained codes, such that the number of
binary sequences in S, cn, are the coefficients of appropriate
power of indeterminates.

In the second part of this paper we develop mathematical
tools to analyze a broad class of communication channel

models known as finite state channels (FSC). These channel
models are used effectively for a variety of bursty and fading
channels [2]- [5].

We follow the theory of enumeration of constrained se-
quences described in [6] to enumerate a particular subset of
error sequences generated by the FSC model. We will show
that the probability of this subset can be obtained by acting
on the generating series with a linear mapping extended as a
homomorphism to the whole of the ring of all formal power
series.

We adopt throughout this work the following notation.
Given a matrix A, the superscripts AT and A−1 represent
respectively the transpose, and the inverse of a matrix. The
matrices I and 1 stand for the identity matrix and a column
vector of ones, whose dimensionality is clear from the context.
E{Ek} stands for the expected value of the random variable
Ek.

A generic binary sequence will be denoted by σ =
σ1σ2 · · · . If s and z are commutative indeterminates,
[sk zn]T (s, z) denotes the coefficient of sk zn in the formal
power series T (s, z). If A is a set of sequences, A? is the
set of all sequences formed by concatenating any number of
sequences in A, that is, A? = φ∪A∪A2∪A3 . . ., where φ is
the empty sequence. 1r denotes a sequence of r consecutive
ones, for example, 13=111.

II. SEQUENCE ENUMERATION AND CHANNEL CAPACITY

We define σ to be an RLL(r,s) sequence if all runs of
zeros and ones of σ have length at least r and at most
s. An equivalent formulation is to consider the class binary
sequences for which between any two ones there are at least
d zeros and at most k zeros, the so-called (d, k) sequences.
These types of constraints are a result of the timing mech-
anisms and readback heads of many systems. For example,
the timing of the sampling on the readback is often derived
from the sequence transitions of the read sequence. If there is
too long a run of zeros being read the timing circuit will not
be updated sufficiently often, leading to possible errors in the
read process. Similarly the the minimum constraint is used to
mitigate the effects of intersymbol interference. For example,
σ = (0001100111100) is an RLL(2,4) sequence of length 13.
The required generating series for a generic set S with respect



to the weight function length of σ is:

FS(x) =

∞∑
n=0

cnx
n.

For the remainder of this section we consider examples of the
calculation of FS(x) for some classes of constrained codes.
The key point to solve problems of this type is to find a
bijection that expresses the set S in terms of concatenation
products of binary strings.

One is usually interested in the construction, and number, of
sequences of a finite length n, that meet a certain constraint,
and which can be concatenated together so that arbitrary
catenations also satisfy the constraint. Since capacity is an
asymptotic quantity, this version is not considered here.

The generating series for RLL(r,s) codes is obtained di-
rectly from the following decomposition of the set {0, 1}?:

{0, 1}? = 1?{00?11?}?0?,

since any binary sequence begins with a sequence (possibly
empty) of 1’s, then alternating block’s of 0’s and 1’s, and ends
with a sequence (possibly empty) of 0’s. Here, the superscript
? represents an arbitrary and repetitive choice from the set or
symbol containing it. It is now clear that the set of all RLL(r,s)
sequences, denoted as Sr,s can be expressed as:

Sr,s = {φ, 1r, 1r+1, · · · , 1s}{0r, 0r+1 · · · , 0s, 1r,
1r+1, · · · , 1s}?{φ, 0r, 0r+1, · · · , 0s}. (2)

If the indeterminate x marks the length of the sequence, note
that the generating series for the sets {φ, 1r, 1r+1, · · · , 1s} or
{φ, 0r, 0r+1, · · · , 0s} is 1 + xr + xr+1 + · · ·+ xs. Therefore,
FSr,s(x) is given by:

FSr,s(x) = (1 + xr + xr+1 + · · ·+ xs)2

×
(
1− (xr + xr+1 + · · ·+ xs)2

)−1
=

(1+ xr−xs+1

1−x )2

1−( xr−xs+1

1−x )2

= 1−x+xr−xs+1

1−x−xr+xs+1 ,

(3)

where we have used the fact that the generating series for the
set S? is (1 − FS(x))−1. The series expansion of Equation
(3) yields the coefficients cn, as we can see in the example
below, for r = 3 and s = 7:

FS3,7(x) = 1 + 2x3 + 2x4 + 2x5 + 4x6 + 6x7 + · · ·

We can also readily seen from Equation (3) that the coefficients
cn for the RLL(r, s) code satisfy the following recurrence
equation:

cn − cn−1 − cn−r + cn−s−1 = 0 (4)

for n > s+ 1, with initial conditions:

c0 = 1
ci = 0, if 1 ≤ i ≤ r − 1
cr = 2 + cr−1
ci = ci−1 + ci−r, if r + 1 ≤ i ≤ s
cs+1 = −2 + cs + cs+1−r.

We now consider the generating series for the set Sr,∞, that
is, sequences containing runs of zeros and ones of length at
least r. When s goes to infinity the term (1+xr +xr+1 + · · · )
has a closed form given by 1 + xr/(1− x). Therefore

FSr,∞(x) =
(1 + xr

1−x )2

1− ( xr

1−x )2
=

1− x+ xr

1− x− xr
. (5)

The asymptotic behavior of cn is the main subject of the
next subsection. More example of the calculation of generating
series will also be given.

A. Capacity Calculation

For the class of codes we are considering, the generating
series FS(x) can be expressed as the ratio of two polynomials
FS(x) = N(x)/D(x). On considering the partial fraction
expansion of FS(x), we would expect cn to be expressed as
the following polynomial equation:

cn = A1(n)αn
1 +A2(n)αn

2 + . . .+AT (n)αn
T ,

where T is the degree of D(x), A1(n), · · · , AT (n) are poly-
nomials in n, and the αi’s are the roots of the reciprocal
polynomial D?(x) = xTD(1/x). The asymptotic behavior of
the sequence c

1
n
n is known in the literature [7, pp. 114]:

lim
n→∞

c
1
n
n = θ, (6)

where θ is the largest real root of the reciprocal polynomial
D?(x). It now follows from Equations (1) and (6) that the
capacity can be written as:

C = log2 θ.

Therefore, the capacity is given by the base two logarithm of
the largest real root of the reciprocal polynomial D?(x).

From Equation (3) we have that D?(x) for the RLL(r,s)
code is xs+1 − xs − xs−r+1 + 1. The capacity of this code
converges for large s to log2(1.618) = 0.6942, since 1.618 is
the largest real root of the polynomial D?(x) = x2 − x − 1
given by Equation (5).

In some optical recording channel applications the minimum
and maximum run-length of 0’s and 1’s are required to be
different [8]. This gives rise to a new constrained sequence
called asymmetrical runlength-limited (ARLL) code [8] with
parameters (r, s)-(e, l), where (r, s) represent the minimum and
maximum runlength of 1’s, and (e, l) are the analogous param-
eters of 0’s. By modifying Equations (2) and (3) accordingly,
we conclude that the generating series for ARLL(r, s)-(e, l)
codes is:

FS(r,s,e,l)(x) =
(1− x+ xr − xs+1)(1− x+ xe − xl+1)

1− 2x+ x2 − xs+l+2 + xs+e+1 + xr+l+1 − xr+e
.

The capacity follows readily from the denominator polynomial
of the equation above. Moreover, the reciprocal denominator
polynomial for the ARLL(r,∞)-(e,∞) code is D?(x) =
xe+r − 2xe+r−1 + xe+r−2 − 1.

