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Hybrid MCMC and LMMSE Detector for MIMO
Frequency-Selective Channels

Guilherme C. G. Fernandes and Marcelo G. S. Bruno

Abstract— Optimal detection in multiple-input multiple-output
(MIMO) frequency-selective systems is known to have exponen-
tial complexity due to the number of transmitter antennas and
channel length. In this paper, we model the detection problem
using factor graphs and apply the sum-product algorithm (SPA)
to derive the optimal detector. Then we adapt the SPA to propose
a hybrid suboptimal algorithm based on two known detectors: the
Markov chain Monte Carlo (MCMC) detector initialized with the
solution from the linear minimum mean square error (LMMSE)
detector. The proposed algorithm achieves better performance
than any of the two individually while preserving their lower
complexity.

Keywords— MIMO detection, MCMC detector, LMMSE de-
tector, factor graphs, sum-product algorithm

I. INTRODUCTION

An important and challenging problem in multiple-input
multiple-output (MIMO) communication systems is decoding
the received signal [1]. Typically, in optimal Maximum a
Posteriori (MAP) MIMO detection, multiple interfering sym-
bols transmitted concurrently by multiple antennas have to be
jointly detected subject to random noise and interference at
the receiver’s end. However, the MAP detector was proven
to be non-deterministic polynomial-time hard (NP-hard) such
that its computational complexity grows exponentially with the
number of transmitter antennas [1] and multipath reflections.
Therefore, several suboptimal but faster approaches have been
studied in order to make MIMO detection scalable [1].

In our approach, we follow the lead in [2], [3] and [4]
and use the factor graph (FG) model to graphically represent
the factorization of the joint probability distribution of the
transmitted symbols, which improves the visualization of the
problem. Marginal distributions can be calculated on a FG
using the sum-product algorithm (SPA) [2], also known as
message-passing.

Variations on the SPA lead to different message-passing
based detection algorithms, as shown in [4]. The optimal
MAP detector is obtained by the exact application of the
SPA and considering discrete probability mass functions for
the states containing sets of transmitted symbols. The pro-
posed suboptimal hybrid detector is based both on the known
linear minimum mean square error (LMMSE) and Markov
chain Monte Carlo (MCMC) detectors. Similarly to the MAP
detector, the LMMSE detector uses exact message-passing,
but approximates the probability function of the states as
multivariate Gaussian distributions. The MCMC detector is
based on particle message-passing, which approximates the
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desired joint probability function obtaining samples from it
using the Gibbs sampler (GS) [5], [6].

The paper is divided into 5 sections. Sec. I is this In-
troduction. In Sec. II, we describe the signal model and its
factor graph representation. In Sec. III, we review the SPA. In
Sec. III-A, we present the exact equations for the algorithm
and optimal detector. In Sec. III-B, we introduce the hybrid
suboptimal detector and the hypotheses that lead the SPA to
the LMMSE and MCMC detectors. Simulation and results are
shown in Sec. IV and conclusions are presented in Sec. V.

Notation: We denote scalars by a or A, vectors by a and
matrices by A. (.)T and (.)H denote matrix transpose and
hermitian. I denotes the identity matrix and 0a×b denotes a
zero matrix with a rows and b columns. [H]a:b,c:d denotes a
submatrix of H, selecting the rows from a to b and columns
from c to d. We denote random vectors by A, which can be
distinguished from deterministic matrices by the context. We
denote the probability of an event by Pr(A). If A is discrete,
we denote its probability mass function (pmf) Pr(A = a})
by P (a). If A is continuous, we denote its probability density
function (pdf) by p(a).

II. PROBLEM STATEMENT

A. Signal Model of the Communication Problem

We assume a MIMO communication system with NT trans-
mitter and NR ≥ NT receiver antennas. The wireless chan-
nel is linear, time-variant, frequency-selective with impulse
response length L and presents Rayleigh fading. A stream of
Nb uncoded bits is transmitted, each Q bits being mapped into
Ns = Nb/Q symbols according to some symbol alphabet A
of size 2Q. The symbols are transmitted over N = Ns/NT

time instants, and received over M = N+L−1 time instants,
due to intersymbol interference.

