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Vessel Classification through Convolutional Neural
Networks using Passive Sonar Spectrogram Images
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Abstract— Vessel classification is an extremely important task
for coastal areas security and surveillance. Currently, this task
relies on Synthetic Aperture Radar (SAR) images but gathering
these images is expensive and often prohibitive. In this paper,
we propose using spectrograms containing characteristic sound
noise records of each vessel acquired from a single passive sonar
device as an input to a convolutional neural network, which
performs the classification. The main advantage of our method
is its simplicity and low cost development due to the nature of this
kind of data. Furthermore, our proposal can be used alongside
other SAR-image-based method, potentially improving results of
the overall classifier.

Keywords— convolutional neural networks, classification, ma-
chine learning, security, surveillance, image processing, passive
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I. INTRODUCTION

Vessel classification is an essential task for coastal areas
security and surveillance, being indispensable for the military
forces, in particular, the Marine. A device capable of iden-
tifying the class or type of a ship would assist on a wide range
of situations, such as nation coastal defense, war, or simply
keeping records of a less monitored channel, as in [1].

Classification of marine vessels is not a recent problem, and
different techniques were developed over the years to address
it. However, most of them rely on Synthetic Aperture Radar
(SAR) images combined either with classical machine learning
algorithms [2], [3] or with deep neural networks techniques in
more recent approaches [1], [4]-[6].

Recently, the popularization of convolutional neural
networks (CNN) set a new level on the state-of-the-art results
not only in image processing tasks, for which it was originally
developed [7], [8], but also in audio [9], voice [10] and
others. The CNN structure is loosely based on the human
visual cortex, that allows hierarchical extraction of images
attributes [11], from simple low level features such as border
and edge detection to complex abstractions like gender and
object type.

Naturally, there is a growing trend over the last years of
applying CNN to vessel detection and classification [1], [4]-
[6]. However, those methods rely on SAR images, which are
difficult to acquire, thus imposing a high cost. The present
work proposes spectrograms obtained from passive sonar
recordings, which contains characteristic sound noises of the
ships, as input to the network model, instead of the expensive

Lucas P. Cinelli, Gabriel S. Chaves, Markus V. S. Lima, Federal Uni-
versity of Rio de Janeiro (UFRJ) / Polytechnic School (Poli) / Program of
Electrical Engineering (PEE) / Signal Multimedia and Telecommunications
(SMT), Rio de Janeiro - RJ, Brazil, E-mails: { lucas.cinelli, gabriel.chaves,
markus.lima} @smt.ufrj.br.

SAR images. These recordings make the development and
implementation costs cheaper, since they are easily obtained
through hydrophone measurements.

Spectrogram usage is very common in many other areas.
For example, numerous applications in audio processing use
the spectrogram on convolutional neural networks [11], [12].
These works aim to identify characteristic patterns from a
determined sound source, essentially the same problem faced
in ship classification. It is worthwhile to emphasize that, like
musical instruments, each vessel has its own characteristic
sound, its signature.

This paper’s outline is as follows. In Section II, general
concepts about neural network, CNN architectures and the
motivation behind this type of network are presented. In
Section III, we explain how the database was originally gene-
rated. In Section IV, we address the experimental procedure,
the baseline models, and the different CNN configurations
employed. In Section V, we present and discuss the results
and, for last, the conclusions are drawn in Section VI.

II. NEURAL NETWORKS

The atomic unit in a neural network is the neuron. This
structure computes the weighted sum of its inputs and applies
a nonlinear function on the result, such non-linearity varies ac-
cording to the application at hand. A set of non-interconnected
neurons defines a layer, hence they operate independently and
simultaneously [13].

Output

Inputs Hidden Layers

Fig. 1: Simple neural network diagram.

Figure 1 illustrates a simple neural network. This figure
shows a dense network, where all the neurons in the same
layer are fully connected with those in the previous layer. One
can notice that the network depicted has 5 inputs and 3 layers,
where the middle ones are called hidden layers and the last one
is the output. The number of layers determines the network
depth [14].

