
XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

L3-ARPSec – A Secure Openflow Network

Controller Module to control and protect the Address

Resolution Protocol
Rogério Leão Santos de Oliveira, Ailton Akira Shinoda, Christiane Marie Schweitzer, Rogério Luiz Iope

and Ligia Rodrigues Prete

Abstract—The Address Resolution Protocol (ARP) is used to

map IP addresses to MAC addresses in local area networks. This

protocol has some security vulnerabilities and one of them is the

Man-in-the-Middle (MITM) attack. Software-Defined Networks

(SDNs) represent an innovative approach in the area of computer

networks, since they propose a new model to control forwarding

and routing data packets that navigate the Internet. This paper

presents the module L3-ARPSec, a set of instructions written in

the Python programming language that proposes a way to

control the switching of ARP messages and also mitigates the

MITM attack in local area networks.

Keywords— Software-Defined Network; OpenFlow; ARP cache

poisoning; MITM.

I. INTRODUCTION

It is evident how important computer networks have been
nowadays. The vast majority of people’s activities are, directly
or indirectly, centered on the use of resources or services
offered by communication networks.

On one hand, this worldwide network of computers known
as the Internet provides communication around the world; on
the other hand, it makes users dependent, so that it faces a
problem. The level of maturity in its structure also reduced its
flexibility.

Implementation of new technologies often requires
hardware device replacement such as routers and switches,
which can be very expensive and very hard-working for
network administrators.

The research community of computer networks has been
searching for solutions that enable the use of networks with
more programmable resources and less dependence on constant
replacement of hardware elements, so that new technologies
designed to solve new problems can be gradually inserted into
the network and without significant costs.

It is exactly in this context that the new paradigm known as
Software-Defined Networking (SDN) [1] arose. It is a structure
that aims to preserve the current performance on routing and
forwarding data packets, since it maintains the actual structure
with dedicated routers as it is, but at the same time it delegates
the orchestration of the network elements to a new component,
the controller.

This new structure controlled by applications manages the
packet transfer in a network and does not interfere in the
current protocols of network layers, such as ARP, IP, TCP,
UDP, and HTTP. Thus, known security problems that affect

the current structure will also exist in the new SDN-based
structure. One of them is the attack known as Man-in-the-
Middle (MITM), in which an attacker using ARP cache
poisoning stays in the middle of an end-to-end communication
link. After configuring and establishing the attack, the attacker
can view all messages exchanged between the victims.

This paper presents a programming module to run in SDN
controllers, which aims to control the ARP messaging and to
mitigate the MITM attack on local area networks. The
remaining sections are organized as follows. We begin in
Section II by explaining the ARP protocol operation and how
the MITM attack occurs in detail. In Section III, all L3-
ARPSec module features are presented. The results are
discussed in section IV, and related works are mentioned in
Section V. Finally, in section VI the conclusion and
suggestions for future works are drawn.

II. BACKGROUND

A. Address Resolution Protocol

All devices connected to a TCP/IP network are identified in
the Network layer by its 32-bit Internet Protocol (IP) address
and in the Medium Access Control (MAC) layer by its 48-bit
MAC address. In a communication, when the network layer
receives a packet from higher layers to send it to a particular IP
address, it checks if the destination address is at the same local
network as that of the sending machine. If so, the packet is
delivered to the Medium Access Control layer that sends it
through the appropriate physical media. For this to happen, it is
necessary that the sender also knows the destination MAC
address.

This management is accomplished by the ARP protocol
that automatically maps IP addresses to MAC addresses and
inserts them into each host inside a temporary table called ARP
cache. When needed, any host can search in its own table to
find address entries. To manage these entries in the ARP cache
there are two messages types: ARP Request and ARP Reply.

