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Space-Frequency Diversity Systems Using

Time-Varying Linear Constellation Precoding
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Resumo— Este artigo formula um novo receptor para a
decodificação cega de códigos espaço-frequência em sistemas
multiantena. A proposta para o projeto do sinal transmitido
combina espalhamento em frequência do tipo Vandermonde com
uma precodificação linear de constelação variante no tempo.
Esta última consiste em estender a rotação de constelação sobre
múltiplos perı́odos de sı́mbolo. Explorando a estrutura algébrica
resultante deste processamento combinado na transmissão, o sinal
recebido é formulado como um modelo em fatores paralelos
aninhado (do inglês, “nested parallel factor”) com uma rica
esrtutura multilinear. Um processo de estimação conjunta do
canal e de decodificação de sı́mbolos é derivado lançando mão
de um algoritmo de mı́nimos quadrados alternados e aninhados.
As condições de identificabilidade para o receptor proposto são
também discutidas, trazendo à luz os compromissos intrı́nsecos
envolvendo as diversidades de espaço, tempo e frequência
exploradas pelo receptor proposto. Resultados numéricos são
fornecidos para a avaliação da taxa de erro de bits em algumas
configurações de sistema.

Palavras-Chave— receptor cego, precodificação de constelação,
diversidade espaço-frequência, modelagem PARAFAC.

Abstract— This work formulates a new multiantenna receiver
for the blind decoding of space-frequency codes in multiantenna
systems. The proposed transmit signal design combines
frequency-domain Vandermonde spreading with a time-varying
linear constellation precoding. The latter consists in extending
constellation rotation across multiple symbols periods. Exploiting
the algebraic structure of this combined transmit processing, the
received signal is formulated as a three-way array following a
nested parallel factor model with a rich multilinear structure.
A joint channel estimation and symbol decoding process is
derived out by resorting to a nested alternating least squares
algorithm. We also discuss identifiability conditions for the
proposed receiver, shedding light on the intrinsic tradeoffs
involving space, time and frequency diversities exploited by
the proposed blind receiver. Numerical results are provided for
bit error rate (BER) performance evaluation for some system
configurations.

Keywords— blind receiver, constellation precoding,
space-frequency diversity, PARAFAC modeling.

I. INTRODUCTION

The combination of multiple input multiple output (MIMO)

systems and orthogonal frequency division multiplexing

(OFDM) has been focus of a large number of works [1].

In MIMO-OFDM, the transmit antennas can be employed

to achieve high data rates via spatial multiplexing as well
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as to improve link reliability in frequency-selective channels

through space-time/space-frequency or space-time-frequency

coding [2]–[5]. In a number of recent works, space-time

codes with blind detection have been proposed using tensor

decompositions [6], [7], [8], [9], [10], [11]. The approach

of [6] proposes a blind-decodable space-time codes based

on three-way array factor model known as parallel factors

(PARAFAC) [14], [15]. The work [7] is based on the same

idea as that of [6] but considers frequency selective channels.

In [8], joint space-time multiplexing and linear precoding

is considered by resorting to a constrained three-way factor

model. In [10], a generalization of the model of [8] therein

called constrained factors (CONFAC), is proposed to derive

a wide class of space-time multiantenna schemes enjoying

blind detection. A space-time coding model relying on the

PARATUCK2 tensor model was proposed recently in [11].

In this work, we consider the problem of blind decoding

of space-frequency block codes in MIMO-OFDM systems.

A new receiver combining space-frequency and time

domain processing is proposed that allows an iterative

joint blind channel estimation and symbol decoding. The

proposed transmit signal design combines frequency-domain

Vandermonde spreading with a time-varying linear

constellation precoding. The first operation consists

in spreading the information symbols across a set of

neighboring frequency bins (subcarriers) over which the

channel is considered to be invariant. Such a spreading

operation is performed by a semi-unitary matrix having a

Vandermonde structure. The second operation consists in a

time-varying linear constellation precoding (TV-LCP), which

consists in extending the LCP operation across a small

number of successive OFDM symbols.