We refer to σ to be an RLLo(d, k) code if between
consecutive ones there are at least d and at most k zeros. The



IBM RLLo(2, 7) code [9] constitutes an example of practical
use of these codes. The RLLo(d, k) code is asymptotically
equivalent to the set of sequences that ends with a 1, where
each run of zeroes satisfies an RLLo(d, k) constraint. This set
is expressed as Sd,k = {(0d, · · · , 0k)1}?. So

FSd,k(x) =
1− x

1− x− xd+1 + xk+2
. (7)

From Equations (3) and (7) we can check the known result
that the capacity of RLLo(d, k) and RLL(d+ 1, k + 1) codes
is the same [10].

Recently, practical applications of M -ary modulation
schemes can be achieved on some optical and magnetic
media [11]. This offers the possibility of achieving large
information density on the channel. An M -ary RLLo(d, k)
code, denoted as RLLo(M,d, k), is one where at least d and
at most k zeroes occur between non-zero symbols. Similarly
to the development above, the set of all sequences is SM,d,k =
{(0d, · · · , 0k)1, 2, · · · (M −1)}?. Consequently, FSM,d,k

(x) is
written as:

FSM,d,k
(x) = (1− (xd + · · ·+ xk)(M − 1)x)−1;

= 1−x
1−x+(M−1)x2+k−(M−1)x1+d .

(8)

The reciprocal denominator polynomial of the generating
series FSM,d,k

(x) is:

D?(x) = xk+2 − xk+1 − (M − 1)xk−d+1 +M − 1.

The main concern of the next section is to address the
the problem of calculating the probability of subsets of error
sequences, where each sequence is generated by an FSC
model. The probability of error events then follows by acting
on the generating series with a mapping, extended as a
homomorphism to the whole of the ring of all formal power
series. This approach allows us to obtain analytic expressions
for several burst error statistics of interest.

III. DERIVING BURST STATISTICS FOR FINITE STATE
CHANNELS

An FSC model is characterized by an underlying non-
observable Markov chain [12]. The discrete output symbol
to the channel at the kth time interval, yk, is a function
of the input symbol xk and the state of the Markov chain
sk. The channel is described statistically by the conditional
probability P (yk, sk | xk, sk−1). For example, the Gilbert-
Elliott channel [13] is a two-state Markov chain composed of
a good state, state 0, where errors occur with small probability,
and a bad state, state 1, where errors occur with higher
probability. When the chain is in the good state the error bit
ek is zero (correct) with probability 1− g, or one (error) with
probability g. Otherwise, when it is in a bad state, the error
bit is zero with probability 1 − b, or one with probability b.
The matrices P and Π for the Gilbert-Elliott channel are:

P =

[
1−Q Q
q 1− q

]
(9)

Π = [π0 π1]
T

=

[
q

q +Q

Q

q +Q

]T
. (10)

Define two N×N matrices, P(0) and P(1), where the (i, j)th

entry of the matrix P(ek), ek ∈ {0, 1}, is P (Ek = ek, Sk =
sk | Sk−1 = sk−1), which is the probability that the output
symbol is ek when the chain makes a transition from state
sk−1 to sk. The probability of an error sequence of length n,
en
4
= e1e2 . . . en, may be expressed in a matrix form as:

P (en) = Π T

(
n∏

k=1

P(ek)

)
1.

The matrices P(0), P(1) for the Gilbert-Elliott channel are
given by:

P(0) =

[
(1−Q) (1− g) Q (1− b)

q (1− g) (1− q) (1− b)

]
(11)

P(1) =

[
(1−Q) g Q b

q g (1− q) b

]
. (12)

It is well known that the probability of an error sequence
is not preserved under commutation of its symbols. This
prompts us to define the generating series in non-commuting
indeterminates in order to keep all the information about the
original sequence. So denote the generating series for En (error
event) as:

FEn =
∑
en∈En

xe1 xe2 . . . xen , xei ∈ {x0, x1} (13)

which is in R�x0, x1�, the ring of all power series in the
non-commuting indeterminates x0, x1 with coefficients taken
from the field of real numbers R. The indeterminates x0 and
x1 mark an error bit equal to 0 or 1, respectively. Notice that
P (En) may be obtained from the generating series FEn simply
by replacing xei by P(ei) and wrapping the vector Π T

around the front and 1 around the back. We can formalize
this concept by defining the mapping:

∆ : R� x0, x1 �−→ MN (R) : xk 7→ P(k),

acting as a homomorphism to the whole of the ring. MN (R)
is the ring of all N ×N matrices with entries taken from R
(the field of real numbers). The probability of the set En may
be expressed very compactly as:

P (En) = Π T (∆FEn) 1. (14)

The main step to find P (En) is to determine the generating
series FEn . The key point to solve problems of this type
is to find a bijection that expresses the set En in terms of
concatenation products of binary strings.