If the desired mapping of a MAC address to a specific IP
address is not found in ARP cache, an ARP request is
broadcast to all hosts in the same Local Area Network (LAN)
as the sending host [2]. This message contains the IP and the
sender’s MAC addresses, the type of the message (an ARP
Request) and the target IP address. The ARP request message
reaches all hosts and each one analyzes the frame. If the host's
own IP address is not equal to the target IP address of the ARP
Request message, the host just discards the frame. Conversely,

Rogério Leão Santos de Oliveira, Ailton Akira Shinoda, Christiane Marie

Schweitzer, Rogério Luiz Iope and Ligia Rodrigues Prete¸ Departament of
Electrical Engineering, State University “Julio de Mesquita Filho”, Ilha

Solteira-SP, Brazil, E-mails: rogerio.leao@fatec.sp.gov.br,

shinoda@dee.feis.unesp.br, chris@mat.feis.unesp.br, rogerio@ncc.unesp.br,
ligia.prete@fatec.sp.gov.br. This work is supported in part by the FAPESP

under Grant 2014/06022-9.

if it is equal, then the host sends an ARP Reply message
directly to the sender to inform its MAC address. When the
ARP Reply packet arrives the sender, its ARP cache table is
updated. This procedure is repeated whenever it is necessary to
update the ARP cache tables in various hosts of the LAN. An
example of the ARP request and reply is as follows:

1. Host A wants to send data packets to host D, but host
A only knows the IP address of host D; it should also
know its MAC address.

2. Host A broadcasts an ARP Request with the IP
address of host D as target.

3. All hosts on the local network receive the ARP
Request and check the frame. All hosts discard the
request packet, except host D.

4. Host D replies to A with its MAC address and also
updates its own ARP cache table with the IP and
MAC addresses of host A.

5. Host A receives the response (ARP Reply) from D
and updates its ARP cache table with the IP and MAC
addresses of host D.

6. Now host A and D can deliver packets directly
between them because the ARP cache tables have the
proper mapping addresses.

An important observation is that these entries into the ARP
cache tables are not permanent, so after a short period of time,
around two minutes, the hosts must repeat the previous
procedure and update their ARP cache tables again.

B. ARP cache poisoning attacks and MITM

The ARP cache poisoning occurs when an attacker
maliciously modifies the mapping of an IP address to its own
MAC address on the ARP cache of other hosts [2]. This
technique, also called ARP spoofing, is performed by sending
spoofed ARP Reply messages on the network.

As shown in figure 1, host C that represents the attacker,
sends ARP Reply messages to hosts A and B, mapping its own
MAC address to the IP addresses of each one of the victims.
The frame sent to B contains the IP address of host A and the
MAC address of host C, and the frame sent to A contains the IP
address of host B and the MAC address of host C.

Switch

Host A Host C - Attacker Host B

Arp Reply spoofed Arp Reply spoofed

Fig. 1. Example of an MITM attack.

As a result, hosts A and B will update their ARP cache
tables with the spoofed addresses. So when A sends data
packets to B, these packets will contain the destination
attacker's MAC address, and the same happens when B is

sending data to A. Thus, the attacker stays in the middle of
communication and all traffic between hosts A and B will pass
through him. After reading or copying their contents, the
attacker’s host discreetly forwards data packets to proper
destination, so A and B can normally communicate and maybe
not realize that they are victims of the MITM attack.

C. Software-Defined Networks and the MITM attack

Software Defined Networks have an important feature: the
possibility of programming rules and policies that orchestrates
packet forwarding. These rules are implemented in the
controller that manages all the switches connected to it. This
paper describes a way of mitigating the MITM attack on a local
area network that uses the OpenFlow [3, 4] protocol, by
proposing a mechanism to control the switching of ARP
messages between hosts.

D. Scenario and tests

To generate a realistic testing scenario in a practical way,
we have created a virtual network in an SDN simulator called
Mininet [5, 6, 13] containing: 3 hosts, 1 switch, 1 attacker host
running BackTrack5 [7, 8] Linux operating system and one
POX SDN controller. Figure 2 illustrates this scenario.