We assume the wireless channel has a coherence time
of M , meaning that it will remain constant while the bit
stream is being received. The channel is described by its taps
[H1 · · ·HL], where each [Hi]r,t ∈ C is the channel coefficient
between the t-th transmitter and the r-th receiver antenna in
the i-th reflection, drawn from a complex Gaussian distribution
CN (0, 1). The channel estimation problem is not in the scope
of this paper, thus all coefficients are considered perfectly
known at the receiver.

Let sti be the symbol on the t-th transmitter antenna on time
instant i and si = [s1i · · · s

NT
i ]T be the vector of all transmitted

symbols at instant i. The received signal is then modeled by

yi =

L∑
k=1

Hksi−k+1 + zi (1)
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where yi = [y1i · · · y
NR
i ]T , yri denotes the signal received by

the r-th receiver antenna on instant i, and zi is random white
complex Gaussian noise, with E[Zi] = 0 and E[ZiZ

H
i ] = σ2

zI.
The problem of interest is to obtain an estimate b̂ of

all transmitted bits B given the collection y = y1:M =
[yT

1 · · ·yT
M ]T of all observations yi using P (b|y). The op-

timal MAP detector expression for each bit is given by

b̂i,MAP = argmax
bi∈{0,1}

∑
b/{bi}

P (b|y) = argmax
bi∈{0,1}

P (bi|y). (2)

where
∑

b/{bi} denotes summation over all variables in b,
except bi. Since bits and symbols relate to each other deter-
ministically, the bitwise detector in Eq. (2) can be expressed
as an equivalent symbolwise detector based on P (s|y)

ŝti,MAP = argmax
sti∈A

∑
s/{sti}

P (s|y) = argmax
sti∈A

P (sti|y), (3)

where S represents the collection of all transmitted symbols.

B. Representation with Factor Graph

The joint probability functions P (b|y) or P (s|y) can be
factorized and represented by a factor graph, so we can apply
the SPA to calculate the marginals needed for detection, in Eqs.
(2) and (3). Without loss of generality, applying the Bayes’
Law in the probability function in P (s|y), we obtain

P (s|y) ∝ p(y|s)P (s). (4)

Applying the chain rule in the likelihood function in the right
side of Eq. (4), expanding Y and S as the collection of all
received and transmitted signals:

p(y1:M |s1:N ) = p(yM |y1:M−1, s1:N ) · p(y1:M−1|s1:N ). (5)

From the model in Eq. (1), given the last L transmitted
set of symbols, an observation is independent of any other
observations or symbols. Thus we can simplify Eq. (5) to

p(y1:M |s1:N ) = p(yM |sN ) · p(y1:M−1|s1:N ). (6)

Sequentially applying the chain rule to the rightmost factor:

p(y|s) =p(yM |sN ) · · · p(yN |sN−L+1:N )

· · · p(yL|s1:L) · · · p(y2|s1:2) · p(y1|s1).
(7)

Depending on L, this factorization may result in a cyclic
FG, which requires iterative SPA until the messages converge
[7]. Fig. 1 shows the cycle for L ≥ 3.

Fig. 1: Cyclic FG resulting from factorization in Eq. (7).

As in [3], in order to remove the cycles, we first introduce
the state variables Wi, corresponding to all transmitted sym-
bols that influence the signal received at instant i, shown in
Eq. (7), and rewrite the factorization as

p(y|s) =

M∏
i=1

p(yi|wi). (8)

Then we add indicator probability functions P (wi|wi−1)
between consecutive states, which evaluate to 1 when all the
common symbols sj in wi and wi−1 match, and P (wi|si)
between states and the newly added symbols, which evaluate
to 1 when si ∈ wi. Thus, Eq. (8) is not modified if written as

p(y|s) =p(y1|w1)P (w1|s1)
N∏
i=2

p(yi|wi)P (wi|wi−1)P (wi|si)

M∏
i=N+1

p(yi|wi)P (wi|wi−1)

(9)

which can be represented by the factor graph in Fig. 2. Fig.
3 details the messages for each state variable, on each time
instant i.