In this section we will derive expressions for two important
statistics:
• The error weight probability, P (m,n), the probability of

exactly m errors occurring in a block of n bits. This
measure is important to determining the performance of
block codes and interleaving on FSC models.

• The multigap distribution, M(r, l), is the probability of r
consecutive gaps in a sequence of length l. The multigap
distribution has been used as a test of non-renewalness
of the error process.



In all cases, we first obtain an expression for an N -state FSC
models in terms of the matrices Π , P(0), P(1), and P =
P(0) + P(1).

A. The Error Weight Distribution P (m,n)

We wish to determine the probability of the set En composed
of sequences of Hamming weight m and length n. The gen-
erating series for En is obtained directly from the generating
series for the set of all binary sequences, {0, 1}?, by defining
the indeterminate z to mark the length of the sequence and s
to mark the number of 1’s. Since F{0,1}? = (1− x0 − x1)−1,
it follows that FEn is:

FEn = [sm zn] (1−x0z−x1sz)−1 ∈ R� x0, x1 � . (15)

From Equations (14) and (15) the error weight distribution
P (m,n) is given by:

P(m,n) = [sm zn] Π T (I −P(0)z −P(1)sz)−11;
= [sm zn]HP (s, z),

(16)

where

HP (s, z) =
∑
m,n

P (m,n) sm zn ∈ R[s][[z]];

= Π T ( I −P(0)z −P(1)sz)−1 1 .
(17)

The generating series HP (s, z) is a polynomial in s. Then,
HP (s, z) is a formal power series in z with a coefficient
ring R[s]. An expression for HP (s, z) for the Gilbert-Elliott
channel can be obtained upon substitution of Equations (11)-
(10) into (17). An explicit formula for P (m,n) can be found
by carrying out the partial fraction technique to extract the
coefficient of Equation (16). Alternatively, it is simple go from
generating series to recurrence formulas, which provides a
rapid computational scheme for the problem. From Equation
(16) we can prove that P (m,n) for the Gilbert-Elliott channel
satisfies a 6-term recurrence formula:

P (m,n) =
−[Q(1−g) + q(1−b)− (2−g−b)] P (m,n− 1)
+[b(1− q) + g(1−Q)] P (m− 1, n− 1)
−[(1− b)(1− g)(1− q −Q)] P (m,n− 2)
−[(1− q −Q)(b+ g − 2gb)] P (m− 1, n− 2)
−[(1− q −Q)gb] P (m− 2, n− 2)

(18)
with initial conditions

P (m,n) = 0, for m,n < 0, m > n;
P (0, 0) = 1;

P (0, 1) = q
q+Q (1− g) + Q

q+Q (1− b);
P (1, 1) = q

q+Qg + Q
q+Qb.

(19)

Let the random variable En be the number of errors in a
block of length n. It is obvious that P (En = m) = P (m,n).
Moments of the random variable En of any order, E{(En)k},
can be obtained from the kth derivative of the matrix ( I −

P(0)z −P(1)sz)−1, since:

E{En (En − 1) . . . (En − k + 1)} =

= [zn]
{

∂k

∂sk
HP (s, z)

}
s=1

;

= [zn] Π T
{

∂k

∂sk
(I −P(0)z −P(1)sz)−1

}
s=1

1.