In the first test, we configured the L2_learning module in
the POX controller, which implements similar features of a
common layer-2 switch. With the network running, connection
tests were performed between all pairs of hosts using ICMP
echo requests (ping). These tests confirmed the communication
between all pairs of nodes. After a few seconds analyzing
incoming packets in various ports of the switch, the controller
configures flow rules in the switch, so that hosts become able
to exchange information directly. With the rules implemented
in the switch, the packets sent from host A to host B only pass
through the ports where they are connected on switch, so
neither host C nor the attacker host can view these packets.
This self-learning feature is very important because the rules
implemented in the switch allow that the next packets will be
transferred between known hosts, without the need of being
searched in the controller, which increases the network
performance.

Switch

Host A

Attacker BackTrack5

Host B Host C

POX SDN Controller

Fig. 2. Test scenario.

After that, we configured the attacker host to execute the
MITM attack on hosts A and B by using the following
commands:

arpspoof -i eth0 -t 10.0.0.1 10.0.0.2

arpspoof -i eth0 -t 10.0.0.2 10.0.0.1

These commands send ARP Reply messages to hosts A and
B continuously each second, which poison the ARP caches and
the spoofed attacker's MAC address is updated to the victims’s
ARP caches. After this, all communication between the victims
is intercepted by the attacker, which quickly forwards all
packets to the correct destination in order to not be perceived.

III. THE L3-ARPSEC MODULE

The L3-ARPSec module is a set of instructions written in
the Python programming language that runs on the controller.
It proposes a way to control the switching of ARP messages
while mitigates MITM attacks on local area networks. The
following features are fundamental and guide its functioning:

1. No changes are made to the original ARP protocol,
thus no host needs to be configured individually.

2. All the ARP type packets received in any port of the
switch will be forwarded to the controller.

3. Only the controller can send ARP Reply messages;
therefore, no host will reply an ARP Request to
another host directly.

When executed on the controller, the L3-ARPSec module
instantiates two virtual tables: one called ArpTable and another
called ArpTableCandidate. The structures of these tables are
shown in Figure 3.

Fig. 3. ArpTable and ArpTableCandidate structure.

A standard feature of the OpenFlow protocol is that when a
packet arrives at any port of the switch and finds no matching
rule, it is sent to the controller. How the L3-ARPSec module
processes each packet received is shown in the flowchart of
Figure 4 and explained below.

A. Sending all packets to Self-Learning Function.

This function extracts, from the frame header, the source IP
address, the source MAC address and the switch port number
into which this packet entered. Then it seeks an entry in the
ARPTable with the corresponding IP address. On one hand, if
not found, the address is inserted in this table. On the other
hand, if found, the function also seeks the ARPTableCandidate
and inserts it in this second table if not found. The
ARPTableCandidate is used by the Timers to detect attacks and
will be explained in subsection D.

B. IP packet type.

If the packet type is IP, the function seeks an entry in the
ArpTable with the corresponding IP address. If found, the
controller creates a forward rule message containing its own
packet source addresses and destination addresses found in the
table and then sends it to the switch. As a result, all subsequent
packets from the same source and destination address will not
need to go through the controller, but it will be automatically
forwarded by the switch. This flow rule installed in the switch
has a time to live called iddle_time with a standard value set to

20 seconds. It means that if no more packets use this flow rule
in this interval, the switch will discard the flow rule.

Start Packet IN
Send all the packets

to self-learning
function

Is ARP or IP
Packet ?

Is IP/MAC source
 address of packet already on

ARPTable ?

Add IP/MAC to
ARPTable

Is IP/MAC source on
ARPTableCandidate ?

Yes

No

Add IP/MAC to
ARPTableCandidate

No

 Seek destination
IP/MAC in ARPTable.

Found ?

Is IP
Packet

Send flow rule to
switch

Yes

 Is ARP
Request packet

?

Seek target IP/MAC
in ARPTable. Found ?

Yes

Directly answer
with ARP Reply

Yes

Broadcast ARP
Request to all ports

of switch

No

Is ARP
Packet

Send packet to
ARPReplyFlood

detection function.

