Transmissão de sinais CE-OFDM para Reduzir as Distorções IMD de Moduladores Mach-Zehnder em Sistemas DDO-OFDM

Jair A. Lima Silva¹ e Marcelo Eduardo V. Segatto²

1. Instituto Federal do Espírito Santo, Vitória, Brasil 2. Laboratório de Telecomunicações, Universidade Federal do Espírito Santo, Vitória, Brasil E-mail: jsilva@ifes.edu.br

Resumo—Apresenta-se neste trabalho uma proposta de transmissão de sinais OFDM (Orthogonal Frequency Division Multiplexing) com envelope constante (PAPR = 3 dB) para combater as distorções não lineares IMD (Intermodulation Distortion) inseridas pelo modulador Mach-Zehnder (MZM) em sistemas DDO-OFDM (Direct-Detected Optical OFDM) convencionais. Resultados de simulação de um sistema DDO-CE-OFDM (Direct-Detected Optical Constant-Envelope OFDM) a 10 Gb/s, com 768 subportadoras mapeadas em 16-QAM em 3.54 GHz de largura de banda, ilustraram a capacidade da proposta em melhorar o compromisso entre a polarização do MZM e a sensibilidade no receptor óptico.

Palavras-Chave—Multiplexação por divisão de frequências ortogonais, razão potência máxima e potência média, modulador Mach-Zehnder, distorção de intermodulação.

Abstract—A transmission of electrical Orthogonal Frequency Division Multiplexing (OFDM) signals with constant-envelope (PAPR = 3 dB) is proposed in this paper to combat the nonlinear distortions inserted by the Mach-Zehnder optical modulator (MZM) in conventional direct-detection optical OFDM systems. Simulation results of a direct-detection optical constantenvelope OFDM (DDO-CE-OFDM) system at 10 Gbps, with 768 subcarriers mapped 16-QAM at 3.54 GHz of bandwidth, illustrates the capacity of the proposed system to improves the tradeoff between MZM polarization and the optical receiver sensitivity.

Keywords— Orthogonal frequency division multiplexing, peakto-average power ratio, Mach-Zehnder modulator, intermodulation distortions.

I. INTRODUÇÃO

O combate às interferências intersimbólica e intercanal proveniente do uso de artifícios como o intervalo de guarda e a equalização no domínio da frequência justifica a aplicação da técnica de multiplexação por divisão de frequências ortogonais (OFDM) nas linhas de assinante digital ADSL (*Asymmetric Digital Subscriber Line*), na radiodifusão de audio e vídeo DAB (*Digital Audio Broadcasting*) e DVB (*Digital Video Broadcasting*), nas redes locais W-LAN (*Wireless Local Area Network*), entre outros [1], [2]. A tolerância ao atraso por espalhamento multipercurso e as distorções provocadas por canais seletivos em frequência potencializa a modulação OFDM em uma promissora técnica de compensação de dispersão em sistemas de comunicação óptica [3], [4]. O crescente interesse de pesquisadores em sua aplicação em redes ópticas é justificado por vantagens que incluem a compensação eletrônica de

dispersão cromática via equalização de reduzida complexidade e o aumento de eficiência espectral pelo uso de avançados formatos de modulação nas portadoras elétricas [5], [6].

Entretanto, os altos valores de PAPR (*Peak-to-Average Power Ratio*) dos sinais OFDM, caracterizados pela larga escala de variação de amplitude destes, faz com que técnicas como a OFDM sejam extremamente sensíveis às distorções não lineares provocadas por elementos com operação em faixa dinâmica limitada, tais como amplificadores de potência [1]. O Modulador óptico Mach-Zehnder é um dos dispositivos que naturalmente insere tais distorções em sistemas de comunicações OOFDM (*Optical OFDM*), mesmo quando é polarizado na região de máxima linearidade [7].

