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Requirements for 10T Sensors Using Embedded
Compressed Sensing Encoders with Deterministic
Sensing Matrices

Felipe da Rocha Henriques, Lisandro Lovisolo and Eduard@wiatBarros da Silva

Abstract—We consider a WSN monitoring environmental of increasing node autonomy are of relevance [4]. Following
signals. Sensor nodes compress data employing the Compressivehijs, we consider the Compressive Sensing (CS) framewdrk [5
Sensing (CS) framework, exploring signals sparsity to reduce the as the data compression scheme in order to save sensor

number of transmissions. We propose the use of the Karhunen— .
Loeve Transform (KLT) as sparsifying basis and design maxi- nodes energy [6]. CS explores the fact that signals have a

mally incoherent deterministic sensing matrices. Real-life signals SParse representation in a given basis and consequently can
are used in simulation, and their CS measurements are quantized be represented using few non-zero coefficients. These are

before transmission. The rate—distortion performance obtained gptained through linear measurements that are incoherigmt w
after the reconstruction of monitored data is evaluated. Impor- the sparsifying basis. As a result, sensor nodes just need to

tant requirements for using this framework in an loT scenario ¢ it f fficient . dth -
are also investigated, such as the response time (latency) of the ransmit ilew coeiticients, saving energy an ence Inmgas

WSN, the impact of packet loss in the reconstruction of the sensed autonomy. In [6], a circuit example shows that it is better
signals and the energy consumption of sensor nodes to transmitto apply the CS coding framework in the digital domain

coded measurements. Simulation results show that the KLT— (j.e., after the ADC — analog to digital converter) than ie th

based deterministic sensing matrices overcome both Noiselets e : ;

and DCT-based deterministic ones, and the proposed CS coding analog doma?'” (i.e., before the ADC.)' Linear programming or
greedy algorithms are used at the sink node to reconstrect th

scheme is robust against packets loss. . )
] ) ~monitored signal from the measurements [7].
Keywords— 10T, WSN, Compressive Sensing, KLT, determin- o . o )
istic sensing matrix. Designing a good sensing matrix is a requirement for CS to

work. Random methods provide statistically good matriés [
in contrast, in [9] the deterministic design of maximally
incoherent sensing matrices for orthogonal or bi-orth@gon

Currently, most individuals are connected to the Interset usparsifying bases is presented. Deterministic sensingi-mat
ing several devices (smart-phones, tablets, smart-TVengm ces provide better rate—distortion performance than nando
others) employing the most diverse physical layer tectgie® sensing matrices [9]. In this work, we pursue this further to
ranging from wire-lined to wireless. The Internet of Thinggonsider deterministic sensing matrices constructedguia
(loT) [1] brings this connection to “things”, so that theynca Karhunen-Leéve Transform (KLT) [10] as sparsifying basis.
process data and share information, providing a framewddoing so, we intend to increase the representation power
for distributed applications. Some application domainsl af CS coefficients, thus providing a better rate—distortion
relevant scenarios for 10T are defined in [1]. One of thenperformance.

that is the focus of this work, iEnvironmental Monitoring The above is applied in a WSN-based 10T environmént:
which has been largely |mplgmented using a ngless_Seng%S(Jr nodes measure physical variables such as temperatur
Network (WSN) [2]. A WSN is arad hocnetwork, in which o, 1midity, ii) the CS scheme is used to compress data
sensor nodes are capable Of_ communlcatmg to deliver thﬁHd produce/transmiit) quantized CS coefficients. From these
measurements tq a bas_e station (s_mk node)._ coefficients,iv) the sink reconstructs the original signal block
Such a scenario entails the basic 0T enV|lronment, thatld§ using a specific reconstruction algorithm. The analysis
composed by sensors, gateway and end-devices. The gateyjay, ch strategy allows to evaluate its use in an 10T sce-
may be usgd as a node tq communlcate directly with trr"1‘f";1rio for environmental monitoring. We determine which are
sensors or it may also receive traffic from sensor node_s A sensors/network requirements for environment mangor

offer it to the Intern_et. Furthermore, th_e data can _be moeito with using the CS—based encoder, regarding energy and rate—
from anywhere as in a home automation application [3], at ”&‘?stortion performances

