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Applicability of an output-only structural damage
detection based on transmissibility measurements

and kernel principal component analysis
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Abstract— Frequency response functions have been employed
as damage-sensitive features in the vibration-based structural
damage detection. The need for measuring the excitation forces
arises as a remarkable limitation on the application of those
features in real-world applications. Transmissibility measure-
ments can be explored as features with output-only nature,
which imply the need for measuring only the response signals.
Thus, an output-only damage detection method is proposed,
combining transmissibilities with kernel principal component
analysis. The results performed on transmissibility measurements
from a laboratory steel beam reveals that the output-only method
has high potential to be applied in a wide range of monitoring
solutions.
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I. INTRODUCTION

In the structural health monitoring (SHM) field, damage
detection based on the vibration response measurements from
engineering structures has become a crucial research area
due to its potential to be applied in real-world scenarios [1].
From the vibration signals, damage-sensitive features can be
extracted and used to assess early and progressive structural
damage via appropriate data treatment.

Frequency response functions (FRFs) play an important role
in the vibration-based damage detection area [2]. Many works
have been employed the FRFs as features to generate some
kind of damage indicators (DIs) that reveal the structural
condition of monitored structures [3], [4]. However, the need
for measuring the excitation forces arises as a remarkable
limitation on the application of FRFs in real-world SHM
solutions. As an alternative, transmissibility measurements
have been widely explored as features in damage detection
for SHM [5], [6], [7], due to their output-only nature, i.e. the
need for measuring only the response signals.

Considering the successful use of transmissibilities to dis-
tinguish between undamaged and damaged conditions of mon-
itored structures, instead of generating a DI directly from the
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transmissibility measurements, several studies have been at-
tempting to combine FRFs and transmissibilities with machine
learning (ML) algorithms to detect structural damage.

The combination between FRFs or transmissibilities and
artificial neural networks (ANN) has been widely investigated.
In a first manner, the transmissibilities are the input of a
complex ANN that should detect damage simulated as stiffness
changes in a structure [8], [9]. However, the number of
spectral lines of the transmissibilities defines the number of
input nodes of the ANN, which may lead to a complex
neural architecture and expensive computational load. In other
attempt, the FRFs, computed from a monitored railway wheel,
have their dimensionality reduced via principal component
analysis (PCA) and this reduced form is the input of the ANN
[10]. Although acceptable results were achieved with this tech-
nique, a drawback appears when the transmissibilities from
undamaged and damaged cases must be known in advance by
PCA.

An approach that uses outlier analysis, density estimation
and auto-associative neural network combined with measured
transmissibilities was proposed to assess damage in aerospace
structures [11]. In this case, some parts of the transmissibility
measurements are selected as features in a visual manner,
which may not be generalized to other health monitoring cases.

More recently, FRFs and transmissibilities were linked to
the approach based on Mahalanobis squared distance (MSD)
to determine the structural condition of a monitored beam via
different types of DIs [12]. Similar to a first proposal [13], the
MSD algorithm presents problems, namely numerical errors
to compute a large covariance matrix, when all spectral lines
of the damage-sensitive features are considered. Note that the
ML algorithms, such as MSD and ANN, often work with a
large number of observations (or measurements) and a small
dimensionality (or spectral lines).

PCA [14] and its nonlinear version, kernel PCA (KPCA),
have been applied to reduce the dimensionality of the original
features such that a trade-off should be reached in the sense
that the appropriate dimensionality needs to be not only large
enough to account for all normal condition but also small
enough to be as sensitive as possible to damage. To reach
this appropriate reduced form of transmissibilities, this paper
proposes an output-only structural damage detection method in
the context of a statistical pattern recognition (SPR) paradigm.
In this paradigm, the proposed method is divided into two
phases [15]: feature extraction and feature classification. In
the first phase, the dimensionality of the transmissibilities
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is reduced by application of KPCA. In the second phase,
based on outlier detection, DIs are generated for new trans-
missibilities considering the data model computed in the first
phase. The proposed method is validated on a monitored
steel beam, where the damage classification performance is
evaluated based on false-positive indications of damage (Type
I errors) and false-negative ones (Type II errors).