Ceifamento ou *clipping*, enjanelamento de picos e prédistorção são algumas das mais variadas técnicas de redução da PAPR encontradas na literatura. Entre estas, o ceifamento de pico é a mais empregada pela sua simplicidade de implementação e reduzida complexidade computacional [8], [9]. Uma técnica de transformação denominada CE-OFDM (*Constant-Envelope-OFDM*) vem sendo estudada com devida atenção, uma vez que a mesma reduz a PAPR do sinal para 0 dB modulando a fase de uma portadora elétrica com o sinal OFDM convencional [10], [11]. Embora maximiza a eficiência de amplificadores de potência, assim como as demais, esta técnica de redução da PAPR enfrenta um compromisso que incorpora aumento de complexidade computacional, redução de eficiência espectral e degradação de desempenho [12].

O presente artigo tem por objetivo estender os conceitos da técnica que propomos em [13] para minimizar as não linearidades inseridos pelo MZM em sistemas ópticos IMDD. Os sinais CE-OFDM com PAPR = 3 dB, transmitidos em simulações de um sistema DDO-CE-OFDM a 10 Gbps em 3.5 GHz de largura de banda com 768 subportadoras mapeadas em 16-QAM, reduzem os efeitos das distorções IMD e melhoram o compromisso entre a polarização do MZM e a sensibilidade no receptor óptico de sistemas IMDD multiportadoras. Os conceitos básicos referentes à técnica CE-OFDM são explanados na seção II, enquanto que a sua adaptação para sistemas ópticos IMDD é brevemente descrita na seção III. A análise e discussão de resultados e as conculsões pertinentes são realizados nas seções IV e V respectivamente.

II. CONCEITOS BÁSICOS DA TRANSMISSÃO CE-OFDM

Modular a fase de uma portadora elétrica com um sinal OFDM resulta em um sinal multiportadora OFDM em banda passante com envoltória e potência instantânea constantes. Esta modulação adicional tem como principal vantagem a redução ou até mesmo a anulação da PAPR de sinais multiportadoras [12]. Assim, ao contrário de um sistema OFDM convencional, no sistema CE-OFDM o sinal OFDM x(t) é, depois de transformado em $s(t) = Ae^{j\alpha x(t)}$, na banda passante o sinal y(t) modulado em fase com banda lateral dupla dado por

$$y(t) = \Re\{As(t)e^{j2\pi f_c t}\}$$

= $\Re\{Ae^{j\alpha A_x(t)exp[j\phi_x(t)]}e^{j2\pi f_c t}\}$
= $A\cos[2\pi f_c t + \alpha x(t)],$ (1)

onde A é a amplitude do sinal, f_c a frequência central da portadora e $\alpha = 2\pi h C_N$ a constante que quantifica o desvio de fase, para h o índice de modulação de fase e C_N uma constante de normalização.

A Figura 1 apresenta detalhes do diagrama de blocos do sistema CE-OFDM adequado para a proposta deste artigo e composto por um transmissor (CE-OFDM Tx) e um receptor (CE-OFDM Rx) utilizados em todas as simulações computacionais realizadas.

Fig. 1. Modelo do sistema CE-OFDM simulado.

Conforme ilustrado na Figura 1, ao conjunto de subportadoras X_k previamente mapeadas em um diagrama de constelação de $M = 2^n$ níveis; para n a quantidade de bits por subportadora; é aplicado a simetria Hermitiana para a geração de um sinal OFDM convencional com coeficientes reais na saída do modulador e/ou multiplexador IFFT (*Inverse Fast Fourier Transform*). Na entrada do modulador de fase analógico é concebido o sinal real x(t) proveniente do enjanelamento do sinal serializado e superamostrado x[n], por um filtro conformador do tipo cosseno levantado. Este sinal modula a fase de uma portadora centrada em f_c , gerando assim o sinal OFDM com envelope constante y(t), ao qual adiciona-se ruído Gaussiano branco (AWGN) depois da inserção do prefixo cíclico CP (*Cyclic Prefix*). O resgate do sinal OFDM $\hat{x}(t)$ é realizado por um demodulador de fase mediante aplicação do operador arcotangente arg(.) no argumento da versão em banda base e reamostrada do sinal r(t). Ambiguidades de fase gerados pelo canal são minimizados pelo função *unwrap*¹ do *software* de simulação Matlab. A demodulação OFDM convencional efetua a deteção das subportadoras de informação \hat{X}_k transmitidas.