gateway or directly at the node. ) , ) . L
For the WSN to scale at manageable costs, the sensorReal-life environmental signals are considered in simula-

have memory and energy constraints. Thus, methods capdi@s [11] aimed at evaluating the performance of the deter-
ministic optimal compressive sampling scheme. The andlyze
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I. INTRODUCTION
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[I. COMPRESSIVESENSING WITH DETERMINISTIC reconstructs the signal from the CS measurements imposing a
SENSING MATRICES thresholding operation on the coefficients and also onithe
A. Using Compressive Sensing for Signal Coding norm maximumr, 1.€.
Let a sensor node colledf samples of a signat € RY. argmin [|®x —y[> st [x]L <7 (5)
The CS framework considers this signal to have a spar,

\We use the LASSO implementation contained in the SPGL1

representation software packet [13].

s= Wx, Q)

where & € RN*N s a transform matrix mapping to a C- KLT-Based Sensing Matrices

sparses. The sparsity assumption, which has been the basis forln the CS framework, in principle, the more incoherent
transform-based signal coding, means that most of the Isigttaat ® is to the sparsifying basi®, the less coefficients has
energy is concentrated i§ few coordinates ofs. The CS they guaranteeing provably good signal estimates [5]. It has
framework pushes this concept further by coding the signaéen shown in [9] that, given an orthogontil (N x ) the
into M linear measurements (or coefficients) in the form ofmaximally incoherent sensing matrix (M x N) to it is given

by
y=ox ) o= HY, (6)
in which ® ¢ RY*¥ is called thesensing matrixwith  yhere H is formed by rows of the Hadamard matrix.

obtained by the inner product betweemnd the measurementeyajuate the use of maximally incoherent deterministisisen
function ¢, (the m-th row of sensing matrix One can matrices to the KLT in the CS framework. The KLT obtains
reconstruct an approximation of from y looking for the yncorrelated components providing the best coefficients en
sparsess such that ergy concentration [14]. Nevertheless, for designing th& K
y=®v’s Q) is necessary to have samples of the class of signals to groces
where ¥* is the complex conjugate transpose W, and A_Ithough in the_ pa_lst this hgs been appointed as a technical
difficulty for designing generic compression systems, fame

makingx = ¥*s. ) . . S
Sparsity is in general assumed theorm of the vector, the pressive sensing some signal space/characteristics &dge/l

amount of non—zero entries of the vector. However, using suS aways assumed to improve CS performance [15].
an approach to solve equation (3) leads to a combinatorial, ||,
NP-complete problem [5]. Alternatively, a common compro-
mise is to minimize thé,; norm instead [7], leading to

RESULTS OFREQUIREMENTS FORIOT SENSORS

We start this section evaluating the possible gain of using

the KLT for sensing matrix design. For simulation of the
§=argmin||g|; s.t. y = ®P¥*§ producingx = ¥*s. (4) loT scenario, we consider the Intel Berkeley laboratory WSN

° data [11] — sensor nodes collecting environmental sigrals f

In the WSN monitoring application, CS can be used tgore than a month, from which we extract temperature and

reduce the energy consumed by sensor nodes for coeﬁicie{mﬁ]idity signals.

transmission since just/ coefficients ¥) instead of N coeffi- We compare the results & being the KLT or the DCT [16]

cients k) are required. The coefficients are easily obtained Iy4sis. The KLT basis is assumed to be known at both coder

simple multiplication ofx by a matrix, with low energy con- and decoder. It is obtained from realizations of the moaidor

sumption. Although traditional transform-based codingymasignals, which in turn are not used in the RD assessment.
potentially employS < M values when compared to the CS

framework, any coefficient loss leads to a corresponding l0a. Rate—Distortion Performance Evaluation

of signal energy. In contrast, the CS framework is more re- o antization is considered in the presented rate—distorti
silient, since the:sensfmg ma’Fn)spreads the |m‘ormatlon/en_e_rgyperformamce analysis. For that purpose distinct bit-deptn-
of a principal direction ofk in a way that could be classmedtiZerS are used testing the performance at different rates.

as being between the use of the coefficients ofx and the | ote at which each sensor transmits quantized CS coefficient
use of theS coefficients ofs (S < M < N). Since one wants g qefined as

this to happen with a few coefficients as possible (sma)| M
good sensing matrices design methods are required. R = — x H(ygq), bits/coeff @)