Exploiting the algebraic structure of this combined transmit

processing, the received signal is formulated as a three-way

array following a nested parallel factor model. A joint

channel estimation and symbol decoding process based on

nested alternating least squares is derived. The identifiability

conditions for the proposed receiver are also discussed,

shedding light on the tradeoffs involving space, time and

frequency diversities exploited by the proposed blind receiver.

This paper is organized as follows. In Section II, the system

model is described. Section III formulates the received signal

as a three-way array following a nested PARAFAC model.

This section also presents the proposed blind receiver and

discusses identifiability conditions. Numerical results are given

in Section IV, and the paper is concluded in Section V.
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Notations: Scalars are denoted by lower-case letters (a, b, . . .),
vectors are written as boldface lower-case letters (a,b, . . .),
matrices as boldface capitals (A,B, . . .), and tensors as

calligraphic letters (A,B, . . .). AT and A
† stand for transpose

and pseudo-inverse of A, respectively. Ai. ∈ C
1×R is a row

vector denoting the i-th row of A ∈ CI×R. The operator

diag(a) forms a diagonal matrix from its vector argument.

The operator vec(A) yields an RI-dimensional vector that

stacks the R columns of A ∈ CI×R on top of each other.

The operator vecdiag(D) forms a vector d from the diagonal

of matrix D ∈ CR×R, while Di(A) is a diagonal matrix

constructed out of the i-th row of A. The Khatri-Rao product

between two matrices A = [a1, . . . ,aR] ∈ C
I×R and B =

[b1, . . . ,bR] ∈ CJ×R, denoted by �, is defined as

A � B
.
=




BD1(A)

...

BDI(A)



 = [a1 ⊗ b1, . . . ,aR ⊗ bR], (1)

where ⊗ denotes the Kronecker product. We make use of the

following property of the Khatri-Rao product:

vec(Adiag(x)BT ) = (B � A)x, (2)

where x is an R-dimensional vector.

II. SYSTEM MODEL

We consider a MIMO-OFDM wireless communication

system employing M transmit antennas and K receive

antennas. In the frequency domain, information transmission

is partitioned into groups of F neighboring subcarriers, and

space-frequency coding is applied across these F subcarriers.

The transmission time-frame is composed of a collection of N
short time-slots of P symbol periods each. Assuming that the

channel is constant over a time-slot, the discrete-time baseband

equivalent model for the received signal is given by

Yn,p =

√
ρ

M
HpCn,p + Vn,p ∈ C

K×F , (3)

where Cn,p ∈ CM×F denotes complex space-frequency code

matrix transmitted during the p-th symbol period of the n-th

time-slot, with E[trace(Cn,pC
H
n,p)] = FM , and n = 1, . . . , N ,

p = 1, . . . , P , Vn,p ∈ CK×F denotes zero-mean i.i.d. in

space and frequency circular Gaussian (CN(0,1)) noise, and

Yn,p ∈ C
K×F denotes the complex received signal matrix

during the p-th symbol period of the n-th time-slot. The

channel matrix Hp ∈ CK×M has i.i.d CN(0,1) entries, with

E[trace(HpH
H
p )] = MK , and ρ denotes the signal-to-noise

(SNR) ratio at each receive antenna.