No

Fig. 4. L3-ARPSec module flowchart.

C. ARP packet type and flooding detection attack.

If the packet type is ARP, the function also checks if it is an
ARP Request. If so, it seeks the target IP address in ARPTable.
If found, it creates an ARP Reply message containing the
corresponding MAC address and sends it directly to the
requesting host. If not found in ARPTable, it broadcasts the
ARP Request message to all ports of the switch. If the ARP
packet represents an ARP Reply message, it is just sent to the
Flooding-ARP Reply detection function. This function
computes the average time interval for the last five packets
received. Moreover, if this value is less than 3 seconds, it
means that an attack has been attempted, because some host is
flooding the network with ARP Reply packets. The reason for
choosing this average time interval is that in a normal situation,
ARP requests are not sent by hosts in large numbers and in
short periods of time. These values represent an initial constant
for the algorithm and can be adjusted in further researches. The
procedure shown in Figure 5 represents the detection algorithm
of this function.

Fig. 5. Flooding-ARP Reply detection procedure.

In this case, a function that temporarily blocks the source
MAC address is invoked. The controller sends a flow rule to
the switch that refuses all packets with the same attacker's
MAC address during two minutes. Also, any entries in

Procedure Flooding-ARP Reply detection (packet)
BEGIN:
 if (MAC address of packet is in ARPReplyFlood) then
 Increase the amount number
 if (amount number is equal to 5) then
 if (average time interval greater than 3) then
 Detected attack/ Block MAC address
 Del MAC address of packet from ARPReplyFlood
 else

Add MAC address of packet to ARPReplyFlood with
time value and amount number = 1

END:

ARPTable or ARPTableCandidate containing the same MAC
address will be deleted.

D. Timers and detection per tables analysis.

In a LAN, it is possible that hosts change their IP addresses,
the connection port on the switch, or even their MAC address.
If the entries in ARPTable and ARPTableCandidate were
permanent, these changes would not be possible and always the
first entry for a host would not allow future modifications. To
avoid this, there is a timeout value in each entry. A function
runs every 25 seconds to delete each entry in both tables whose
timeout has expired. The default timeout value is set to 20
seconds.

In some cases, the Flooding-ARP Reply detection function
explained earlier may be unable to detect the attack, since the
attacker can send ARP Reply messages in fractions of seconds
and the algorithm may fail to detect. Therefore, another
detection mechanism of ARP attacks is to assess the entries in
the ARPTable and ARPTableCandidate.

One automatic function runs every 13 seconds and scans
the tables, looking for entries containing different IP addresses
with the same MAC address. If found, it means that some host
is using its own IP address and trying to impersonate any other
host in the local network. It also denotes that an attack is
occurring and the same blocking function used by the
Flooding-ARP Reply detection function will be invoked,
temporarily blocking the attacker's MAC address. An example
of the suspected entries is shown in Figure 6.

Fig. 6. Suspected entries in ArpTable or ArpTableCandidate.

IV. VALIDATION TESTS

In our tests, the L3-ARPSec module remained stable and
could mitigate MITM attacks and control the switching of ARP
messages in the network.

The tests performed as described in section II, using the
L2_learning module at network controller, demonstrated that
software-defined networks is also susceptible to MITM attack.
Therefore, it was necessary to create a module not only to
efficiently manage the switching of packets, but also to protect
all the hosts from MITM attacks.

Several tests were performed with the L3-ARPSec module
proposed in this paper. First, the basic functionalities were
tested by checking that packets were switched between all
hosts without any problem, proving that the network control
and the mapping of IP and MAC addresses were succeed.

After that, the attacker host executed MITM attacks to
intercept messages from other network hosts. The module L3-
ARPSec could detect the attacks and temporarily isolated the
attacker host. Both the Flooding-ARP Reply detection function
and the analysis periodically made in ARPTable and
ARPTableCandidate were efficient in detecting and reacting to
attacks.