The remainder of this study is organized as follows. In
section II, a brief background related to transmissibility mea-
surements is emphasized and the feature extraction and feature
classification phases of the proposed method are described. A
description of the test structure is provided in section III, along
with a summary of the measurement sets. Experimental results
on measurement sets are discussed in section IV; a comparison
with the PCA algorithm is also presented. Finally, section V
highlights a discussion related to the strengths and challenges
of the proposed method.

II. OUTPUT-ONLY METHOD

This section deals with the background and phases related
to the method proposed in this study.

A. Transmissibility measurements

Transmissibility measurements are defined as relations be-
tween motion responses and motion reference-responses [16].
In practice, it is often convenient to obtain the transmissi-
bilities without the knowledge of the excitation forces. In
particular, the direct or scalar transmissibility measurement
Ti,j (w) between an output i and and reference-output j is
defined as the ratio between the two response spectra,

Ti,j (w) =
Yi (w)

Yj (w)
, (1)

where Yi (w) and Yj (w) are the complex amplitudes of the
responses yi (t) and yj (t), respectively, for a harmonic force
applied at a given coordinate, and for each frequency w.

In general, for a random input, a transmissibility measure-
ment can be estimated in several manners. The most common
option is using an output-only H1 estimator by dividing an
estimate of the cross-power spectrum Si,j (w) between the
output Yi (w) and the reference-output Yj (w) by an estimate
of the auto-power spectrum Sj,j (w) from the reference-output
Yj (w),

Ti,j (w) =
Si,j (w)

Sj,j (w)
. (2)

A set of transmissibilities is acquired by measuring re-
sponses on all coordinates and directions of interest at the
structure divided by the reference response from the same
fixed measurement coordinate. One should consider a training
set, X ∈ Rn×d, with d-dimensional transmissibilities from n
different conditions when the structure is undamaged and a
test set, Z ∈ Rl×d, where l is the number of transmissibilities
from the undamaged and/or damaged conditions.

B. Feature extraction

For the feature extraction phase, the KPCA algorithm [17]
is used to reduce the dimensionality of the transmissibility
measurements. Let X ∈ Rd be the input space such that the
transmissibilities xi ∈ X , i = 1, . . . , n. Every transmissibility
x is then mapped to a dφ-dimensional feature space H by
applying the mapping functions φm, m = 1, . . . , dφ, where

φ(x) =
[
φ1(x) φ2(x) . . . φdφ

(x)
]>
. (3)

By employing the kernel trick [18], K : X × X 7→ R
is defined as a positive semi-definite scalar kernel function
satisfying for all xi, xj ∈ X ,

K (xi,xj) = φ (xi)
>
φ (xj) . (4)

K (·) defines an inner product that allows to map the trans-
missibilities implicitly to a high-dimensional kernel space. Let

Φ = [φ(x1) φ(x2) . . . φ(xn)] (5)

be the dφ × n matrix of the mapped transmissibilities and
K = Φ>Φ be the n × n kernel (Gram) matrix. According
to Mercer’s theorem, any continuous, symmetric, and posi-
tive semi-definite function that maps (xi,xj) onto a high-
dimensional feature space can represent a kernel [19]. The
kernel trick then consists of specifying the kernel K (·) instead
of the mapping φ. Herein, a Gaussian kernel [20] is employed,

K (xi,xj) = exp

(
−‖ xi − xj ‖2

2σ2

)
, (6)

where this kernel implicitly defines a high-dimensional feature
space with a bandwidth σ2.

To avoid that the first principal component becomes much
larger than the other components, the kernel matrix K should
be replaced by a centered version [17],

K→ K− 1n

n
K−K

1n

n
+

1n

n
K

1n

n
, (7)

with 1n as the n× n matrix composed of ones.
The eigenvalues Σ and the corresponding eigenvectors U

can be then derived by using singular value decomposition
(SVD) to solve the generalized eigenvalue problem [17],

KU = UΣ. (8)

Afterwards, the Σ1 and U1 should be defined as follows,

Σ = [Σ1 Σ2] ,Σ1 ∈ Rr×r;U = [U1 U2] ,U1 ∈ Rn×r,
(9)

where Σ1 comprises the r largest eigenvalues and U1 the cor-
responding eigenvectors. The transmissibility measurements X
can be then represented in a reduced form as the transpose of

Xp =
√

Σ1U
>
1 . (10)