A. Relação de Compromisso induzido pelo Índice de Modulação de fase h

O papel do índice de modulação de fase h no compromisso entre largura de banda de sinal e desempenho de sistema é de suma importância em sistemas CE-OFDM. A expressão matemática que melhor exprime a largura de banda do sinal CE-OFDM da equação (1) é a definida pelo valor quadrático médio RMS (*root-mean-square*)

$$B_{RMS} = \max(2\pi h, 1)B_W,\tag{2}$$

a qual contabiliza no mínimo 90% da potência do sinal e onde B_W é a largura de banda do sinal OFDM convencional [12]. Conclui-se portanto que, a largura de banda de um sinal CE-OFDM deve ser no mínimo igual à largura de banda do sinal OFDM que o gerou. A dependência da largura de banda com o índice de modulação de fase h é ilustrada na Figura 2, onde também está representada o espectro de potência de um sinal OFDM convencional. Observa-se na Figura 2 que o aumento

Fig. 2. Espectros de potência de sinais CE-OFDM ($2\pi h = 0.2, 0.4, 0.6, 0.8$).

do parâmetro h conduz a um espalhamento espectral que pode causar interferência entre canais adjacentes.

A transmissão de sinais OFDM com envelope constante em um canal com ruído AWGN foi simulada para averiguar o desempenho de sistemas CE-OFDM perante variações do parâmetro h. A Figura 3 mostra o resultado de simulações do sistema proposto para diferentes valores de índice de modulação de fase h para SNR = 10, 12 e 15 dB. Para tal, um frame de 1000 símbolos CE-OFDM de $N_{FFT} + N_{CP} =$ 1024 + 64 = 1088 pontos cada foi transmitido, contendo cada símbolo $N = (N_{FFT}/2) - 1 = 511$ subportadoras, sendo

¹Não representado no diagrama por motivos de simplificação.

 $N_s = 384$ de informação e as restantes zeradas por motivos de superamostragem. A frequência central da portadora, a largura de banda, a taxa de amostragem e a taxa de transmissão do sistema são respectivamente, $f_c = 1.7$ GHz, $B_w = 3.5$ GHz, $F_s = 14$ GHz e $R_b = 10$ Gb/s. A medição da magnitude do vetor de erro EVM (*Error Vector Magnitude*) foi efetuada conforme descrição realizada em [14].

Fig. 3. Desempenho BER versus h e EVM versus h do sistema CE-OFDM em um canal com ruído AWGN para SNR = 10, 12, 15 dB.

Observa-se pela Figura 3 que o desempenho do sistema aumenta com a SNR. O mesmo não acontece com o aumento do parâmetro $2\pi h$. Em todos os valores de SNR considerados o ponto de mínimo EVM ocorre em $2\pi h = 0.8$. A penalidade registrada nos valores abaixo do mínimo é justificado pelo fato do desempenho ser limitado pela *SNR* enquanto que para valores acima deste a justificativa é dada pela inserção de ruídos de fase não lineares inerentes à modulação de fase analógica. Os valores de EVM para o desempenho de um sistema OFDM convencional em canais AWGN são mostrados na Figura 3 a título de comparação.

III. TRANSMISSÃO DE SINAIS CE-OFDM EM SISTEMAS Ópticos IMDD

O transceptor CE-OFDM para sistemas ópticos com modulação de intensidade e detecção direta (DDO-CE-OFDM) aqui proposto é praticamente o mesmo da Figura 1. A pequena diferença reside na inserção do bloco FDE (*Frequency Domain Equalizer*) que, após a remoção do CP, corrige desvios de fase introduzidos no sistema. Através de sinais CE-OFDM conhecidos no receptor, este efetua a multiplicação no domínio da frequência entre os sinais CE-OFDM e um conjunto de coeficientes de um atraso (*one tap*) obtidos com o auxílio da sequência de treinamento. Na configuração *back-to-back*, o sistema emprega um filtro óptico na concepção de um sinal CE-OFDM óptico de banda lateral única. O ruído AWGN é inserido para auxiliar na geração de resultados que dele dependem, tais como a EVM.

A problemática que aqui se levanta é referente a polarização do modulador óptico Mach-Zehnder. Este é um fator deveras impactante no compromisso que envolve as distorções não lineares do próprio MZM e a sensibilidade no receptor em sistemas DDO-OFDM [18]. A função de transferência de potência de um modulador óptico de um "braço"para diferentes pontos de polarização é mostrada na Figura 4. A região central de polarização do MZM compreende os pontos da função característica no intervalo $\frac{V_{\pi}}{2} \leq V_{bias} \leq V_{\pi}$.

Fig. 4. Função característica do modulador óptico Mach-Zehnder.

Percebe-se pela Figura 4 que a polarização no ponto de quadratura $V_{bias} = V_{\pi}/2$, para V_{π} a tensão de chaveamento do MZM, explora a máxima linearidade do modulador sob o desperdício de potência em uma portadora óptica. Reduz-se a potência da portadora² polarizando o MZM em $V_{bias} > V_{\pi}/2$, com a adversidade da inserção de não linearidades no sinal óptico pelo próprio MZM.

Aliada à polarização está a amplitude do sinal OFDM na entrada do MZM, normalmente parametrizado pelo índice OMI (*Optical Modulation Index*) dado por $OMI = (V_{in})_{RMS}/V_{\pi}$, onde $(V_{in})_{RMS}$ define o valor quadrático médio RMS (*rootmean-square*) do próprio sinal elétrico. Quanto maior, maiores serão a sensibilidade no receptor e as distorções não lineares inseridos pelo modulador óptico. Em contrapartida, o predomínio da portadora no sinal óptico na saída do MZM (baixa sensibilidade no receptor) faz-se presente em baixos valores de OMI. A otimização deste compromisso diretamente relacionado ao PAPR torna-se então necessária.

IV. ANÁLISE E DISCUSSÃO DE RESULTADOS

Para avaliar a capacidade do sistema DDO-CE-OFDM em reduzir os efeito das distorções IMD inseridos pelo MZM, simulações numéricas foram realizadas. O desempenho do sistema foi medido pela Figura de mérito EVM variandose o índice de modulacção de fase elétrica h e o índice de modulacção óptica OMI, mediante a transmissão de 100 sinais CE-OFDM ($100 \cdot N \cdot n = 307200$ bits) parametrizados conforme Tabela I.

A. Impacto do índice h no desempenho do sistema

A Figura 5 ilustra os resultados do desempenho do sistema perante a varaição do parâmetro h considerando-se os efeitos do ruído de emissão espontânea ASE (*Amplified Spontaneous Emission*) inseridos por amplificadores ópticos para valores da relação entre a potência do sinal e do ruído ópticos OSNR = 12, 16 e 20 dB.

Pelas curvas de desempenho da Figura 5 consegue-se delinear regiões onde o sistema é limitado por ruído e regiões onde

²Indispensável em sistemas IMDD, embora não carregue informação.

Parâmetros OFDM		
Grandeza	Parâmetro	Valor
Taxa de Transmissão	R _b	10 Gbps
Tamanho da IFFT/FFT	N_{FFT}	2048
Diagrama de Constelação	M	16-QAM
Prefixo Cíclico	CP	$\frac{1}{16}$
Quantidade de Subport.	$N_s = \frac{N_{FFT}-2}{2}$	1023
Subport. de informação	$N = 0.75 \cdot N_s$	768
Largura de Banda Total	$B_{Wt} = \frac{R_b \cdot N_s \cdot (1 + IG)}{N \cdot \log_2(M)}$	3.54 GHz
Espaçamento entre Subport.	$\Delta_f = \frac{B_{Wt}}{N_F FT}$	1.73 MHz
Duração do Símbolo	$T_u = (\Delta_f)^{-1}$	$57.88 \mu s$
Duração do Prefixo Cíclico	$T_g = \frac{1}{16} \cdot T_u$	36.18 ns
Parâmetros do Modulador de Fase Elétrica		
Frequência Central	$F_c = \frac{B_{Wt}}{2}$	1.77 GHz
Fator de Reamostragem	J	8
Taxa de Amostragem	$F_s = J \cdot F_c$	14.15 GSps
Amplitude sinal CE-OFDM	A	1

TABELA I

PARÂMETROS DOS SINAIS CE-OFDM USADOS NAS SIMULAÇÕES.