A. Results for Flooding-ARP Reply detection function.

Using the same scenario shown in Figure 2, the attacker
sent ARP Reply messages to the network continuously each
second. The command line used by the attacker was as follows:

arpspoof -i eth0 -t 10.0.0.1 10.0.0.2

Each ARP reply message was received by the switch and
because no rule that could forward them was defined by
default, these ARP packets were sent to the controller. Through
the Flooding-ARP Reply detection function, the L3-ARPSec
module implemented in the controller was counting each
message received and when the fifth identical message has
been computed, the attack was detected.

After the detection, immediately the controller sent a flow
rule to the switch to temporarily block the attacker. The switch
instantly began to discard any packet coming from that sender,
leaving him completely inert in the network for a period of two
minutes. The existing mappings in ARPTable and
ARPTableCandidate virtual tables containing the attacker's
MAC address were also excluded, so that no other host was
fooled by this fraudulent address.

All this traffic was collected for approximately 5 minutes
(300 seconds) and data were compiled in a line graph as shown
in Figure 7.

0

10

20

30

40

50

60

70

0 3 6 66 126 129 132 192 252 255

N
u

m
b

e
r

o
f

p
ac

ke
ts

time (seconds)

Packets received by the switch

attacker

host 1

host 2

host 3

Fig. 7. Packet traffic under ARP flooding-attack.

We can see that hosts 1, 2 and 3 were gradually increasing
the flow of packets sent to the switch. However, the attacker
host during network monitoring has been blocked two times.
As the flooding detection feature counts every five packages
and the attacker was sending one packet every second, the first
blockade occurred in the fifth second. In the next two minutes
after the blockade, the attacker could not send packets, but
when the punishment time finished, the attack started again, as
can be seen in second 126. Again the Flooding-ARP Reply
detection function counted the messages sent by the attacker
and immediately after five packets received, the blockade
occurred again, leaving him punished and inert in the network
for more two minutes.

The values set as two minutes for attacker punishment and
five for the number of packets received represent an initial
choice; future work may use different values in order to
achieve better results.

B. Results for detection function based on timers and tables.

Using the same scenario previously configured, the attacker
performed attacks in a different way. Instead of flooding the
network by sending ARP reply messages constantly every and
each one second, it sends packets at longer intervals,
approximately every 4 seconds.

The attacker sends ARP replies containing its own IP
address (10.0.0.50) and its own MAC address
(00:11:FF:AA:BB:50). In addition to that, it also sends
fraudulent ARP replies containing the IP address of the victim
(10.0.0.1) and again its own MAC address
(00:11:FF:AA:BB:50).

As the attacker sent fraudulent messages in 4-second
intervals, the Flooding-ARP Reply detection function was not
able to detect the attack and the fraudulent mapping was then
installed in ARPTable. After that, any host in the network, that
initiates a communication with the victim host (IP 10.0.0.1),
will do it with the attacker in the middle because the fraudulent
mapping will be replicated on the network.

To solve this problem, a table checking routine was
implemented to execute every 13 seconds, and this strategy
detected the attack. This routine is executed in the module in
such a way that every 13 seconds it scans the tables looking for
mappings with different IP addresses, but with the same MAC
address.

When the attack is detected, the same punishment used by
the Flooding-ARP Reply detection function is invoked,
blocking the attacker for two minutes.

As can be seen in Figure 8, although the attacker has
escaped from the first detection engine of module (the
Flooding-ARP Reply detection function), he was detected two
times by the detection function based on timers and tables
during this second test. As this routine is performed every 13
seconds, blocking action occurs soon after the entry of the
fraudulent mapping in the ARPTable.

0

10

20

30

40

50

60

70

0 5 13 73 133 138 143 203 273 278

N
u

m
b

e
r

o
f

p
ac

ke
ts

time (seconds)

Packets received by the switch

attacker

host 1

host 2

host 3

Fig. 8. Packet traffic under ARPTable attack.