. : N
One should note that the values ynmust be quantized in which NV is the signal block dimension of the collected data,

for transmission to the sink node [4]. Upon reception, th& is the number of coefficients transmitted by sensor nodes

sink nod(_a recons_tructs the signal by solving the optimirati and H (yo) is the entropy (in bits per sample) of the quantized
problem in equation (4).
measured data

. 1For entropy computation, we consider that each possibletieaoutput
B. The LASSO Reconstruction Method value occurs at least once. Doing so, unused reconstructilies are ade-

In this work, we emp|0y thé_east Absolute Shrinkage andduately taken into account. In addition, the experimentsdiferent estimates

. . of H(yg) depending onM and quantizer bit-depttB. However, if an
Selection OperatofLASSO) [12] to reconstruct the rnonltoredadaptive arithmetic encoder was considered, the rate wailapproximated

signal from received data. Concisely, the LASSO algorithmy the entropy.
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As leading signal reconstruction metric (the one used for ah the reconstruction can also be observed when sensor node
gorithm evaluation) we employ theormalized Mean Squared uses quantizers with more bits. Moreover, we verify a better

Error (NMSE) rate—distortion performance for results considering KkTifee
El(z — #)2] sparsifying basis, since this transform is the one that méie
NMSE = EE (8) signals the most sparse, and the deterministic sensingxmatr

used is optimum for the given basis.
where E[] is the expected value operatarjs the actual data

value andz its reconstructed version. 18 ‘ ‘

For each rateR, the NMSE is computed and, to yield a Lot
more accurate rate-distortion (RD) analysis, each poirihén m'zo’ Xy =i b KLT+ Detorminett |
presented RD curves results from an ensemble of 100 ru 22 = ot bt KT+ Dottt

. . . N,
each one with a distinct block of samples, and the NMSE I N ]
presented in dB scale. g
S-26r E
B. CS—-Based Encoder Performance 281 ]

Figure 1 presents the RD compromise for coding the ter 30, ; 5 5 S S .

perature signal using a deterministic sensing matrix ore o.. R (bits/sample)

based on Noiselets [8]. These CS-encoder designs are denqte .
L . . Ig. 2. RD performance for the reconstruction of temperator&f. T-based
by DCT + Deterministic and DCT + Noiselets, respectively| T + peterministic) and DCT-based (DCT + Deterministic) efetinistic
The same sparsifying basis is assumed in the two cas@sing matrices. The signal block hisis= 512 samples, the quantizers have
However, in the deterministic approach, one constructs tRdepths5=4, 6 and 8, and/ € {16, 32, 64,128, 256, 300}.
sensing matrix using equation (6), while in the second this i
done using Noiselets [8]. For the results in FiguréVl= 512
samples, the quantizers have varying bit-depiiss 4, 6 and
8, and M € {16,32,64,128,256,300}. As one readily sees,
the deterministic sensing matrix brings improvements te-ra
distortion performance over the one using Noiselets.

T T
—e—4 bits - DCT + Deterministic
—a -6 bits - DCT + Deterministic|
— -8 bits - DCT + Deterministic
=e—4 bits - KLT + Deterministi¢
== =6 bits - KLT + Deterministi¢{
=¢=8 bits - KLT + Deterministi¢

T T
~e—4 bits - DCT + Deterministic
=1 =6 bits - DCT + Deterministic
—-8 bits - DCT + Deterministic_| . R mrma—.

—e—4 bits - DCT + Noiselets — '~-—'.":_-—.__
—a-6 bits - DCT + Noiselets - R T e —
--¢- 8 bits -DCT + Noiselets

Normalized MSE

3
R (bits/sample)

Normalized MSE

Fig. 3. RD performance for the reconstruction of humidity fdrTkbased
B P — 1 (KLT + Deterministic) and DCT-based (DCT + Deterministic) efatinistic

"""""""""""" ey sensing matrices. The signal block hsis= 512 samples, the quantizers have
s ‘ ‘ ‘ bit-depthsB= 4, 6 and 8, andV/ € {16, 32, 64, 128, 256, 300}.

R (bits/sample)

Fig. 1. RD performance for the reconstruction of temperature the
deterministic (DCT + Deterministic) and random (DCT + NoisgJesens- C. