Identificação de sistemas aplicada a parametrização do potencial de ação de neurônios

Pedro H. S. Rodrigues, Marcio Eisencraft e Maria D. Miranda

Resumo— O sinal elétrico gerado pela diferença de potencial entre o interior de um neurônio e seu meio extracelular é chamado de potencial de ação ou *spike*. Neste artigo é apresentado uma forma de parametrização de potenciais de ação captados por eletrodos no meio extracelular. A parametrização é feita utilizando-se os coeficientes obtidos pela identificação do sistema usando um modelo não-linear polinomial. É relevante notar que as parcelas candidatas mais significativas do modelo utilizado aqui são aquelas com termos lineares.

Palavras-Chave—Sinais Neuronais, potenciais de ação, parametrização, identificação de sistemas.

Abstract— The electrical signal generated by the potential difference between the inside of a neuron and its extracellular environment is called the action potential, or *spike*. This paper presents a parametrization technique for the spikes recorded by extracellular electrodes. The parametrization is done using the coefficients obtained by system identification using a non-linear polynomial model. It is worth noting that the most significant candidate addends of the considered model are those with linear terms.

Keywords— Neural signals, action potentials, parametrization, system identification.

I. INTRODUÇÃO

Os pulsos elétricos neuronais são chamados de potenciais de ação ou *spikes* [1]. Neste artigo é apresentado uma forma de parametrização de *spikes* captados por eletrodos no meio extracelular. Apesar dos *spikes* terem quase sempre o mesmo formato e amplitude, o meio entre o interior do neurônio e o eletrodo o distorce resultando sinais diferentes para neurônios diferentes [2], [3]. A parametrização dos sinais neuronais é parte do processo de agrupamento e classificação, fundamentais quando um eletrodo capta o sinal de múltiplos neurônios [2], [4]. A parametrização proposta, baseada em modelos não-lineares polinomiais, pode servir como alternativa aos coeficientes *wavelets* usados por Quiroga et al. [4] e os coeficientes de reflexão usados por Sarinho et al. [3].

Na Seção II descreve-se resumidamente o conjunto de sinais utilizados. Na Seção III introduzem-se as técnicas de identificação de sistemas empregadas. Os resultados obtidos são descritos na Seção IV e finalmente na Seção V algumas conclusões são traçadas.

Pedro H. S. Rodrigues e Marcio Eisencraft, Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André. Maria D. Miranda, Departamento de Telecomunicações e Controle, Escola Politécnica da Universidade de São Paulo, São Paulo, Brasil, Emails: pedro.rodrigues@aluno.ufabc.edu.br, marcio.eisencraft@ufabc.edu.br, maria@lcs.poli.usp.br.

Fig. 1. Registros de três diferentes potencial de ação extracelulares. A amplitude está em unidade arbitrária (u.a.)

II. SINAIS UTILIZADOS

Neste artigo, usam-se *spikes* captados de forma extracelular, isto é, sem que o eletrodo penetre no neurônio. Utilizam-se sinais disponibilizados por Rutishauser et al. [2] já detectados, alinhados e amostrados a uma taxa de 100 kHz. Cada sinal é composto por 256 amostras.

Na Figura 1 são mostrados três diferentes *spikes* que são usados como exemplos aqui [2].

III. O MODELO POLINOMIAL

Neste trabalho utiliza-se um modelo polinomial para identificação de sistemas [5]. Sendo t a variável de tempo discreto e y(t) as amostras do potencial de ação medido, utilizou-se um modelo linear nos parâmetros com monômios envolvendo y(t-1), y(t-2) e y(t-3). Assim, o valor estimado de y(t), representado por y'(t), é expresso por

$$y'(t) = \theta_0 + \sum_{i=1}^3 \theta_i y(t-i) + \sum_{i=1}^3 \sum_{j=i}^3 \theta_{ij} y(t-i) y(t-j)$$
(1)
$$+ \sum_{i=1}^3 \sum_{j=i}^3 \sum_{k=j}^3 \theta_{ijk} y(t-i) y(t-j) y(t-k) + e(t)$$

em que e(t) é o ruído de medição. Foi escolhido três termos para a regressão com base em trabalhos anteriores [6]. As simulações mostraram que este modelo de sistema gera sinais muito próximos dos medidos.

A estrutura da Eq. (1) pode ser também representada como

$$y'(t) = \sum_{k=1}^{n_{\theta}} p_k(t)\theta_k + e(t)$$
(2)

em que $p_k(t)$ corresponde aos diferentes monômios e os θ_k são os respectivos parâmetros e, neste modelo, $n_{\theta} = 20$.