Fig. 5. Desempenho EVM e BER pelo índice de modulação de fase h do sistema DDO-CE-OFDM com ruído AWGN simulando o efeito ASE.

a limitação ocorre devido às não linearidades do modulador de fase elétrica e do modulador óptico MZM. As constelações ilustradas comprovam este compromisso entre o ruído de emissão espontânea ASE e a não linearidade para $2\pi h =$ 0.2, 0.6 e 0.9 e OSNR = 20 dB. Nota-se na Figura 5 um deslocamento do índice ótimo em função do ruído, que de $2\pi h = 0.6$ mudou para 0.8 para OSNR = 12 e 20 dB respectivamente. Já nas curvas de taxa de erro de bits BER ³ (*Bit Error Rate*) por OSNR, este índice manteve-se em $2\pi h = 0.7$, o que justifica a escolha deste valor como índice de modulação de fase elétrica. É importante informar que o índice de modulação óptico dos sinais CE-OFDM na entrada do óptico MZM utilizado nestas simulações foi OMI = 0.08.

B. Relação Polarização do MZM e o Índice OMI

A intensidade da portadora óptica inerente aos sistemas IMDD; através do parâmetro razão de potência entre a portadora e o sinal $CSPR = 10 \log_{10} \left(\frac{P_p}{P_s}\right)$, para P_p a potência da portadora e P_s a potência do sinal OFDM óptico SSB; reveste-se de prima importância no desempenho do sistema DDO-CE-OFDM. A predominância do portadora óptica no sinal para altos valores de CSPR (Carrier-to-Signal Power Ratio) conduzem à baixa sensibilidade no receptor, enquanto que baixos CSPR's provocam distorções não lineares provenientes da curva característica do MZM. Em sistemas DDO-OFDM convencionais, este deve ser fixado em 0 dB mediante polarização do MZM no ponto de quadratura $V_{bias} = V_{\pi}/2$, [18]. Entretanto, a literatura recomenda polarizar o modulador óptico em $V_{bias} > V_{\pi}/2$ conforme ilustrado na Figura 4 [7]. Assim, a igualdade das potências da portadora óptica e do sinal OOFDM só é alcançada com adequada escolha do valor RMS do sinal OFDM óptico pelo parâmetro OMI. É com o objetivo de otimizar este compromisso entre não linearidade do MZM e sensibilidade no receptor que avaliações de desempenho do sistema proposto foram realizadas para diversos pontos de polarização do modulador e índices de modulação óptico OMI. Os resultados da Figura 6 foram obtidos em simulações do sistema DDO-CE-OFDM parametrizado conforme Tabela I para OSNR = 20 dB e $2\pi h = 0.7$.

Fig. 6. Desempenho EVM e BER pelo índice de modulação óptico OMI do sistema DDO-CE-OFDM proposto, para diferentes polarizações do MZM. A Figura interna mostra o desempenho EVM por OMI na configuração *backto-back* óptico para OSNR = 20 dB e $2\pi h = 0.7$.

A Figura 6 mostra que o ponto de melhor desempenho do sistema proposto depende da polarização e do OMI aplicado ao sinal de entrada do MZM. Nas curvas de $V_{bias} = 0.9V_{\pi}, 0.8V_{\pi}$ e $0.5V_{\pi}$, os valores ótimos foram encontrados em OMI = 0.05, 0.1 e 0.25 respectivamente. Observa-se pela Figura 6 que o desempenho do sistema diminui drasticamente com o aumento do OMI em ambas as curvas de polarização $V_{bias} = 0.8V_{\pi}$ e $V_{bias} = 0.9V_{\pi}$, sendo que na última, isto acontece nos valores $OMI \ge 0.15$. Esta queda é mais acentuada a partir do OMI = 0.35 quando o MZM é polarizado em $V_{bias} = 0.5V_{\pi}$. As não linearidades aqui citadas explicam

³Obtida pela contagem direta de erros entre os bits transmitidos e recebidos.

este decrescimento, enquanto que a sensibilidade do receptor justifica a limitação da capacidade do DDO-CE-OFDM na região da curva $V_{bias} = 0.5V_{\pi}$ para $OMI \leq 0.25$.