In addition, the estimation of parameters required for the
KPCA algorithm is discussed in the following. There are
multiple methods to optimize the bandwidth parameter σ2 of
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the Gaussian kernel [21]. However, those methods require that
n ≥ d and when transmissibility measurements are used, often
n < d. Thereby, a rule-of-thumb is employed,

v = var (X) , σ2 =
n

d

d∑
i=1

vi, (11)

where var (X) is the variance of the training data. Several cri-
teria have been proposed to determine the number of principal
components r retained in the high-dimensional feature space
[22]. In this study, r is derived to comprise nearly all normal
variability of the training data,√√√√√√√√√

r∑
i=1

Σi,i

n∑
i=1

Σi,i

≥ 0.99, (12)

being Σi,i the i-th diagonal element of Σ. Note that the
variance retained in the standard PCA is usually 0.9–0.95 [22].
On the other hand, the KPCA has been often used with 0.99
because there are potentially n nonzero principal components
for the Gaussian kernel.

C. Feature classification

Since an undamaged data model was established in the
previous phase by training the KPCA, in this phase a DI is
generated to any new transmissibility measurement zi ∈ Rd,
i = 1, . . . , l.

First, a new transmissibility measurement should be mapped
onto the high-dimensional feature space in the form of
Φ (zi)

>
Φ (or Φ>Φ (zi)), by using X and zi in Equation

6. Besides, a centering should be performed, such as,

Φ (zi)
>

Φ→ Φ (zi)
>

Φ− 1̌n

n
K−Φ (zi)

>
Φ

1n

n
+

1̌n

n
K

1n

n
,

(13)

with 1̌n as the l×n matrix where all elements are equal to 1.
Second, the eigenvectors U1 should be replaced by a

normalized version,

um →
um√
Σm,m

,m = 1, . . . , r, (14)

being the transmissibilities used in the test phase, Z, repre-
sented in a reduced form as

Zp = Φ (zi)
>

ΦU1. (15)

Finally, a DI is generated for the i-th new transmissibility
measurement as follows,

DI (zi) = Φ (zi)
>

ΦU1U
>
1 Φ>Φ (zi) . (16)

III. TEST STRUCTURE AND DATA SETS

For the experimental validation of the proposed method,
a steel beam was used, with rectangular cross-section, dimen-
sions 1002×35×6 mm3 and weight 1.740 kg. Two inextensible
cables simulating “free-free” support conditions suspended the
test structure. The test structure was excited at location 3 with
a pseudo-random signal by a Brüel & Kjaer 4809 shaker,
powered by a Brüel & Kjaer 2706 power amplifier. The force
was transmitted through a stinger and measured by a Brüel
& Kjaer 8200 force transducer; the responses were measured
by 23 piezoelectric CCLD accelerometers (equally spaced
coordinates). The response signals were fed into the multi-
channel data acquisition unit Brüel & Kjaer 2816 (PULSE)
and analyzed with the Labshop 6.1 Pulse software installed
on the attached laptop. The experimental setup is shown in
Figure 1 and more details can be found in Sampaio et al [4].

Fig. 1. Experimental setup with the identification of the accelerometers and
damage location.

The damage was simulated with a reduction in the height
by a saw cut. Basically, saw cuts, with several depths, were
inflicted to the beam between locations 15 and 16 to create
nine damage levels, as synthesized in Table I.

TABLE I
DAMAGE LEVELS INFLICTED TO THE EXPERIMENTAL BEAM BY SAW CUTS.

Damage level Width (mm) Depth (mm)
D01 1.0 0.5
D02 1.0 1.0
D03 1.0 1.25
D04 1.0 1.6
D05 1.0 3
D06 1.0 3.5
D07 1.0 4
D08 1.0 4.5
D09 1.0 5

Therefore, from Table I, one can infer that the response
signals from the accelerometers deployed on the beam were
measured in 10 conditions; the undamaged or baseline one
(D00), and the nine levels of damage (D01 to D09) inflicted
in the middle of the locations 15 and 16. Furthermore, the
frequency range used for the analysis of the beam was 0-800
Hz (3200 spectral lines) and 15 averages have been taken to
acquire the accelerations.

Assuming a force at location 3, 30 measurement sets
have been performed from the instrumented beam. The first
measurement set is the undamaged beam (Baseline condition
– BC). The next two measurement sets are also of the undam-
aged beam. The following 27 measurement sets correspond to
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the nine saw cuts of the beam with three measurement sets
each (Damaged condition – DC).

Considering all possible combinations to output and
reference-output, 506 transmissibilities can be generated for
each measurement set. For convenience, only 100 transmis-
sibilities are selected at random from each measurement set,
yielding 3000 transmissibilities to compose the training and
test measurement sets, where the first 300 are transmissibilities
from the undamaged condition and the last 2700 transmissibil-
ities corresponding to the nine levels of damage. The training
data is composed of 90% of the transmissibility measurements
from the undamaged condition. The remaining 10% of the
transmissibility measurements are used during the test phase to
make sure that the DIs do not fire off before the damage starts
and to evaluate the level of generalization of the proposed
method. The test data is composed of all the measurement
sets, even the ones used during the training phase. Note that
the training process is unsupervised, which imposes serious
limitations for a cross-validation procedure.

IV. RESULTS AND DISCUSSION

Examples of transmissibilities and FRFs derived from the
monitored beam under different conditions are shown in
Figure 2. There are notable differences between the undam-
aged condition and the maximum level of damage for both
transmissibilities and FRFs. However, the large number of
spectral lines and small number of measurements make the
transmissibilities inappropriate to be suitably processed by
the ML algorithms. Thereby, this fact highlights the need for
dimensionality reduction.
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Fig. 2. T5,3 (w) (top) and FRF5 (w) (bottom) for three different conditions.

After the algorithms have reduced the dimensionality of
the transmissibility measurements, the DIs derived from the

KPCA and PCA algorithms are shown in Figure 3, along with
a threshold defined for a level of significance of 5% over
the training data. The KPCA, which selected 181 principal
components, can maintain a monotonic relationship between
the progressive level of damage and the amplitude of the DI
and minimizes quite well the Type I and II errors. In opposi-
tion, the PCA, which selected only 14 principal components,
fails to achieve the monotonic relationship and exhibits many
false-negative indications of damage. The performances of the
algorithms are summarized in Table II, where approximately
13 Type I errors are expected due to the threshold selected
for 95% of confidence in the training data and the disparity
between the total errors from both algorithms is evident.
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Fig. 3. Outlier detection based on the KPCA (top) and PCA (bottom)
algorithms.

TABLE II
NUMBER AND PERCENTAGE OF TYPE I AND TYPE II ERRORS.

Algorithm Error
Type I Type II Total

KPCA 15 (5.00%) 1 (0.037%) 16 (0.53%)
PCA 14 (4.67%) 2032 (75.26%) 2046 (68.20%)

The large difference between the performances of the algo-
rithms is explained through Figure 4. In the high-dimensional
feature space mapped by KPCA, the principal components
are distributed in a more representative manner than those
distributed onto the feature space projected by PCA. Thus,
the transmissibilities that have been reduced, in the training
phase, from 3200 to 181 dimensions can be generalized to new
transmissibilities, ensuring an adequate dimension to detect
structural anomalies, whereas the reduction from 3200 to 14
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dimensions by PCA may impact in an underfitting regarding
the training measurement sets.
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Fig. 4. Distribution of principal components for the KPCA (top) and
PCA (bottom) algorithms. The number of principal components selected is
highlighted by a red dashed line.

V. CONCLUSIONS

This paper proposed an output-only structural damage de-
tection method, for which transmissibility measurements and
ML algorithms were used to assess the condition of monitored
structures. Feature extraction and feature classification phases
were developed, based on the SPR paradigm, to reduce the
dimensionality of transmissibilities via KPCA (training) and
to generate a DI that establishes the level of damage for each
new transmissibility measurement (test), respectively.

The damage detection performances on the test scenario
confirmed that the proposed method is better than the alter-
native one. When the KPCA was compared to the PCA, the
improvement of the mapped feature space proved to have a
direct and positive impact on the dimensionality reduction step
and consequently damage detection. This explains, in part, the
relatively poor performance of the PCA on measurement sets
from the test experiment.

Unlike the other approaches, the output-only strategy intro-
duced in this study can process the transmissibility measure-
ments by KPCA such that an appropriate dimensionality is
achieved for ML applications, solving the problem of many
spectral lines and small number of measurements.
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