Neural networks have the capacity to approximate any
continuous function, depending on the chosen parameters [15],
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Fig. 2:

through a process called learning. This is an advantage when
using this class of algorithm: the capacity of learning functions
that represent specific types of data (used for training the
network) with a given precision [15].

A. Convolutional Neural Networks (CNNs)

Convolutional neural networks are so called because they
rely on convolutional layers to extract features from the input.
This type of network is often used in image processing, since
CNNs assume their inputs are graphical representations of
some kind and build into the architecture a priori knowledge,
such as translation invariance. Hence, they are capable of
extracting patterns more easily. Nonetheless, CNNs already
found widespread use with many others input types [12], [16].
Convolutional networks are generally combined with standard
neural networks; while the former extracts the features of
interest, the latter, generally comprised of one or more layers
at the end of the network, is responsible for classifying the
data [17].

A convolutional layer consists of several independent filters
that operate locally on its inputs. Each filter kernel slides
through the whole input with the desired stride computing
the inner product with the overlapping region at each given
position, that is, it implements a 2D convolution. The output
positions and values compose an activation map, from which
the most relevant regions may be extracted, for each filter, and
fed as input to the next layer, possibly convolutional [17].

The other cornerstone of CNNs is the pooling layer, res-
ponsible for locally aggregating information. They consist of
filters that operate independently on each channel (feature
map), differently from filters in convolutional layers, which
operate simultaneously on all channels. Pooling layers shrink
the image dimension through a predetermined statistic cri-
terion by replacing the information present in an individual
pool by a single value, most commonly its maximum or
average. This procedure renders the model less complex [17]
and progressively selects the most relevant features.

A typical convolutional neural network, with all the layers
presented so far, is shown in Figure 2.
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Common schematic for a CNN.

III. DATABASE

The database comprises 263 runs' divided in 8 different
classes (A, B, C, D, E, F, G, H). Each class has among 2
and 5 distinct vessels and number of runs varying from 19 to
66. Each run was discretized with a sampling rate of Fs =
22.05 kHz and 16 quantization bits [18].

Acoustic data of the underwater channel were recorded by
a submerse hydrophone while a single vessel traversed the
acoustic ray. The measurement conditions were the kept as
controlled and constant as possible during the experiment. For
more details refer to [18].

From the audio signals, their 4096-point Fourier Transforms
were computed using a non-overlapping Hanning window of
the same size and from the 4096 output bins, only the magni-
tude of the first 557 bins were considered, which corresponds
to a 0 — 3 kHz range in the original frequency domain.
This range was chosen because it contains relevant vessel-
specific information, whereas higher frequencies are related
to more general features [18]. Next, a Two Pass Split Window
(TPSW) algorithm estimates the background noise, which is
then removed [19]. Finally, the power spectrum of the resulting
signal is normalized so that its energy sums to unity [18]. At
the end, there are 263 matrices of size L x 557, which are the
spectrograms for all runs, and where the length L depends on
how many windows fit the original audio. A block diagram
representing the preprocessing steps is depicted in Figure 3.

Acquired signal . .
Cquired signa » Hanning »| 4096-points
window FFT *l

X
X
/_\_/

Processed signal

<—|Normalization TPSW

Fig. 3: Block diagram of the preprocessing steps.

It is worth mentioning that the database is highly unbalanced
both in number and duration of the runs through the classes.
Thus, possibly leading to a classifier heavily biased towards
the dominant classes. This issue is addressed, as described in

'A run is the acoustic noise recording of a ship navigating through a
predefined route, called acoustic ray, maintaining the same operation condition
throughout the whole course.
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Fig. 4: Network channel inputs.

Section IV, so as to guarantee equally probable class sampling
during training.

IV. EXPERIMENTAL PROCEDURE

As detailed in Section III, the database consists of 263
spectrograms with 557 frequency bins each. Their vertical axes
carry temporal information about the run while the horizontal
axes, frequency information about the underwater channel
during the vessel transit. However, we do not input all temporal
bins of a run to the network at once. Instead, we split it in
as many H-length spectrograms as possible, by sampling with
an H-length temporal window either densely (in training) or
without overlap (in test), thus resulting in several different
H x 557 matrices.

As baseline models for our experiment, we employ a
simple multilayer perceptron (MLP) with no hidden layers
and another with a 512-neuron hidden layer, hereafter named
MLPO and MLPI, respectively. Their inputs are the flattened
(1D) windowed matrices of length 21, which approximately
corresponds to a 4-second time frame. The length value choice
is related to the duration of the briefest runs. We set the
learning rate to 1 x 1072, and weight decay to 3 x 1073,

The convolutional networks designed use as the final classi-
fier an MLP with a softmax, a widely used function for multi-
class problems. The loss function minimized by the network
during the learning phase is

H(p,q) ==Y p(x)logq(z), (1)

and is known as cross-entropy, where p(x) is the probability
density function over the labels and ¢(x) its estimation. The
cross-entropy is commonly used in classification problems
due to its convergence properties over the mean squared
error cost function. The optimizer we use is the ADaptive
Momentum (ADAM), a first order gradient descent algorithm
that adaptively tune the learning rates for each parameter
during training [20]. ADAM is one of, if not, the most
frequently used optimizer on CNNs. Learning rate and weight
decay are set to 3.85 x 1073 and 8.9 x 1073, respectively.
Moreover, we train all models for 70 epochs and divide the
learning rate by 10 every 30 epochs. It is worth mentioning
that even though hyperparameters may be the same, results of
different simulations are never exactly equal because sampling
and weights’ initialization are both stochastic.

We split the 263 runs of the database into 3 disjoint sets:
training, validation, and test, following the proportion 70%,
15%, and 15%, respectively. In order to address the database
unbalance issue, sampling is performed in a stratified random
fashion which aims to render all classes equiprobable. After a
full run is selected, a window sample of length L is chosen.
The window position is drawn from a uniform distribution.
This approach guarantees independence between the 3 sets.
Sample manual separation is impracticable, because it is hard
to correctly evaluate each run in a way to create representative
sets for validation and test.

We have evaluated the use of up to three input channels,
of which the spectrogram is just the first of them. The other
two are delta frequency images, and delta-delta frequency
images [21]. These data are the results of operations on the
base spectrum, and, essentially, correspond to different-order
derivatives. Since spectrograms exhibit, for the most part, a
static view of the system, these new features somewhat capture
the dynamics of it. An example of all 3 channels for the same
original recording (class F, ship 1) is depicted in Figure 4.

The sequence of operations of the proposed CNN architec-
ture, hereafter called VesselNet, is detailed below:

1) 2d convolution: 32 filters with size 4 x 512;

2) Batch Normalization;

3) RelLU;

4) Max Pooling: 3 x 4 kernel with stride of 3 x 2;
5) 2d convolution: 32 filters with size 3 x 2;

6) Batch Normalization;

7) ReLU;

8) Max Pooling: 2 x 3 kernel with stride of 1 x 3;
9) Fully connected: 128 neurons;
10) ReLU;
11) Output: 8 classification neurons;

where ReLU is the Rectified Linear Unit, the nonlinear
element-wise function used [22], and Batch Normaliza-
tion [23], a technique that improves the network stability
by normalizing the layers’ activations to zero mean and unit
variance, and is widely used, specially for deeper networks.
Although different from the VesselNet, the network in Figure 2
depicts how the above operations are interconnected.

One may notice that filters, particularly those in the first
layer, are larger along the horizontal axis. This property
results in filters less invariant to horizontal translations and,
consequently, more sensitive to large frequency variations, a
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fundamental aspect in distinguishing different classes.

V. RESULTS

This section presents and discusses the results obtained by
the different studied algorithms.

Firstly, we analyze whether the use of delta (and delta-delta)
features improve performance. One should notice that using
more channels forcefully implies in considerably increasing
the number of parameters and thereby the network complexity,
specially in the MLP case, which may actually degrade the
performance. We achieved the best results for the MLPO
baseline model when using 2 channels (spectrogram and delta
frequency), reaching 79.5% average precision on the valida-
tion set with the no-hidden-layer MLP. Nevertheless, such
configuration produces scattered decisions with a reasonable
amount of mistakes throughout several classes, as we observe
in the confusion matrix of Figure 5. The confusion matrix is a
graphical representation of the model’s performance in which
the horizontal axis exhibits the predicted labels and the vertical
axis the true labels. In this way, good classifiers are related to
diagonal dominant confusion matrices.
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Fig. 5: MLPO baseline confusion matrix on validation.

As for the MLP, VesselNet attained best results when using
on the same 2 channels as input (spectrogram and delta
frequency). It reaches 83.9% average precision on validation,
a score 4.4% higher, which corresponds to an 5.5% improve-
ment over the MLPO baseline. The network’s inference time
is 10 ms for an input dimension of 21 x 557, that is, a 21-
length temporal window. We notice from Figure 6 that the
VesselNet classification is less disperse, the misclassification
is more concentrated on fewer classes. For example, the MLPO
(Figure 5) misclassifies H as either B, C or F, while VesselNet
(Figure 6) mistakes H only for C.

We notice from Figure 7 that both models, the MLPO base-
line and VesselNet, struggle during training (MLP1 behaves
similarly). Their learning phases are unstable, though they
converge at the end. The VesselNet presents large peaks in
the loss function (Figure 7a) and corresponding valleys in
the precision curve (Figure 7b). The batch average precision
(Figure 7b) of both networks reaches nearly 100% during
training, while it attains about ~80% on validation, such
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Fig. 6: VesselNet confusion matrix on validation.

behavior suggest overfitting is occurring. Typically, the main
reasons for that are large number of trainable parameters and
small database. Moreover, our signals are very similar among
themselves. The use of the additional delta-delta channel,
adding to a total of 3 channels, leads to lower variance and
smaller overfitting. However, the final average precision is also
~5% smaller and, thus, not considered in our analysis.

Besides having an ~5% higher precision, the 2-channel
VesselNet has fewer parameters than the baseline MPLO.
Indeed, VesselNet uses 187,160 parameters whereas MLPO
requires 224, 584. Although the MLP1 model indeed reaches a
better average precision than its counterpart, 79.7% (a modest
0.2% better than the no hidden layer version) it has 12 x 106
parameters, about 50 times more than the others .

Finally, we evaluate the VesselNet model on the test set and
achieve 88.1% average precision, 4.2% above the validation
set. The confusion matrix is depicted in Figure 8. Similarly
to all other models on any of the sets, class B is highly
misclassified: out of its 22 samples, only 10 were correctly
predicted. Hence, confirming the level of difficulty of learning
this class.

VI. CONCLUSION

We conclude that the VesselNet attains better results using
only 2 channels, the spectrogram and the delta-features, impro-
ving performance on 4.3% (average precision). Some improve-
ment was already expected since there are not so many images
from which the network may learn, thus handing higher-level
features eases the task of feature extraction and bootstraps
training. Furthermore, employing the additional delta-delta
channel decreases average precision by ~5%, though has
the advantages of lower variance during training and smaller
overfitting.

The VesselNet was capable of classifying and distinguishing
the different ships by using spectrogram images of audio
recordings of a passive underwater sonar as input. These data
are easier and cheaper to obtain than current SAR-image-
based techniques. It is worth mentioning that the networks
suffered overfitting, and the main reasons for that are: small
database, large number of network parameters, absence of an
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Fig. 8: VesselNet confusion matrix on test.

effective method to enlarge the database, as well as high inter-
class similarity. While there are some techniques to avoid
the overfitting, such as data augmentation, the effective ones
require information about the background noise, which we do
not have.
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