Fig. 2: Cycle-free FG resulting from factorization in Eq. (9).

Fig. 3: Factor graph node for symbolwise detection.

III. SUM-PRODUCT ALGORITHM

The sum-product algorithm (SPA), also called message-
passing, is described in [2]. Its output is the marginalized
probability function for each variable node in the FG. In Sub-
sections III-A and III-B, we explore how the SPA can result
in different decoders depending on the chosen assumptions.
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A. Maximum a Posteriori Detector

The SPA results in the MAP detector when applying the
exact message-passing schedule in [2] and the values for the
probability distribution of the states is a discrete pmf and
calculated individually for each state. The resulting equations
are the same as those given in [3] and [4]. All messages are
normalized to total probability 1.

The a priori knowledge of the symbol distribution is rep-
resented by m1(sti), which usually is considered uniform.
Message 3, related to the observation model, is calculated as

m
(i)
3 (wi) ∝ exp(−(yi − H̄iwi)

HΣ−1z,i (yi − H̄iwi)) (10)

where the matrix H̄i, extended from Eq. (1), is given by

H̄i =


[Hi · · ·H1] , i < L

[HL · · ·H1] , L ≤ i ≤ N
[HL · · ·Hi−N+1] , i > N

The other messages are calculated from the SPA expressions
for variable and function nodes. Message 2 is calculated as

m
(i)
2 (wi) =

∑
si

p(wi|si)
NT∏
n=1

m
(i)
1,n(sni ). (11)

Messages 4 and 6 are calculated sequentially, forming the
forward recursion.

m
(i)
6 (wi) = m

(i)
2 (wi)m

(i)
3 (wi)m

(i)
4 (wi) (12)

m
(i)
4 (wi) =

∑
wi−1

P (wi|wi−1)m
(i−1)
6 (wi−1). (13)

Messages 5 and 7 are also calculated sequentially, but forming
the backward recursion

m
(i)
7 (wi) = m

(i)
2 (wi)m

(i)
3 (wi)m

(i)
5 (wi) (14)

m
(i)
5 (wi) =

∑
wi+1

P (wi+1|wi)m
(i+1)
7 (wi+1). (15)

Messages 8 and 9 are calculated to finish the SPA

m
(i)
8 (wi) = m

(i)
3 (wi)m

(i)
4 (wi)m

(i)
5 (wi), (16)

m
(i)
9,n(sni ) =

∑
wi

∑
si/{sni }

P (wi|si)m(i)
8 (wi)

NT∏
l=1,l 6=n

m
(i)
1,l(s

l
i).

(17)
Substituting Eqs. (12) and (16) in (17), we obtain a simplified
expression for message 9

m
(i)
9,n(sni ) =

1

m
(i)
1,n(sni )

∑
wi

P (wi|si)m(i)
5 (wi)m

(i)
6 (wi).

(18)
Finally, detection is done by calculating the marginal distri-
bution of each symbol, p(St

i |y), as the product m(i)
1,n(sni ) ∗

m
(i)
9,n(sni ), and find the maximum according to Eq. (3). If

desired, turbo processing is done feeding back m
(i)
9,n(sni ) in

m
(i)
1,n(sni ), which can be interpreted as having an improved a

priori knowledge of the symbol distribution.
On each instant i, the exponential complexity O(2QLNT )

is evident in the messages whose argument is wi, since the
summation must be evaluated on each of the 2QLNT possible
values for wi.

B. Suboptimal Hybrid Detector

The proposed suboptimal detection algorithm is based pri-
marily on the Markov chain Monte Carlo (MCMC) detector.
Using the FG approach and the SPA, the MCMC detector
is obtained not by calculating a joint probability function as
the MAP does, but by approximating the distribution using
the Gibbs sampler (GS) to sequentially obtain samples that
converge to samples drawn from the true joint probability.

However, it is known that the MCMC detector presents a
bit error rate floor at high SNR regimes [8]. This problem
is referred to as the Gibbs sampler stalling, since the small
variance of the received signal makes moving along the
Markov chain less likely [9], thus the GS gets stuck in a local
optimum. An alternative to improve the MCMC performance
mentioned in [10] and [8] is to use a smart initial state for the
GS instead of a random state.

In this paper, we initialize the GS with the solution coming
from the linear minimum mean square error (LMMSE) detec-
tor. The LMMSE solution is obtained by applying the exact
message-passing schedule described in Eqs. (11) to (18), but
approximating the distribution of the states Wi as multivariate
Gaussians. Although it is a coarse approximation, it simplifies
the SPA equations, which become dependent only on the mean
vector and covariance matrix parameters instead of a value for
each possible state wi.

In Subsections III-B.1 and III-B.2, we start by detailing the
steps for the LMMSE detector, then the steps for the MCMC
detector as in [3] and [4]. Finally, we describe the algorithm
for the final hybrid detector.

1) Linear Minimum Mean Square Error Detector: A mul-
tivariate Gaussian pdf is parametrized by its mean vector µ
and covariance matrix Σ, whose sizes in the largest case for
state wi are LNT and LNT × LNT , respectively.

We use the fact that the product of two Gaussian densi-
ties N (µ1,Σ1) and N (µ2,Σ2), after normalization, is also
Gaussian, with equivalent density N (µeq,Σeq) such as that

Σ−1eq = Σ−11 + Σ−12 , µ′eq := Σ−1eq µeq = µ′1 + µ′2. (19)

Modeling the communication problem in Eq. (1) as a state-
space model, we can apply the results in [7] on Eqs. (11) to
(18) to obtain the equations for the LMMSE detector [3].

µ
(i)
1,n = E[Sn

i ], σ
2(i)
1,n = E[|Sn

i − µ
(i)
1,n|2] (20)

For message 2, m(i)
2 (wi), the parameters are

Σ
(i)−1

2 = diag(0Ta×1, σ
−2(i)
1,1 , · · · , σ−2(i)1,NT

), (21)
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µ
′(i)
2 = [0Ta×1, µ

(i)
1,1σ

−2(i)
1,1 , · · · , µ(i)

1,NT
σ
−2(i)
1,NT

] (22)

where a = (i− 1)NT , i = 1 to L and a = (L− 1)NT , i > L
and diag(v) is a diagonal matrix A with Ai,i = vi.

For message 3, m(i)
3 (wi), i = 1 to M , Eq. (10) shows it

has a Gaussian distribution with parameters

Σ
(i)−1

3 = H̄H
i Σ−1z,i H̄i, µ

′(i)
3 = H̄H

i Σ−1z,iyi. (23)

For messages 4 and 6 in the forward recursion,

Σ
(i)−1

6 = Σ
(i)−1

2 + Σ
(i)−1

3 + Σ
(i)−1

4 , (24)

µ
(i)
6 = Σ

(i)
6

(
µ
′(i)
2 + µ

′(i)
3 + µ

′(i)
4

)
, (25)

Σ
(i)−1

4 =

[
[Σ

(i−1)−1

6 ]b:c,b:c 0c−d+1×NT

0NT×c−d+1 0NT×NT
,

]
(26)

µ
(i)
4 =

[
[µ

(i−1)
6 ]Tb:c 0NT

]
, (27)

where for i = 1 to L, b = 1 and c = (i − 1)NT , and for
i = L+ 1 to N , b = NT + 1 and c = LNT . For messages 5
and 7:

Σ
(i)−1

7 = Σ
(i)−1

2 + Σ
(i)−1

3 + Σ
(i)−1

5 , (28)

µ
(i)
7 = Σ

(i)
7

(
µ
′(i)
2 + µ

′(i)
3 + µ

′(i)
5

)
, (29)

Σ
(i)−1

5 =


[
0NT×NT

0NT×d

0d×NT
[Σ

(i+1)−1

7 ]1:d,1:d

]
, i ≥ L

[Σ
(i+1)−1

7 ]1:d,1:d , i < L,

(30)

µ
(i)
5 =


[
0NT×NT

[µ
(i+1)T

7 ]1:d

]
, i ≥ L

[µ
(i+1)T

7 ]1:d , i < L,
(31)

where d = (N + L − i − 1)NT for i = N + 1 to M, (L −
1)NT for i = L+ 1 to N and (i− 1)NT for i = 1 to L.

To calculate message 9, first we denote the marginal distri-
bution of wi as message 11, with parameters

Σ
(i)−1

11 = Σ
(i)−1

5 +Σ
(i)−1

6 , µ
(i)
11 = Σ

(i)
11

(
µ
′(i)
5 +µ

′(i)
6

)
. (32)

Then, m(i)
9,n(sni ) is calculated extracting the corresponding

entry from message 11 and subtracting the a priori info from
message 1.

σ
−2(i)
9,n = [Σ

(i)−1

11 ]e+n,e+n − σ−2(i)1,m (33)

µ
(i)
9,n = σ2

9,n

(
[Σ

(i)−1

11 ]e+n,e+n[µ
(i)
11 ]e+n − σ−2(i)1,n µ

(i)
1,n

)
(34)

with e = min{(i − 1)NT , (L − 1)NT }. The message is
converted to a probability for each symbol according to

m
(i)
9,n(sni ) ∝ exp

(
− σ−2(i)9,n |sni − µ

(i)
9,n|2

)
. (35)

Note that inverting a LNT × LNT matrix is the critical step
on each instant, resulting in a complexity of O(L3N3

T ).

Fig. 4: Modification on Fig. 3 for MCMC bitwise detection.

2) Markov Chain Monte Carlo Detector: With the Gibbs
sampler [5], [6], decoding is done using the bitwise detector
in Eq. (2). The GS iteratively generates R samples from
P (b|y) by drawing samples from all conditional probabilities
P (bk|b/{bk},y). Using Bayes’ Law, they are proportional to
the likelihood functions p(y|bk,b/{bk}), which are multivari-
ate Gaussian pdf’s depending on bk.

The FG model is similar to that in Fig. 3, changing the
symbol nodes to the bit nodes shown in Fig. 4. On the r-
th iteration, for the k-th bit in b, denoted as b(r)k , we obtain
its conditional distribution given the bits b

(r)
1:k−1 and b

(r−1)
k+1:Nb

,
apply a simplified SPA, shown in [4] and below, and draw a
sample from its marginal to be used in the following iterations.
The notation m̂ refers to messages on each iteration, whereas
m refers to the posterior averaging of messages m̂.

m̂
(i)(r)
3 (wi(bk)) ∝ exp[−(yi − H̄iwi(bk))H

Σ−1z,i (yi − H̄iwi(bk)]
(36)

m̂
(i)(r)
7 (wi(bk)) ∝ m̂(i)(r)

3 (wi(bk))m̂
(i)(r)
5 (wi(bk)) (37)

m̂
(i)(r)
5 (wi(bk)) ∝ m̂(i+1)(r)

7 (wi(bk)) (38)

m̂
(i)(r)
10,n,q(bk) ∝ m̂(i)(r)

3 (wi(bk))m̂
(i)(r)
5 (wi(bk)) (39)

b
(r)
k ∼ m(i)

0,n,q(bk) ∗ m̂(i)(r)
10,n,q(bk) (40)

where the indexes represent the q-th bit of the symbol
transmitted by the n-th antenna on instant i in the r-th
iteration.