Escrevendo a Eq. (2) na forma matricial, obtém-se

$$\mathbf{y}' = P\boldsymbol{\theta} + \mathbf{e},\tag{3}$$

em que $\mathbf{y}' = [y'(1), \dots, y'(N)]^T$, $\mathbf{e} = [e(1), \dots, e(N)]^T$, $\boldsymbol{\theta} = [\theta(1), \dots, \theta(n_{\theta})]^T$, T indica transposição, N = 256 é o número de amostras dos sinais medidos e P é a matriz Nx n_{θ} de regressores do modelo

$$P = \begin{bmatrix} p_1(1) & p_2(1) & \cdots & p_{n_{\theta}}(1) \\ p_1(2) & p_2(2) & \cdots & p_{n_{\theta}}(2) \\ \vdots & \vdots & \vdots & \vdots \\ p_1(N) & p_2(N) & \cdots & p_{n_{\theta}}(N) \end{bmatrix}.$$
 (4)

A solução deste problema de mínimos quadrados é dada por [7]:

$$\boldsymbol{\theta}_{\text{LS}} = \left(P^T P \right)^{-1} P^T \mathbf{y}.$$
 (5)

Nesta solução, pode-se evitar problemas de mal condicionamento utilizando-se fatoração QR da matriz P [5], [7].

O modelo polinomial utilizado resulta em um número grande de parâmetros associados às parcelas. Pode-se determinar as parcelas mais significativas para o modelo usando um critério de detecção de estrutura, como a taxa de redução de erro (*Error Reduction Ratio* ou ERR) [5]. O ERR de cada parcela candidata é um número que indica a melhoria obtida na representação do sistema devido à sua inclusão no modelo. Assim, retém-se no modelo apenas as parcelas com maior ERR.

IV. RESULTADOS

Como sinais experimentais, utilizaram-se os *spikes* mostrados na Fig.1 somados a ruído branco gaussiano com relação sinal-ruído 40 dB.

Utilizou-se a técnica descrita na Seção III para obter um modelo polinomial para o sistema que gera cada um destes sinais. Calculando-se a ERR para cada parcela como definido em [5], verificou-se que os parâmetros com maior relevância são os que correspondem aos monômios y(t - 1), y(t - 2) e y(t - 3). O resultado do ERR para estas três parcelas foi pelo menos duas ordens de grandeza maiores do que para as demais.

Tem-se assim um resultado relevante: *apesar de ter-se iniciado com um modelo não-linear, conclui-se que, neste contexto, o melhor modelo para estes sinais é o modelo linear*

$$y'(t) = \theta_1 y(t-1) + \theta_2 y(t-2) + \theta_3 y(t-3).$$
(6)

Os valores obtidos para os parâmetros $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3]^T$ estão mostrados na Tabela I. Na Figura 2 são mostrados o

TABELA I Parâmetros para os sinais da Figura 1

Spikes da Fig. 1	θ_1	θ_2	θ_3
Spike 1	1,6831	-0,4063	-0,2818
Spike 2	1,4563	0,0426	-0,5039
Spike 3	1,3990	0,1661	-0,5748

sinal resultante da aplicação do modelo para os *spikes* da Figura 1 para prever, a cada amostra, o valor seguinte do sinal juntamente com o erro da modelagem.

Fig. 2. *Spikes* gerados pelo modelo da Eq. (6) com os parâmetros da Tabela I: (a) *Spike* 1, (b) *Spike* 2, (c) *Spike* 3.

V. CONCLUSÕES

Neste trabalho obteve-se uma parametrização dos *spikes* medidos no meio extracelular utilizando-se um modelo polinomial. Verificou-se que um modelo linear é adequado para a predição de um passo destes sinais. Estes parâmetros podem vir a ser usados como alternativa integrados a métodos de classificação e agrupamento de *spikes*. Futuramente, será feita a comparação destes resultados com outras técnicas da literatura, como o modelo não-linear racional.

AGRADECIMENTOS

P.H.S.R. agradece ao Programa de Iniciação Científica da UFABC (PIC/UFABC) e M.E. agradece ao CNPq pelo financiamento. Os autores agradecem à Profa. Denise Consonni pelo apoio no início do trabalho.

REFERÊNCIAS

- P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. *The MIT Press*, 2001.
- [2] U. Rutishauser, E. M. Schuman and A. N. Mamelak, Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo, *Journal of Neuroscience Methods* v. 154, pp. 204–224, 2006.
- [3] N. Sarinho, M. Eisencraft, R. Suyama, E. Fonoff and M. D. Miranda, The use of least squares lattice algorithm in the parameterization and sorting of action potentials signals. In: SPIE Microtechnologies, 2011, Prague. *Proceedings of SPIE*, v. 8068. pp. 1–7, 2011.
- [4] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering, *Neural Comput.* v. 16, n. 8, pp. 1661–1687, 2004.
- [5] L. A. Aguirre, Introdução à Identificação de Sistemas: técnicas lineares e não-lineares aplicadas a sistemas reais, *Editora da UFMG*, 3^a edição, 2007.
- [6] L. A. Aguirre, S. A. Billings, Validating Idetified Nonlinear Models with Chaotic Dynamics, International Journal of Bifurcation and Chaos, v. 4(1), pp. 109–125, 1994.
- [7] S. M. Kay, Fundamentals of statistical signal processing: estimation theory, *Prentice-Hall, Inc.*, Upper Saddle River, NJ, USA, 1993.