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Abstract— Radio Frequency Fingerprinting estimates the
mobile station location by comparing a measured radio
frequency fingerprint with a set of previously collected or
generated reference fingerprints. This set is referred to as the
search or correlation space. Genetic algorithms can be used
to optimize both the location accuracy and the time required
to produce a position fix, reducing the size of the search
space. This paper proposes an innovation in such application of
genetic algorithms, restricting the first generation population to
the predicted best server area of the serving sector measured by
the mobile station. In field tests in a GSM cellular network in a
dense urban environment, this approach achieved reductions of
20% and 15% in the 50-th and 90-th percentile location errors,
respectively, in comparison to the original formulation, where
the initial population is randomly distributed throughout the
whole service area. An average reduction of91% in the time
to produce a position fix was also observed.
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I. I NTRODUCTION

Different levels of location awareness are inherent to any
metropolitan area network (MAN) with wireless radio access.
These allow packet routing to any mobile station (MS) and
session continuity when the MS moves from one base transmission
station (BTS) coverage area to another. These built-in location
capabilities can be extended to provide added value location
services (LCS) to the subscribers, which include, among others,
location based billing and emergency call location. This latter
application has been receiving much attention from government
authorities and is already mandatory for cellular networks in some
countries [1] [2].

It seems that, in a near future, the winner technology for MS
positioning will be based on the Global Positioning System (GPS),
due to its accuracy and to the cost reduction in GPS receivers
as its deployment scales up. Nonetheless, even in such scenario,
there are still situations in which network based methods should
be employed:i) unavailability of GPS signals (such as in indoor
environments) andii ) location of MS without built-in GPS re-
ceivers. In addition, these methods serve asfallback when more
precise ones can not be used due to systemic limitations, increasing
LCS availability [3]. This latter improvement is of the highest
importance when considering the positioning of MS originating
emergency calls in cellular networks [4]. Network based methods

use information already available at the serving BTS or periodically
sent by the MS through the network measurement reports (NMR).
The NMRs are used for call or session management - power
control, handover, etc.

The location method presented in this work is a radio fre-
quency (RF) fingerprinting method - or database correlation
method (DCM). It is a network based method which correlates
measured RF fingerprints with RF fingerprints previously stored
in a correlation database (CDB) to estimate the MS location [5].
Those fingerprints contain RF parameters measured by the MS and
reported through the NMR. The CDB might be built from field
measurements or from propagation modeling [6].

The service area - i.e., the region where a LCS based on the
DCM solution is provided - is represented by a digital elevation
model (DEM). The DEM is divided into non-overlapping elements
with a r × r m2 surface each, referred to aspixels. Eachpixel has
an associated RF fingerprint stored in the CDB. Thecorrelation
space is the set ofpixels whose associated RF fingerprints are
compared, by means of an evaluation function, to the RF fingerprint
measured by the MS which is to be localized. Eachpixel within
the correlation space is acandidate solutionfor the MS location
problem. It is not feasible to include all service areapixels in the
correlation space, as this would cause a very high computational
load, resulting in a long time to produce a position fix. In order to
optimize the search for the MS estimated position, some techniques
can be applied to reduce the correlation space. In this work, this
is done by a genetic algorithm (GA). GA has already been used
together with DCM solutions in [7]. However, we propose an
alternative for the population initialization, restricting the random
distribution of candidate solutions in the first generation to the
predicted best server area of the serving cell (also referred to as
sector). The proposed innovation reduced both the average location
error and the average time to produce a position fix, in comparison
to the original formulation presented in [7].

The remaining of this paper is organized as follows: in Sec-
tion II, the measured and predicted RF fingerprints used in the
MS location are presented, as well as the process of building the
CDB from propagation modeling; in Section III, the correlation
function used to evaluate each position candidate is introduced;
in Section IV, the genetic algorithm used to optimize the MS
location process is presented; in Section V, results for field tests
in a 850 MHz GSM network are analyzed; Section VI brings the
conclusions.

II. RF FINGERPRINTS AND THECDB
Many DCM solutions in the literature employ CDBs built from

field tests [8] [9]. To keep those CDBs up-to-date, drive tests must
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be carried out after any change in radio access network elements,
making this solution impractical for MANs. The detrimental effects
due to the use of out-of-date network parameters in the correlation
process in cellular networks has been demonstrated in [10] and [9].
To prevent those problems, and to allow for a quick and inexpensive
CDB upgrade, a CDB built from propagation modeling has been
used [11] [12]. However, to maximize the accuracy of the DCM
algorithm, additional efforts might be required in initial stages to
tune the propagation models [13].

The propagation model used is this work to build the CDB is
Okumura-Hata [14], which is largely applied to RF planning in
cellular networks. It computes the average propagation loss using:

Lp = k1+k2 log(d)+k3 log(hb)+k4L f +k5 log(hb) log(d) (1)

where d is the distance in meters from the BTS to MS,hb is
the BTS antenna effective height andL f is the diffraction loss
attenuation, calculated by the Epstein-Peterson method [15]. The
MS height is assumed to be 1.5 m. The model coefficientski
depend on the area morphology and transmission frequency. As the
field test in Section V was carried out in the 869-881 MHz band,
the model was applied at the central frequency of 875 MHz. The
coefficients values arek1=−12.1, k2=−44.9, k3=−5.83, k4=0.5,
k5=6.55. All those values are the standard Okumura-Hata values
for urban environment, exceptk4, which was empirically defined
by the authors in [6].

The topography of the region where the LCS is to be offered is
represented by a matrixT =

(

ai, j
)

I×J, whereai, j ∈ ℜ+ for any
i ∈ {1,2,3, . . . , I} and j ∈ {1,2,3, . . . ,J}. Each matrix elementai, j
stores the terrain height averaged over ar × r m2 square, where
r is the T matrix planar resolution. TheT matrix might also
contain, added to the terrain height, the buildings heights. If the
region covers a total surface ofL×W m2, thenT has

⌈ L
r

⌉

×
⌈W

r

⌉

elements. Here, each element ofT will be referred to as apixel.
The received signal strength (RSS) prediction for a single sector,

as shown by Fig. 1, is obtained by the application of Eq. (1) to the
terrain profile between the BTS antenna position and each element
in T . The transmitting antenna characteristics - geographical
coordinates, azimuth, radiation pattern, effective isotropic radiated
power, etc. - are considered in the propagation prediction.

Fig. 1. RSS prediction for a serving antenna.

Each pixel in T has an associated predicted RF fingerprint,
obtained by the superposition of the RSS predictions of all sectors
in the service area. The predicted RF fingerprint of thei-th pixel

is given by the matrix [11]:

ν̂P,i =

⎡

⎢

⎣

IDP,1 RSSP,1
...

...
IDP,V RSSP,V

⎤

⎥

⎦
(2)

The ν̂P,i matrix hasV × 2 elements, whereV is the number
of sectors in the service area. Each line ofν̂P,i contains a sector
identification (ID) and the correspondent predicted RSS. The lines
are organized in descending order of RSS. The RSS dynamic
range and quantization step vary depending on the wireless access
technology. The CDB is completed afterν̂P has been calculated
for all pixelsin T . The predicted RF fingerprints in the correlation
space are compared to the measured RF fingerprint, obtained from
a subset of the parameters listed in the NMR. The measured RF
fingerprint is given by the matrix:

νM =

⎡

⎢

⎣

IDM,1 RSSM,1
...

...
IDM,N RSSM,N

⎤

⎥

⎦
(3)

The νM matrix hasN×2 elements, whereN ranges from 1 to
nmax, which is the maximum number of sectors that the MS can
report in the NMR.

III. T HE CORRELATION FUNCTION

In order to estimate the MS location, it is necessary to compare
the measured RF fingerprint with the predicted RF fingerprints in
the correlation space, which are stored in the CDB. The higher the
similarity or correlation between a measured RF fingerprint and a
predicted RF fingerprint, the higher the probability that the MS is
located at coordinates associated with that predicted RF fingerprint.
This similarity is assessed by means of an evaluation or correlation
function.

Let IP,i be the set of IDs listed in̂νP,i and letIM be the set of
IDs listed inνM . The setCi contains the IDs listed both in̂νP,i and
νM , i.e., Ci = IP,i ∩IM . Let SP,i andSM be the sets containing
the predicted and measured RSS values, respectively, of the sectors
listed inCi . The value of the correlation between the measured and
predicted RF fingerprints at thei-th pixel is defined as:

f−1
i = 2α (nmax−#Ci)+

#Ci

∑
j=1

⌊

∣

∣sM, j −sP,i, j
∣

∣

δ

⌋

(4)

whereδ represents the MS inherent RSS measurement inaccuracy
in dB units [11], nmax is the maximum number of sectors which
can be listed in the NMR, #Ci is the cardinality ofCi , α is the
dynamic range of RSS,sM, j andsP,i, j are thej-th elements ofSM
andSP,i , respectively. In GSM networks,nmax= 7, α = 63 dB and
δ = 6 dB [16].

The first term in Eq. (4) is the penalty due to the absence inν̂P,i
of sectors that are inνM . The second term calculates the absolute
cumulative difference between the elements ofSP,i andSM . If all
sectors listed inνM are also inν̂P,i , i.e.,Ci ≡IP,i ≡IM , then #Ci =
nmax, and the first term in Eq. (4) is null. In the worst case scenario,
whereCi =⊘, the first term in Eq. (4) reaches its maximum value
and the second term is null. Regarding the penalty term, consider
the i-th and j-th pixels. For each sector listed inνM and not in
ν̂P,i or ν̂P, j , a 2α value is added tofi or f j , respectively. Asα is
equal to the maximum variation of RSS, the first term in Eq. (4)
ensures that if #Ci > #C j , then fi > f j , regardless of the second
term value.
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IV. REDUCING THE CORRELATION SPACE WITH GA

GA is an adaptive search technique based on the principle of
natural selection and genetic reproduction [17]. Each candidate
solution is an individual, represented by a numeric sequence called
chromosome. When using binary representation, each bit in a
chromosome is referred to as a gene. The set of individuals
at each cycle or generation is called population. The individ-
uals of a population are modified and combined by means of
genetic operators - crossover, mutation, elitism - producing a
new population for the following generation. Crossover mixes
segments of chromosomes of two individuals (parents), producing
two new individuals (crossover children) for the next generation.
Mutation is a random modification of one or more genes of a
chromosome. Elitism is the technique of cloning the best individual
of a generation into the next cycle [18]. The aptitude or fitness
of an individual is assessed by means of an evaluation function.
Better fitted individuals have higher probability of being selected
for reproduction (crossover). The best individual in a population is
the one who achieves the highest value at the evaluation function.
This cycle continues until a stop criterion - maximum number of
generations, fitness of the best individual, processing time, etc. -
has been reached. The best individual of the last generation gives
the problem sub-optimal solution [17].

GA might be used to reduce thecorrelation spaceof a DCM
algorithm, optimizing the search for the MS position. The corre-
lation space is the set ofpixels whose associated RF fingerprints
are compared to the RF fingerprint measured by the MS. Each
pixel within the correlation space is acandidate solutionfor the
MS location problem. The set of candidate solutions in a DCM
algorithm, without applying the GA, is theoriginal correlation
space. The set of candidate solutions, after applying the GA, is
the optimized correlation space, which is a subset of the original
correlation space. A GAcorrelation space reduction factorγ can
be defined as the ratio between the number of elements in the
optimized correlation space and the number of elements in the
original correlation space.

In [7], the original correlation space is the full service area, rep-
resented byT . At the first generation,pa individuals, i.e.,pixels,
are randomly selected throughoutT . If there areg generations,
the optimized correlation space is a set withpa×g elements, so
γa = (pa×g)/#T , where #T is the cardinality ofT .

The probability of a MS being located within the predicted best
server area of its serving sector is higher than in any otherpixels
in the service area. Therefore, the original correlation space is
restricted to the predicted best server area of the serving sector,
defined by the set ofpixelsX =

{

i ∈ T ∣ IDP,i,1 = IDM,1
}

, where
IDP,i,1 is the predicted best server ID at the i-th pixel and IDM,1
is the measured best server ID, reported in the NMR. So, when
initializing the first generation population, instead of randomly
selecting individuals throughout the whole service area, the in-
dividuals should be randomly selected among thepixels within
X . In such conditions, if the population size ispb individuals
and there areg generations, the correlation space reduction factor
is γb = (pb×g)/#X . Two assumptions can be made regarding
the proposed innovation in the initialization of the first generation
population:

1) X ⊂ T , so #X ≤ #T . In practice, #X << #T , because
the whole service area is much wider than a single sector
best server area. As a result, forγa = γb, pb < pa, which
means that, in comparison to [7], less individuals will be

required per generation to find the sub-optimal solution;
2) As the probability of a MS being located within thepixels

in X is higher than in any other subset ofT , the average
fitness of the first generation population will be higher - i.e.,
in average, the first generation individuals will be closer to
the real MS location - which means that, in comparison
to [7], less generations will be required to find the sub-
optimal solution;

Therefore, it is expected that the use of the proposed innovation
in the initialization of the first generation population, will result
in higher accuracy and lower time to produce a position fix. This
will be verified in Section V.

The proposed GA steps can be summarized as:
1) Initialize first generation population, randomly selecting

individuals - i.e.,pixels or candidate locations - within the
original correlation space, which can be the full service area,
represented by matrixT , or the predicted best server area
of the serving sector, represented by matrixX ;

2) Evaluate the fitness of each individual in current population,
using the evaluation function in Eq. (4);

3) Create chromosomes, converting the individuals coordinates
to binary format;

4) Apply genetic operators - crossover, mutation and elitism -
to create a new generation;

5) Convert chromosomes to integer format;
6) If stop criterion has been met, provides MS location, given

by the coordinates of the fittest individual; otherwise, returns
to step 2.

If the service area is a square withL×W m2, then T is a
square matrix with

⌈ L
r

⌉

×
⌈W

r

⌉

elements. If the service area is
geographically represented by means of a rectangular projection,
like Universal Transverse Mercator (UTM) [19], and the UTM
coordinates of onepixel are known, then it is possible to obtain the
UTM (x,y) coordinates of any other element inT . The length of
each chromosome will be the number of bits required to identify
the position of apixel - i.e., its line and column inT - and is
given by

⌈(

log2
⌈ L

r

⌉

+ log2
⌈W

r

⌉)⌉

.

V. FIELD TESTS IN A 850 MHZ GSM NETWORK

A. Drive Test Scenario
Field tests were performed in a 850 MHz GSM network in

the downtown area of Rio de Janeiro. The test area characteristics
are summarized in Tab. I. The test set was composed of a GSM
phone and a GPS receiver, both connected to a laptop placed
inside a moving vehicle. The MS was in active mode and for
each transmitted NMR the current location was calculated by the
GPS receiver. Every NMR and GPS measurement were recorded
for further processing. A total number of 4501 NMRs has been
collected. The large number of samples ensures a reasonable
confidence for statistical analysis. The GPS location was assumed
to be the reference position, so, for each NMR and each location
method, the positioning error is the Euclidean distance between the
GPS position and the location provided by the respective method.

B. GA Parameters
The parameters used in the genetic algorithm are summarized

in Tab. II. Parametersgmax, ε andφ define the stop criterion. The
GA stops when one of the two conditions occurs:i) the maximum
number of generationgmax is reached;ii) the fitness of the best
individual duringφ consecutive generations does not improve by a
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value higher thanε. The second condition is an improvement of the
stop criterion based only on the maximum number of generations:
if the aptitude of the best individual reaches a steady state, it might
mean that the algorithm has reached a local maximum and therefore
there is no use in creating new generations [20]. Parameterγ is the
correlation space reduction factor, defined in Section IV.

TABLE I
CHARACTERISTICS OF THE TEST AREA

Characteristic Value
Morphology Dense Urban
Area 4.84 km2

Cell Density 24 cells/km2

DEM planar resolution (r) 10 m
DEM with building heights? Yes

TABLE II
SUMMARY OF GA PARAMETERS

Parameter Value
Crossover ratio 60%
Selection type Roulette
Mutation ratio 1%
Elitism Yes
Chromosome length 16 genes (bits)
gmax 20 generations
ε 0.00001
φ 5 generations
γ 3%

C. Experimental Results
Fig. 2 shows the cumulative distribution function (CDF) of the

MS location error achieved by the DCM using the original (Method
I) and proposed (Method II) initialization methods for the first
generation population. Both have used the parameters and stop
criterion described in Section V-B. Method I has achieved location
errors of 197 and 426 meters, for the 50-th and 90-th percentiles.
Method II has achieved location errors of 156 and 362 meters for
the same percentiles, which represents an error reduction of 20%
and 15%, respectively.

Fig. 3 shows the average fitness of the first population for each
positioning fix, i.e per collected NMR. As expected, Method II
achieved a higher average fitness in the first generation population,
what results in less generations to reach the suboptimal solution:
Method I requires in average 9 generations, while Method II
requires only 7 generations - a 23% reduction.

The reduction in the average number of generations, coupled
with the fact that the population size in Method II is much smaller
than in Method I, results in a significant reduction in the time
required to produce a position fix, as shown in Fig. 4. To allow
for a fair comparison, both methods were tested using the same
hardware and software. The average time required to produce a
position fix using Method II was 91% lower than in Method I.
This makes Method II a more suitable option for real time MS
location applications, like MS tracking.

In MS tracking applications, a moving average filter might
be helpful in reducing the location error, by filtering out abrupt
variations in location estimations between adjacent position fixes
along a route [21]. Applying a moving average filter with length 20
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Fig. 2. CDF of MS location error in meters.
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Fig. 3. Average fitness of first generation per NMR.

- i.e., the current MS location estimate is given by the arithmetic
mean of the previous 20 estimated positions - to the results obtained
by Method II, the 50-th and 98-th location error percentiles become
119 and 342 meters. This precision is slightly better than the one
achieved in the third route in [22] - 125 and 349 meters for the
same percentiles - where a GA has been used for MS tracking.
However, in [22] the test has been carried out in a 1800 MHz
GSM network with 41 cells/km2. This cell density is considerably
higher than in the test area described in Tab. I. Therefore, it
is expected that the DCM algorithm presented here, using GA
with the proposed first generation population initialization, would
achieve an even higher precision if applied to the same environment
described in [22].
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Fig. 4. Time in seconds to produce a position fix per NMR.
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VI. CONCLUSION

This paper proposes an alternative for the initialization of the
first generation population of a genetic algorithm, used to reduce
the correlation space in a RF fingerprinting location method. The
proposed alternative consists in restraining the randomly selected
first population individuals to the predicted best server area of
the serving sector, instead of selecting individuals throughout the
whole service area. The proposed innovation produces smaller and
better fitted initial populations, which results in location accuracy
improvement and in significant reduction of the average time to
produce a position fix. The method has been tested in a 850 MHz
GSM network, but its application is extensible to different types of
wireless metropolitan area networks. The achieved precision shows
that the DCM+GA proposed location method is suitable for MS
positioning in urban environments.
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