In order to obtain the true distribution m(i)
10,n,q , we drop the

first b samples before averaging, called burn-in samples, since
they usually do not present good convergence properties.

m
(i)
10,n,q(bk) ≈ 1

R− b

R∑
r=b+1

m̂
(i)(r)
10,n,q(bk). (41)

On each instant i, there are Q transmitted bits on each antenna.
For each bit, the GS iterates R times and there is a message-
passing schedule with complexity of O(L), resulting in a
complexity of O(RQLNT ) for the MCMC.

Finally, the proposed hybrid detector is obtaining initializing
the GS with the LMMSE solution, as shown in Algorithm 1.
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Algorithm 1 Hybrid MCMC and LMMSE Detector

1: Step 1: LMMSE Detection
2: Require all m(i)

1,n

3: for i = 1 to N do . Fwd Recursion
4: Compute m(i)

2 , m(i)
3 , m(i)

4 and m(i)
6

5: end for
6: for i = M to 1 do . Bwd Recursion
7: Compute m(i)

3 , m(i)
5 and m(i)

7

8: end for
9: for i = 1 to N do . Detection

10: Calculate m(i)
9,n, decode bits in sni

11: end for . Partial output: b̂MMSE

12:
13: Step 2: MCMC Detection
14: Initialize b(0) = b̂MMSE, require R and b
15: for r = 1 to R do . Each GS iteration
16: for k = 1 to Nb do . Each transmitted bit
17: for l = i(k) to i(k) + L− 1 do . Bwd Recursion
18: Calculate m̂(l)(r)

3 , m̂(l)(r)
5 , m̂(l)(r)

7 and m̂(l)(r)
10

19: . i(k) is the state wi containing bit bk
20: end for
21: Draw a sample b(r)k ∼ m0 ∗ m̂10

22: end for
23: end for
24: Calculate m(k)

10,n =
∑R

r=b+1 m̂
(r)(k)
10,n /(R− b)

25:
26: if not last iteration then
27: Feedback m(k)

10,n into m(k)
1 and m(k)

0 , go to Step 1
28: end if
29: Decode b̂ from all m(k)

10,n

IV. SIMULATION RESULTS

We compare the bit error rate (BER) of the MAP, hybrid
and pure LMMSE and MCMC detectors. Setup is done with
NT = 2, NR = 2, L = 2. For each coherence time block, the
Rayleigh channel coefficients [Hi]r,t are drawn independently
from a CN (0, 1) distribution. A total of 220 BPSK modulated
bits are transmitted on blocks, each containing 25 bits. The
GS is set with R = 15 and b = 5. We also simulated a second
iteration with feedback of the output message, m9 (or m10),
in the a priori information message, m1 (or m0). Results are
shown in Fig. 5.

As expected, the MAP detector presented best performance
and the fastest BER decaying rate. Both the LMMSE and
MCMC detectors have worse BER and decaying rates than
the MAP, the MCMC performing worse than the LMMSE
and stalling at high SNR.

However, the error floor disappeared in the hybrid detector,
even improving the LMMSE solution by a constant factor. The
extra processing time in the hybrid detector is not restrictive,
since the complexity of MCMC is inferior to that of LMMSE.
At low SNR, the detectors present similar performance, espe-
cially the three proposed suboptimal detectors.

Fig. 5: BER performance comparison of the four detectors.

V. CONCLUSIONS

In this work we presented a factor graph approach to the
problem of MIMO detection in frequency-selective channels
and reviewed the MAP, LMMSE and MCMC detectors by
assuming different hypotheses when applying the SPA. In ad-
dition, we proposed a hybrid detector by sequentially applying
the LMMSE and MCMC methods, which presented better bit
error rate than each detector individually while maintaining
the LMMSE complexity. It is important to note that the alter-
natives to improve the MCMC detector performance usually
determine the new detector complexity. Further work can be
done on novel approaches to reduce the error floor on MCMC
or to represent the distribution of the states.
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