Os resultados mostrados na Figura 7 ilustram uma comparação do desempenho EVM por OMI entre os sistemas DDO-OFDM ⁴ e DDO-CE-FDM sendo ambos parametrizados conforme Tabela I e com $V_{bias} = 0.5V_{\pi}$ e OSNR = 15 dB.

Fig. 7. Comparaccão dos desempenhos EVM e BER por OMI dos sistemas DDO-OFDM e DDO-CE-OFDM para OSNR=15 dB e $V_{bias}=0.5V\pi$.

Nota-se pela Figura 7 que a tolerância às não linearidades inseridas pelo MZM do sistema proposto é maior que o DDO-OFDM convencional, podendo alcançar 7 dB nas curvas EVM por OMI, para OMI = 0.45. Isto deve-se principalmente pela reduzida PAPR de sinais característicos do sistema DDO-CE-OFDM, uma vez que sinais moduladores com PAPR = 3 dB permitem explorar melhor a região linear do MZM, que aqueles cujo $PAPR \ge 11$ dB. Esta justificativa pode ser melhor esclarecida pelas equações,

$$I_{el}(t) = RP(t) = RP(t) \cdot \frac{2P_m}{2P_m} = 2RP_m \cdot \frac{P(t)}{2P_m}$$
 (3)

$$P_{el} = \varepsilon \left[I_{el}^2(t) \right] = 4R^2 P_m^2 OM I^2 \tag{4}$$

$$P_{el} = 4R^2 P_m^2 \cdot \frac{\epsilon_\pi}{\left(V_p^2 \cdot PAPR\right)}$$
(5)

$$P_{el} = \frac{R^2 P_m^2}{PAPR} \tag{6}$$

obtidas em [16], que relacionam a potência média do sinal elétrico na recepção P_{el} e corrente no fotodetector I_{el} com as potências óptica média P_m e recebida P(t) e com o $OMI = (V_{in})_{RMS}/V_{\pi} = P(t)/(2P_m)$ e o $PAPR = V_p^2/(V_{in})_{RMS}^2 = V_p^2/(OMI^2V_{\pi}^2)$, para R e $V_p = V_{\pi}/2$, a reponsitividade do fotodetector e o valor de pico do sinal de entrada do modulador óptico, respectivamente. É evidente que a sensibilidade no receptor do sistema proposto é maior que a do sistema DDO-OFDM convencional, pois seu PAPR = 3 dB fixa a potência recebida da relação (15) em $P_{el} = R^2 P_m^2/2$, maior que aquela do sistema convencional cujo PAPR normalmente ultrapassa os 11 dB.

⁴Os blocos de um sistema DDO-OFDM convencional são todos aqueles representados antes do filtro de transmissão e depois do filtro de recepção do diagrama ilustrado na Figura 1.

V. CONCLUSÕES

Um sistema DDO-CE-OFDM que fixa em 3 dB a PAPR de um sinal OFDM com envelope constante para ser usado pelo modulador óptico externo Mach-Zehnder com o objetivo de combater não linearidades inseridas pelo próprio MZM em sistemas DDO-OFDM convencionais foi proposto neste artigo. Resultados de simulação do sistema a 10 Gb/s em uma largura de banda igual a 3.54 GHz, composta de 768 subportadoras mapeadas em 16–QAM demonstraram a capacidade do mesmo em amenizar o compromisso entre a polarização do MZM e a sensibilidade no receptor, polarizando o modulador óptico em quadratura com os sinais OFDM com envelope constante, ampliando assim a faixa de variação do índice de modulação óptica OMI de sistemas DDO-OFDM comuns.

REFERÊNCIAS

- L. Hanzo, W. Webb, T. Keller, Single- and Multi-carrier Quadrature Amplitude Modulation: Principles and Applications for Personal Communications, WLANs and Broadcasting, John Wiley and Sons, 2000.
- [2] S. Hara, R. Prasad, Multicarier Techniques for 4G Mobile Communications, Artech House, 2003.
- [3] W. Shieh, I. Djordjevic, Orthogonal Frequency Division Multiplexing for Optical Communications, Elsevier, 2010.
- [4] W. Shieh, C. Athaudage, "Coherent optical orthogonal frequency division multiplexing", *Electron. Lett.*, v. 42, pp 587–589, 2006.
- [5] A. J. Lowery, J. Armstrong, "Orthogonal-frequency-division multiplexing for optical dispersion compensation", in Proceedings of Opt. Fiber Commun. Conf. Paper OTuA4, 2007.
- [6] S. L. Jansen, I. Morita, N. Takeda, H. Tanaka, "20-Gb/s OFDM transmission over 4160-km SSMF enabled by RF-pilot tone phase noise compensation,"in Proceedings of Opt. Fiber Commun. Conf. Paper PDP15, 2007.
- [7] A. Ali, J. Leibrich, W. Rosenkranz, "Spectrally efficient OFDMtransmission over single-mode fiber using direct detection", in Proceedings of the 13th International OFDM-Workshop, pp 1–5, 2008.
- [8] S. H. Han, J. H. Lee, "An Overview of Peak-To-Average Power Ratio Reduction Techniques for Multicarrier Transmission,"*IEEE Wireless Communications*, 2005.
- [9] A. N. D'Andrea, V. Lottici, R. Reggiannini, "Nonlinear predistortion of OFDM signals over frequency-selective fading channels,"*IEEE Trans. Commun.*, v. 5, pp 837–43, 2001.
- [10] S. C. Thompson, J. G. Proakis, J. R. Zeidler, "Contant envelope binary OFDM phase modulation,"*IEEE Milcom*, v. 1, pp 621–26, 2003.
- [11] S. C. Thompson, A. U. Ahmed, J. G. Proakis, J. R. Zeidler, "Contant envelope binary OFDM phase modulation: Spectral Containment, signal space properties and performance,"*IEEE Milcom*, v. 2, pp 1129–1135, 2004.
- [12] S. C. Thompson, A. U. Ahmed, J. G. Proakis, J. R. Zeidler, M. J. Geile, "Constant Envelope OFDM,"*IEEE Transactions on Communications*, v. 8, 2008.
- [13] Jair A. L. Silva, Tiago Alves, Adolfo Cartaxo Marcelo E. V. Segatto,"Experimental Demonstration of a Direct-Detection Optical Constant Envelope OFDM system,"SPPCOM2010 Signal Processing Photonic Communication, Germany, 2010.
- [14] SILVA J. A. L., Segatto M. E. V., "Avaliação de efeitos Não Lineares em Sistemas OFDM pela Figura de Mérito EVM", XXVII Simpósio Brasileiro de Telecomunicações, Blumenau/SC, 2009.
- [15] B. J. C. Schmidt, A. J. Lowery, J. Armstrong, "Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM,"*IEEE Journal of Lightwave Technology*, v. 26, no 1, 2008.
 [16] W. Peng, X. Wui, V. Arbab, K. Feng, B. Shamee, L. Christen, J.
- [16] W. Peng, X. Wui, V. Arbab, K. Feng, B. Shamee, L. Christen, J. Yang, A. Willner, S. Chi "Theoretical and Experimental Investigations of Direct-Detected RF-Tone-Assisted Optical OFDM Systems,"*IEEE Journal Lightwave Technology*, v. 27, no 10, 2009.
 [17] S. L. Jansen, I. Morita, T. C. W. Schenk, H. Tanaka, "121.9-Gb/s PDM-Direct Direct Proceedings of the PDM-Direct Proceeding of the PDM-Direct Proceeding of the PDM-Direct PDM-
- [17] S. L. Jansen, I. Morita, T. C. W. Schenk, H. Tanaka, "121.9-Gb/s PDM-OFDM transmission With 2-b/s/Hz Spectral Efficiency Over 1000-km of SSMF,"*IEEE Journal Lightwave Technology*, v. 27, no 3, 2009.
- [18] J. Leibrich, A. Ali, H. Paul, W. Rosenkranz, K. Kammeyer, "Impact of Modulator Bias on the OSNR Requirement of Direct-Detection Optical OFDM,"*IEEE Photonics Technology Letters*, v. 21, no 15, 2009.