For the encoding of the information symbols, we consider a

combination of a linear block-coding in the frequency-domain

with linear constellation precoding (LCP) that acts over

space and time domains. The information symbols stream

is first parsed into symbol vectors sn ∈ CM×1, with

E[trace(sH
n sn)] = M . Each symbol vector sn is linearly

precoded across P time-slots by means of a set of unitary

space-time modulation matrices {G1, . . . ,GP } of dimension

M × M . For the p-th symbol period, Gp rotates the

components of the symbol vector sn and loads a combination

of these components into the M transmit antennas. Let xn,p =
Gpsn ∈ CM×1 be the signal vector resulting from this linearly

precoding operation. Finally, the space-frequency code matrix

is generated by ”diagonally” spreading the precoded symbol

vector xn,p across F subcarriers using a linear block-coding

matrix W ∈ CF×M . This operation can be translated into the

following equation:

Cn,p = diag
(
Gpsn

)
W

T . (4)

If the channel is constant over a time-frame, the received signal

can be modeled as

Yn,p =

√
ρ

M
Hdiag

(
Gpsn

)
W

T + Vn,p ∈ C
K×F . (5)

A. Choice of Gp

We propose the following structure for this LCP matrix:

Gp
.
= ΘD

p, (6)

where Θ is a discrete Fourier transform (DFT) matrix and

Dp = diag([1, αp, . . . , α
(M−1)
p ]), with α = exp(jφ), is a

phase rotation vector, φ being an elementary rotation that

can be optimized for a given M and modulation type [12],

[13]. We call attention that the proposed blind receiver does

not need to know the rotation matrix D in (6), which can

alternatively contain phase sweeping vectors randomly varied

at the transmitter and unknown at the receiver.

It worth noting that the time-varying LCP design (6) follows

the basic structure of [12], [13]. The difference is on the

introduction of the time dependency on the diagonal rotation

matrix D
p ∈ CM×M . This feature provides time-domain

modulation diversity by exploiting P symbol periods over

which the channel is reused. As will be seen later, the

introduction of time-varying rotations can be efficiently

exploited for blind detection purposes. The price to pay for

this added feature is a reduction on the rate of the resulting

code by a factor of P . Note also that for P = 1 the proposed

design reduces to traditional LCP.

B. Choice of W

Recall that the linear block-coding matrix W ∈ CF×M

encodes the linearly precoded symbols in the frequency

domain across F subcarriers. Our code construction condition

requires that W have full rank. Herein, we focus in the case

F ≤ M and choose W as a Vandermonde matrix with

(f, m)-th entry given by:

[W]f,m
.
= ej 2π

M
(f−1)(m−1). (7)

As pointed out in [6], the Vandermonde design provides

flexibility in a sense that we can trade off diversity for

transmission rate by truncating the rows of W to any

intermediate value 1 ≤ F ≤ M , while ensuring the maximum

possible diversity gain for each choice of F .
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III. BLIND RECEIVER

A. Nested PARAFAC decomposition

We introduce a fourth-order PARAFAC based

decomposition which consists in expressing a four-way

array in the form of two nested three-way PARAFAC

decompositions of ranks R and S, respectively. For a

four-way array Y ∈ CI×L×J×K , let us consider the following

decomposition:

yi,l,j,k =
R∑

r=1

(
Q∑

q=1

a
(1)
i,q a

(2)
l,q a(3)

r,q

)

︸ ︷︷ ︸
ai,l,r

bj,rck,r, (8)

where i = 1, . . . , I , l = 1, . . . , L, j = 1, . . . , J , k = 1, . . . , K .

The scalars a
(1)
i,q , a

(2)
l,q , a

(3)
r,q , bj,r, ck,r are typical elements of

matrices A
(1) ∈ CI×Q, A

(2) ∈ CL×Q, A
(3) ∈ CR×Q, B ∈

CJ×R, C ∈ CK×R, respectively. The term within parenthesis

corresponds to a PARAFAC decomposition [14], [15] of the

three-way array A ∈ CI×L×R with typical entry ai,l,r . It can

be shown that the i-th matrix slice Ai . . ∈ CL×R, obtained by

fixing the first dimension of A ∈ CI×L×R to index i, admits

the following factorization [6]:

Ai . . = A
(2)Di(A

(1))A(3)T (9)

Define

A =




A1 . .

...

AI . .



 ∈ C
IL×R (10)

as un “unfolded” representation of the three-way array A ∈
CI×L×R. Using property (1), we can write A as:

A = (A(1) � A
(2))A(3)T . (11)

Using this definition, we can recast (8) as a PARAFAC

decomposition of the three-way array Y ∈ CIL×J×K in terms

of matrix factors A ∈ CIL×R, B ∈ CJ×R and C ∈ CK×R,

as follows

yt,j,k =

R∑

r=1

at,rbj,rck,r, (12)

where t = 1, . . . , IL. The t-th first-mode matrix slice Yt . . ∈
CJ×K of Y ∈ CIL×J×K admits the following factorization:

Yt . . = BDt(A)CT (13)

Using (11), we can rewrite (13) as

Yt . . = BDt

(
(A(1) � A

(2))A(3)T
)
C

T (14)

Defining

Y =




Y1 . .

...

YIL . .



 , (15)

and applying property (1), yields

Y =
( [

(A(1) � A
(2))A(3)T

]
︸ ︷︷ ︸

inner PARAFAC

�B
)
C

T

︸ ︷︷ ︸
outer PARAFAC

. (16)

This nested factorization expresses the (outer) PARAFAC

decomposition of tensor Y ∈ CIL×J×K in terms of the (inner)

PARAFAC decomposition of tensor A ∈ CI×L×R.

The PARAFAC decomposition of Y ∈ CIL×J×K in (12)

enjoys the essential uniqueness property, which means that

each matrix factor can be determined up to column scaling and

permutation. More specifically, this means that any alternative

solution Ã ∈ C
IL×R, B̃ ∈ C

J×R and C̃ ∈ C
K×R

satisfying the model is linked to the true model parameters

by Ã = AΠ∆a, B̃ = BΠ∆b, C̃ = CΠ∆c, where Π is a

column permutation matrix and ∆a∆b∆c = IR. A sufficient

condition for such an uniqueness was firstly derived in [16].

It says that the inner decomposition is essentially unique if

kA + kB + kC ≥ 2R + 2, where kA denotes the Kruskal-rank

[16] (also called k-rank), of A. The k-rank of A corresponds

to the greatest integer kA such as any set of kA columns of

A is linearly independent. Assuming that neither A, nor B,

nor C has a pair of proportional columns, then kA = rank(A)
and uniqueness of the outer decomposition (12) is guaranteed

if [6]:

min(IL, R) + min(J, R) + min(K, R) ≥ 2R + 2. (17)

In an analogous manner, provided that A is unique, the inner

decomposition (8) is also unique if:

min(I, Q) + min(L, Q) + min(R, Q) ≥ 2Q + 2. (18)

B. Receiver formulation

Note that with definition (6), the received signal (5) can be

expressed as:

Yn,p =

√
ρ

M
HDp

(
ADn(S)ΘT

)
W

T + Vn,p ∈ C
K×F ,

(19)

where

A =




vecdiag(D1)T

...

vecdiag(DP )T



 =





1 α1 · · · α
(M−1)
1

1 α2 · · · α
(M−1)
2

...
... · · ·

...

1 αP · · · α
(M−1)
P




∈ C

P×M

(20)

collects phase rotation and hopping factors acting over the P
symbol periods, and S ∈ CN×M is a symbol matrix whose

rows are the symbol vectors s
T
n , n = 1, . . . , N . Defining Yn =

[YT
n,1, . . . ,Y

T
n,P ]T ∈ C

PK×F as the data matrix collecting

the received samples during the P symbol periods of the n-th

time-slot. From property (1), we have:

Yn =

√
ρ

M

[
(ADn(S)ΘT )�H

]
W

T +Vn ∈ C
PK×F , (21)

where the noise term Vn is defined in the same way as Yn.

Likewise, defining a bigger matrix Y = [YT
n , . . . ,YT

n ]T ∈
CNPK×F collecting the received data for all N time-slots,

yields:

Y =

√
ρ

M

([
(S �A)ΘT

]
�H

)
W

T + V ∈ C
NPK×F . (22)

The signal part of (22) corresponds to the nested PARAFAC

decomposition (16). Note that none of the system design
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matrices A, Θ and W has proportional columns. Moreover,

under the assumption that neither S nor H contains

proportional columns, we can apply the uniqueness conditions

(17)-(18) to model (22) to yield:

min(NP, M) + min(K, M) + min(F, M) ≥ 2M + 2,

min(N, M) + min(P, M) ≥ M + 2. (23)

In this work, we are interested in two system configurations.

1) Assuming P < M ≤ N , condition (23) simplifies to:

min(min(K, M) + min(F, M) − M, P ) ≥ 2; (24)

2) Assuming N < M ≤ P , condition (23) simplifies to:

min(min(K, M) + min(F, M) − M, N) ≥ 2. (25)

These two conditions ensure blind channel and symbol

recovery from the nested PARAFAC model (22). They show

that N and P play symmetrical roles, establishing a tradeoff

between the minimum number of time-slots N and the number

of symbol periods P necessary for obtaining unique blind

estimates of the model parameters. Note also that in both

(24) and (25), condition min(K, M) + min(F, M) ≥ M + 2
establishes a tradeoff between the number of receive antennas

K and the number of subcarriers F for ensuring uniqueness.

C. Alternating least squares algorithm

We assume that channel state information is not available

at the receiver. The receiver consists in fitting the nested

PARAFAC model to the received data using an alternating

least squares (ALS) algorithm [6].

In the formulation of the receiver algorithm, we assume

that the frequency block-coding matrix W and the fixed

constellation rotation matrix Θ are perfectly known at the

receiver (i.e. they do not need to be estimated). Let us define

X̄ =
√

ρ
M

(S � A)ΘT ∈ CNP×M as a matrix representing

the (time-domain) linearly constellation precoded signal. The

algorithm consists in two ALS based estimation stages. The

first one provides estimates of X̄ and H by fitting a PARAFAC

model to the received signal tensor Y , as follows

J1 =
∑

t

∑

k

∑

f

∣∣∣yt,k,f −
∑

m

xt,mhk,mwf,m

∣∣∣
2

, (26)

where x̄t,m is an element of matrix X̄. In an analogous

manner, the second stage of the algorithm provides estimates

of S by fitting a PARAFAC model to tensor X , i.e.:

J2 =
∑

n

∑

p

∑

m

∣∣∣xn,p,m −
∑

r

sn,rap,rθm,r

∣∣∣
2

, (27)

Define Y
′ ∈ CKF×NP , Y

′′ ∈ CFNP×K , X
′ ∈ CPM×N and

X
′′ ∈ CMN×P as follows

[Y′](k−1)F+f,t
.
= yt,k,f (28)

[Y′′](f−1)NP+t,k
.
= yt,k,f (29)

[X′](p−1)M+m,n
.
= xn,p,m (30)

[X′′](m−1)N+n,p
.
= xn,p,m. (31)

The multilinearity of the PARAFAC decomposition allows to

represent these four matrices as

Y
′ = (H � W)X̄T + V

′, (32)

Y
′′ = (W � X̄)HT + V

′′, (33)

X
′ = (A � Θ)ST , (34)

X
′′ = (Θ � S)AT . (35)

Note that X̄ is linked to X
′ and X

′′ by “reshaping” operations,

more specifically:

[X̄](n−1)P+p,m = [X′](p−1)M+m,n = [X′′](m−1)N+n,p.
(36)

The four factorizations (32)-(35) lead to least squares (LS)

updating equations of X̄, H, S and A, respectively. The

algorithm is summarized as follows:

RECEIVER ALGORITHM

First stage

Initialization: Set i = 0; Randomly initialize Ĥ;

(1.1) i = i + 1;
(1.2) Compute the LS estimate of X̄:

̂̄
X

T

(i) = (Ĥ(i − 1) �W)†Y′;

(1.3) Compute the LS estimate of H:

Ĥ
T (i) = (W �

̂̄
X(i))†Y′′;

(1.4) Repeat steps (1.1)-(1.3) until convergence.

Second stage

Initialization: Construct X
′ and X

′′ from ̂̄
X(i) using (36);

Set j = 0; Randomly initialize Â;

(2.1) j = j + 1;

(2.2) Compute the LS estimate of Ŝ:

Ŝ
T (j) = (Â(j − 1) �Θ)†X′;

(2.3) Compute the LS estimate of A:

Â
T (j) = (Θ � Ŝ(j))†X′′

(2.4) Repeat steps (2.1)-(2.4) until convergence.

It is worth mentioning that due the knowledge of matrices

W and Θ, permutation ambiguity does not exist. Note that

scaling ambiguity can be removed from the estimated channel

matrix Ĥ in the first stage, by exploiting the fact that the first

row of W and X are known by definition. Likewise, scaling

ambiguity can be removed from the estimated symbol matrix

Ŝ in the second stage, by exploiting the fact that the first row

of A and Θ are also known. The convergence of both ALS

stages is usually achieved within less than 100 iterations.

IV. NUMERICAL RESULTS

We evaluate the bit-error-rate (BER) performance of the

proposed blind receiver. Each BER curve is an average of

10000 Monte Carlo runs, each one representing a channel

realization, the coefficients of which are drawn from an

i.i.d. complex-valued Gaussian generator. At each run, the

transmitted symbols of all the data streams are drawn from
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Fig. 1. ALS (blind) vs. ZF (perfect channel knowledge)

a QPSK sequence and the additive noise power is generated

according to the signal-to-noise ratio (SNR) value given

by SNR = 10log10(‖Y‖2
F /‖V‖2

F ). In order to provide a

performance reference of the proposed receiver, we have

plotted the performance of the nonblind zero forcing (ZF)

receiver. Contrarily to the proposed receiver, the nonblind

ZF one assumes perfect knowledge of the channel matrix.

Using our notation, the ZF receiver consists in a single-step

estimation of the symbol matrix given by:

ŝ
(ZF)
n =




(W � H)(Θ � A1 .)

...

(W � H)(Θ � AP .)





† 


vec(Yn,1)

...

vec(Yn,P )



 , (37)

where H is perfectly known. In this comparison, we consider

K = 2, M = 2, F = 2 and N = 30. It can be seen from

Figure 1 that the gap between ALS and ZF increases as P
increases. We can observe that both ZF and ALS present the

same BER improvement for higher SNRs.

We now evaluate the accuracy of the blind channel

estimation from the normalized mean square error (NMSE),

averaged over 500 Monte Carlo runs and defined as follows:

NMSE(H) =
500∑

l=1

∥∥∥Ĥ(l) − H

∥∥∥
2

F

‖H‖2
F

, (38)

where Ĥ(l) is the channel matrix estimated at convergence

of the l-th run. In this experiment, we consider a challenging

configuration with a short number of time-slots equal to N =
5. The other system parameters are M = 3 and F = 2. The

values of P and K are varied. Figure 2 shows a linear decrease

in the NMSE as a function of the SNR for all configurations.

We can also observe that increasing P and/or K provides an

improved channel estimation accuracy, as expected.

V. CONCLUSION

The proposed blind receiver relies on the formulation of

the received signal as a nested three-way PARAFAC model

that arises by combining space-frequency spreading with

time-varying constellation rotation. Sufficient conditions for

unique blind channel and symbol recovery have been derived,

which put in evidence some tradeoffs involving space, time
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Fig. 2. NMSE of the estimated channel.

and frequency diversities. Numerical results have illustrated

the performance of the receiver.
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