V. OTHER EXISTING SOLUTIONS

Other existing solutions tried to solve the problem of ARP
cache poisoning attacks. Some of them, based on cryptography
[9, 10], have caused serious performance degradation and were
not fully compatible with the standard ARP. The approach
proposed by Tripunitara et al. [11] is not practical since it
would require changes on all hosts in the network. The solution
proposed by Gouda et al. [12] was the most ambitious ones, but
it is limited to static networks and also requires changes on all
hosts in the network and needs complex installations.

All the cited proposals based their solutions on the structure
of traditional networks and not on software-defined networks.
Thus, the module proposed in this paper represents an
innovative approach to solve an old local area computer
network problem.

VI. CONCLUSION AND FUTURE WORK

In the first sections of this paper, we presented the SDN
features and functionalities. After that, we explained the ARP
protocol functioning on a local area computer network. Later,
security attacks were showed on the ARP protocol, in
particular the MITM attack that can compromise both
traditional local area networks and local software-defined
networks.

The possibility of programming the SDN controller opens
opportunities for the development of new features to manage
networks, as we have done in this research. Section three
showed the L3-ARPSec module, a set of instructions that
controls the switching of ARP messages on a local area
network and mitigates the MITM attacks when implemented in
an SDN controller.

We referenced other proposal solutions in section five, and
although we have found several research works related to
attacks on the ARP protocol, we have only found proposals to
solve the problem in traditional networks and not in software-
defined networks.

After performing a series of tests and simulations, we
concluded that the L3-ARPSec module proposed in this paper
achieved its objectives, and it represents an open field of
research to be explored and improved further. Future work
could test this module in larger networks, perform stress tests
and rewrite this module in other programming languages to
support other SDN controllers.

REFERENCES

[1] Siamak Azodolmolky, Software Defined Networking with OpenFlow.
Packt Publishing Ltd, 2013.

[2] Roney Philip, “Securing Wireless Networks from ARP Cache
Poisoning,” (2007).Master's Projects. Paper 131.

[3] M. Nick et al., “OpenFlow: enabling innovation in campus networks”,
ACM SIGCOMM Computer Communication, vol. 38, no. 2, pp. 69-74,
Apr. 2008.

[4] OpenFlow (2013, Jul). OpenFlow 1.3.2 Specification. [Online].
Available:https://www.opennetworking.org/images/stories/downloads/sd
n-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf

[5] L. Bob et al., “A network in a laptop: rapid prototyping for
softwaredefined networks.” In Proceedings of the Ninth ACM
SIGCOMM.

[6] Mininet. (2013, Mar). An Instant Virtual Network on your Laptop (or
other PC). [Online]. Available: http://mininet.org/

[7] Jason Dean, Backtrack. Hachette UK, 2013.

[8] Willie Pritchett, BackTrack 5 Cookbook. Packt Publishing Ltd, 2012.

[9] D. Bruschi, A. Omaghi and E. Rosti, “S-ARP: a secure address
resolution protocol,” in Proceedings of the 19th Annual Computer
Security Applications Conference, December 2003.

[10] W. Lootah, W. Enck and P. McDaniel, “TARP: Ticket-based address
resolution protocol,” in Proceedings of the 21st Annual Computer
Security Applications Conference, December 2005.

[11] M. Tripunitara and P. Dutta, “A middleware approach to asynchronous
and backward compatible detection and prevention of ARP cache
poisoning,” in Proceedings of the 15th Annual Computer Security
Applications Conference, December 1999.

[12] Mohamed G. Gouda and Chin-Tser Huang, “A secure address resolution
protocol” in the International Journal of Computer and
Telecommunications Networking, Computer Networks, Elsevier,
Volume 41, Issue 1, pages: 57-71, January, 2003.

[13] de Oliveira, Rogerio Leao Santos; Schweitzer, Christiane Marie;
Shinoda, Ailton Akira; Ligia Rodrigues Prete, "Using Mininet for
emulation and prototyping Software-Defined Networks,"
Communications and Computing (COLCOM), 2014 IEEE Colombian
Conference on , vol., no., pp.1,6, 4-6 June, 2014.

