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Abstract—This work uses the mobile network operators’
knowledge regarding mobile subscriber movement in the cur-
rent infrastructure, i.e., Decentralized Radio Access Network
(D-RAN), to dimension the infrastructure needed for the new
generation of mobile infrastructure, i.e., Cloud/Centralized Radio
Access Network (C-RAN). We propose a heuristic considering
two approaches, one focused on the coverage of users and
another focusing on the aggregated throughput. The performance
assessment considers that the day is divided into three periods:
working hours (morning), leisure hours (afternoon) and home
hours (night). Results show that the heuristic allows mobile
network operators to properly dimension the number of Small
Cells (SCs) needed for a given area, maximizing the multiplexing
and efficiency of the BaseBand Units (BBUs).

Index Terms—C-RAN; D-RAN; Heuristic; Small cell; Base-
band Processing

I. INTRODUCTION

Ultra-dense deployment of Small Cells (SCs) has been
identified as one of the key flavors of the emerging 5G
networks [1] for truly addressing the capacity demands of
indoor/outdoor environment in a cost-efficient manner [2]. Ad-
ditionally, Cloud/Centralized Radio Access Network (C-RAN)
architecture is another important improvement and has been
considered by several operators [3] and service providers
[4][5] as a cost-efficient way of realizing SCs. By splitting
the Base Station (BS) hardware into Remote Radio Head
(RRH) and BaseBand Unit (BBU), C-RAN also improves
the flexibility and allows for more dynamic mobile network
operation.

However, the deployment of C-RAN introduces some chal-
lenges. For instance, RRH deployment [6], BBU-RRH map-
ping [7][8], BBU-RRH function virtualization [9] and BBU
allocation [10]. All these challenges can be aggravated when
considering the non-stationarity property of the users in the
network, i.e., the so called tidal effect, meaning that the BS
load changes throughout the day depending on the type of area
it serves. In this case, mobile network capacity should follow
the user, implying great dynamicity in the mobile network
configuration.

In traditional Radio Access Networks (RANs), i.e., Decen-
tralized Radio Access Network (D-RAN), baseband capacity
is statically assigned to the cell, meaning that the resources
are allocated regardless of the users movements throughout
the day. In C-RAN, resources can be dynamically assigned
to areas where the load is higher, thereby benefiting from
statistical multiplexing gain adapting to traffic fluctuations.

Although the BBUs are decoupled from the RRHs in terms
of physical placement, there exists a one-to-one logical map-
ping between BBUs and RRHs in that one BBU is assigned to
generate (receive) a signal (e.g., Long-Term Evolution (LTE)
or Worldwide Interoperability for Microwave Access (Wimax)
frame) to (from) an RRH (although the mapping can change
over time). This one-to-one mapping allows for generating a
distinct frame for each SC (deployed in the form of a RRH),
which is key for enhancing the network capacity via techniques
such as dynamic fractional frequency reuse or coordinated
multi-point transmissions [11].

The dimensioning of BBUs poses a major challenge to
take the most advantage out of the C-RAN architecture, and
has received a major attention from the network community
in the last years [12]. However, the dimensioning of BBUs
considering the fluctuations on the traffic needs generated
by users’ movement still requires further research. Therefore,
in this work, we develop a heuristic for the dimensioning
of BBUs which leverages on the mobile network operator’s
knowledge regarding users movement in order to maximize
the multiplexing potential of the BBU.

II. BACKGROUND

The number of active mobile users at different localities
varies depending on the time of the day [13]. This movement
of mobile network load based on the time of the day is known
as tidal effect. Figure 1 illustrates the fluctuations in the BS
load throughout the day.

In D-RAN architecture, each macro BS processing capa-
bility is only used by the active users associated to it. Static
resource provisioning for the peak (worst case) traffic at each
cell site leads to grossly underutilized BSs in some areas/times,
while provisioning for the average leads to oversubscribed
ones. In C-RAN architecture, however, it is possible to imple-
ment the demand-aware resource provisioning, in which the
BBU resources will be dynamically (re)assigned to meet the
fluctuating demands of the mobile network.

Resource allocation and the RRH-BBU mapping problem in
5G C-RAN has been addressed in a number of research works
in the literature [11] [7] [14]. Focusing on the Quality of Ser-
vice (QoS) Key Performance Indicator (KPI) as blocked calls
and number of Physical Resource Blocks (PRBs), the authors
of [15] developed a dynamic RRH-BBU mapping algorithm
in C-RAN architecture. In [16], the authors attempt to solve
a joint RRH and precoding optimization problem, which aims



(a) Morning Behavior

(b) Evening Behavior

Fig. 1. Tidal Effect

to minimize network power consumption in a Multiple-input
and multiple-output (MIMO) based user-centric C-RAN. Both
works focus on load balancing on purely centralized architec-
tures, concerned only with radio capabilities. The work in [17]
proposes a model to evaluate the statistical multiplexing gain
of C-RAN considering different geographical areas. However,
the impact of user movement is not taken into account, which
is the main aspect considered in this work.

A. Network Parameters and Throughput Modeling

According to [18], the path loss is generally inversely
proportional to the square of the carrier frequency. In mo-
bile network planning, path loss must be estimated for a
deployment environment, and cell coverage is determined
based on the BS and Mobile Station (MS) antenna gains,
Effective Isotropic Radiated Power (EIRP), Radio Frequency
Radio Frequency (RF), bandwidth, modulation and coding
techniques. Omnidirectional large-scale path loss in urban
environments may be estimated from the Hata model and the
COST231 extension of the Hata model for carrier frequency
(fc) below 2 GHz, and from the Stanford University Interim
(SUI) model for fc above 2 GHz.

Therefore, the downlink Signal-to-Interference-Plus-Noise
Ratio (SINR) over a given subcarrier N assigned to user k in
the SC that it is connected, can be modeled as follows:

SINRk =
Pk,b(k)

σ2 + Ik
, (1)

in which Pk,b(k) is the received power on subcarrier n assigned
to user k by its serving BS b(k), σ2 is the thermal noise power
and Ik is the intercell interference from neighboring SCs. In
this work, we assume that all the SCs are transmitting with
maximum power PS. The received power at user k from BS
b(k) can be calculated by means of (2), which relates the
received power of a node as a result of the transmitted power
and the fading of the signal, the latter calculated by the SUI
model [19]. This can be expressed as:

Pk,b(k) =
10

Potb(k)−LSUI

10

1000
. (2)

The value of Pk,b(k) is a function of the three values calculated
by the following equations:

LSUI = A+ 10γlog
d

do
+ S, d > do, (3)

A = 20log
4πdo
λ

, (4)

γ = a− bhb +
C

hb
, (5)

in which:
• d is distance from the antenna to the measured point, in

meters;
• do equals to 1 meter, reference distance according to [14];
• λ is the wavelength, in meters;
• γ is the path-loss exponent;
• hb is the height of base station, which can be between

10 to 80 meters;
• A, B and C are constants dependent on the terrain cate-

gory (Terrain B was used, A=4, B=0.0065 and C=17.1);
• S is the shadowing effect, which can be between 8.2 to

10.6 dB.
We also assume that each user achieves the Shannon capac-

ity, i.e., the data rate for user k is expressed in (6) as:

Ck = B ∗ log2(1 + SINRk), (6)

in which B is the bandwidth.
Figure 1 (a) and (b) depicts an example of the reference

scenario, where according to the traffic demand fluctuation at
different hours, a set of RRHs corresponding to macro BS
covers large areas, and a set of SCs’ RRHs covers smaller
areas for capacity management. The next section discusses the
problem of selecting RRH to BBU ports to satisfy demands
at any time for all cells.

III. UPGRADING FROM D-RAN TO C-RAN

Our problem can be divided into two steps. The first step
determines the number of ports required to cover a given



Algorithm 1: UE-RRH Assignment
Data: list of RRHs (St)
Result: aggregated throughput A for each Ar|r ∈ St

1 forall r ∈ St do
2 allocate UEs closest to r;
3 end
4 forall u ∈ UE do
5 update SINR of u according to (1);
6 calculate Shannon capacity of u according to (6);
7 end
8 forall r ∈ St do
9 calculate aggregated throughput Ar;

10 end
11 return aggregated throughput A;

aggregate flow capacity. For this, we propose a heuristic
described in Algorithms 1 and 2.

Algorithm 1 describes the process of allocating UEs to the
closest RRHs (where St is the list of possible RRHs). After
this phase, the maximum capacity of each UE is calculated
(interference between RRHs and RRHs and UEs is calculated
at this stage) considering the resources available in each
RRHs (i.e., PRBs), which are divided evenly (regardless of the
channel quality of the UE). At the end of this phase, a list of
RRHs with their maximum aggregated capacities is generated,
which will serve as input to Algorithm 2.

In Algorithm 2, in addition to the list (St), a maximum
percentage of aggregated throughput is given as input (A). In
this algorithm, different UEs positions are used and the number
of RRHs required to offload that percentage of aggregated
throughput as input is accounted. The tests are repeated
several times, until an average number of ports is obtained
(equivalent to the average number of RRHs needed to offload).
To determine which RRHs should be counted, two criteria

Algorithm 2: Setting the Maximum Number of Ports
Data: list of RRHs (St), Max aggregated throughput (A)
Result: output

1 repeat
2 UE-RRH Assignment;
3 sort St by A in descending order;
4 sort St by number of User Stations (UEs) associated

to it in descending order;
5 while (RRHAggregatedThroughputTEMP <

%AggregatedThroughputDefined) do
6 NUM-RRH = NUM-RRH + 1;
7 RRH-Aggreg-throughput-TEMP =

RRH-Aggreg-throughput-TEMP +
RRH-Aggreg-Throughput(St);

8 end
9 until NUM-PORTS is equal to NUM-RRH;

10 return NUM-PORTS;

Algorithm 3: RRH Selection
Data: St, NUM-PORTS
Result: output

1 repeat
2 Generate UEs distribution;
3 UE-RRH Detection (St);
4 forall all RRH E St do
5 Calculate Aggregated Throughput;
6 end
7 Sort St by Aggregated Throughput (Max down to

Min);
8 Sort St by Number of UEs (Max down to Min);
9 Select RRH (St, NUM-PORTS);

10 UE-RRH-Macro Detection (St, Sm);
11 until this end condition;

were used: (i) the throughput-based approach, where RRHs
with higher aggregated throughput are prioritized; (ii) the user-
based approach, where the RRHs with the highest number of
users are prioritized. Both approaches should respect the limits
of PRBs existing in RRHs.

The second step is outlined in Algorithm 3, with the number
of ports and the scenario to be studied being given as input.
Here, all the RRHs are deployed and the UEs are allocated
to these RRHs. Based on the number of ports given as input,
the RRHs with the highest number of users or with higher
aggregated throughput are selected, the RRHs are eliminated
and a new allocation of UEs and RRHs is done. UEs not
covered by RRHs should be covered by the macro BS.

IV. SIMULATION RESULTS

In this section, the performance of the proposed dimen-
sioning and resource allocation scheme is evaluated through
numerical simulation that was implemented in MATLAB.
A hybrid C-RAN with one macro BS was considered. The
network simulation parameters are listed in Table I.

The UEs are randomly positioned over a 4km2 area, and
the proposed approach is simulated considering different num-
bers of UEs offloaded for the SC RRHs (depending of the
approached used). The simulation area is divided into business,
restaurant and residential areas. It is also assumed that the UEs
are homogeneous, which means different UEs have the same
QoS requirement.

To evaluate the RRH-BBU port mapping, we considered a
typical mobile network, in which the overall network traffic

TABLE I
SUMMARY OF NETWORK PARAMETERS.

Parameter Value
System Bandwidth (B) 180 kHz
Path Loss for Macrocell User COST231
Path Loss for Smallcell User SUI-TYPE A
Maximum Macrocell Transmission Power 43 dBm
Maximum Smallcell Transmission Power 23 dBm
Confidence Interval 95%
Number of Simulation Experiments 30



TABLE II
NUMBER OF SMALL CELLS SELECTED

Approach % of Aggregated Throughput
20% 40% 40% 80% 100%

Users 4 10 19 34 86
Throughput 5 12 23 39 88

fluctuates during the time of the day. For this, as previously
mentioned, the UEs were statically positioned and change
positions in 3 different scenarios. We divide our analysis in 3
times of the day: morning, afternoon(happy-hour) and night.
For morning, 60% of the users are positioned in business area,
and 40% in the rest of the area. In happy-hour, some users
from business area (about 30%) move to the restaurant area
and the rest for the residential area. In the night, 80% of users
are in the residential area.

We now put together the elements from the analysis method-
ology and evaluate the performance of our RRH-BBU map-
ping ports allocation scheme.

A. Number of RRH-BBU ports

First, it is important to define how many BSs are needed
to cover the network users. In this way, one can analyze the
current behavior and conjecture whether there is a need for
greater investments in BBU expansion of a given BBU pool.
Table II shows the average number of antennas required to
cover 20%, 40%, 60%, 80% and 100% of the total capacity
of the scenario.

As the traffic load for different cells fluctuates greatly over
time, when a RRH is under high traffic condition, more
BBU resources are required; however, the number of ports
in the BBU is limited. When the traffic load is low, the free
ports could be dynamically reassigned to other RRHs with a
higher traffic load at that moment. Through adaptive hardware
resource allocation, the network traffic tidal effect can be
effectively solved, and the hardware resource efficiency can
be maximized.

Starting with the 20% of aggregated throughput, we ob-
tained the same amount of RRHs to cover the area during all
day (morning, happy-hour and night). Folowing, we obtained
a difference of 16.67% for 40%, 9.09% for 60%, 10.53% for
80% and only 1.12% for 100%. In users-based approach we
obtained a smaller number of RRHs, this fact was expected
because of the densified network, it is easier to cover more
users in the same RRH. Note the higher increase in the number
of RRHs between 20-40 (40%) and 80-100 (74.07%).

The aggregated throughput increases linearly, but the same
does not occur with the number of SCs. There are specific
cases of significant increases, which need to be studied on a
case-by-case basis, since it depends strongly on the behavior
of the users and the tidal effect phenomenon.

B. RRH Selection – User-based Approach

Figure 2 gives the average number of users connected to all
selected RRHs that match with the number of ports defined
based on the percentage of aggregated throughput. It can be
observed that for users’ behavior during the morning period,

(a) Average Number of UEs (Tidal Wave Behavior)

(b) Average Throughput (Tidal Wave Behavior)

Fig. 2. Performance measures for the user-based approach

UEs are more concentrated near dense regions (business areas)
and therefore, a larger number of UEs area covered with
higher average throughput. It is worth noting that due to this
concentration, with the growth in the number of ports, the
increase in the number of users does not follow the same trend,
as can be observed in Figure 2 (a) and (b).

As previously mentioned, this approach selects antennas in
the areas of higher concentration of users, those UEs in areas
of lower concentration end up connecting to antennas with
smaller capacity and those that cannot get any signal from
SCs are routed to macro BS. For situations of lower UEs
density (night-time period), with the dispersion of the UEs, the
selected RRHs will be sparser too, which allows for a better
distribution of the antennas and with this a smaller variation
of the throughput.

C. RRH Selection – Throughput-based Approach

The average number of users connected to all selected RRHs
that match with the number of ports defined based on the



(a) Average number of UEs connected (Tidal Wave Behavior)

(b) Average throughput (Tidal Wave Behavior)

Fig. 3. Performance measures for the throughput-based approach

percentage of aggregated throughput is presented in Fig. 3 (a)
and (b).

In this approach, the selection of RRHs was more dispersed,
which provided a better coverage of the UEs and with higher
rates. In the periods of the day with higher concentration of
UEs (morning), the increase in the percentage of aggregate
throughput slightly affects the increase of covered users. In
the times of less density period (afternoon and night), due
the higher number of RRHs, there is a significant increase in
the number of users and the disparity between the maximum
and minimum throughput tends to increase (attributed to
the distances from the users to the RRHs which they were
connected).

V. CONCLUSION

The migration process from D-RAN to C-RANs architecture
will trigger hybrid scenarios to coexist, and to cooperate in or-
der to meet the UEs’ needs. The hardware resource allocation
is especially important in this phase. To this end, we proposed

heuristic approaches focusing on the dimensioning of BBU
resources considering the movement of users throughout the
day. Results obtained show that it is possible to dimension the
number of SCs that need to be activated at the same time, and
therefore the number of BBU ports required, maximizing the
multiplexing and efficiency in the use of baseband processing.
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