An exact formula for ∂k

∂sk
( I − P(0)z − P(1)sz)−1 will be

stated without proof in the next lemma.
Lemma III.1. The kth partial derivative of the matrix

A(s, z) , ( I −P(0)z −P(1)sz)−1 is:

∂k

∂sk
A(s, z) = k! ( A(s, z)P (1)z)k A(s, z).

Using the result of the lemma, we are able to prove the
following result:

E{En (En − 1) . . . (En − k + 1)} =

= k! [zn] Π T (( I −Pz)−1P(1)z)k ( I −Pz)−1 1;

= k! [zn] Π T (( I −Pz)−1P(1)z)k 1
1−z ;

= k! [zn−k] Π T (( I −Pz)−1P(1))k 1
1−z ;

= k!

n−k∑
j=0

[zj ] Π T (( I −Pz)−1P(1))k 1.

(20)
It is easy to see from Equation (20) that E{En} = nP (1)
where P (1) is the probability the error bit is a 1. Moreover,
the variance of En, for a general FSC model can be found
directly from (20) by setting n = 2. The final expression is:

V ar(En) = E{(En)2} − (n p(1))2;

= 2

n−2∑
j=0

(n− j − 1) Π TP(1)PjP(1) 1

+nP (1) (1− nP (1)).
(21)

For the Gilbert-Elliott channel (GEC), the matrix Pj may be
expressed as:

Pj =

[
1 −Q

q

1 1

] [
1 0
0 (1− q −Q)j

][ q
q+Q

Q
q+Q

− q
q+Q

q
q+Q

]
.

(22)
Substitution of Equation (22) into (21) yields the following
expression for the variance of En for the Gilbert-Elliott
channel:

V arGEC(En) =

2 (b−g)2 Qq(1−q−Q)
(q+Q)4 ((1− q −Q)n + n(q +Q)− 1)

+ nP (1)(1− P (1)).

(23)

Notice that the term nP (1)(1 − P (1)) in Equation (23) is
the variance of En for the memoryless BSC channel with
crossover probability P (1). Equation (23) shows that the
asymptotic behavior of V arGEC(En) grows linearly with n,
for 0 < (1− q −Q) < 1.



B. The Multigap Distribution M(r, l).

The length of a gap is the number of zeros between two
errors plus one (the last error is included). The error process
{Ek}∞k=1 can be regarded as a sequence of gaps {Gk}∞k=1,
where Gk is the length of the kth gap. The gap process is a
convenient representation for the error sequence, since a large
number of consecutive 0’s is expected to occur on channels
with low bit error probability. Let the random variable Gr =∑k+r−1

i=k Gk be the sum of r consecutive gap lengths Gk. The
multigap length distribution, denoted as M(r, l), is defined as
M(r, l) = P (Gr = l). If the error process were renewal, this
means that {Gk}∞k=1 are independent random variables, then
the variance of Gr is V ar(Gr) = r V ar(G1).

The problem of finding M(r, l) may be formulated as
follows: Find the probability of the set El, composed of binary
sequences of length l such that the rth error will occur at the
lth time interval. Note that the set of all sequences that ends
with a 1 may be expressed as {0?1}?. Let the indeterminate z
mark the length of the sequence and let s mark the occurrence
of a 1. The generating series for the set El may be obtained
from {0?1}? by replacing:

0? by 1 + x0z + x20z
2 + . . . = (1− x0z)−1;

1 by x1sz.

It follows that FEl is:

FEl = [sr zl] (1− (1− x0z)−1x1sz)−1 ∈ R� x0, x1 � .

The multigap distribution M(r, l) is the probability of the set
El, conditioned on E0 = 1. Then

M(r, l) = [sr zl]HM (s, z), (24)

where the generating series HM (s, z) is:

HM (s, z) =
∑
r,l

M(r, l) sr zl ∈ R[s][[z]];

= 1
P (1) Π TP(1)(I − (I −P(0)z)−1P(1)sz)−11.

(25)
It is interesting to notice that the computational effort to
calculate M(r, l) and P (m,n) is very closely related, as will
be stated in the following proposition.
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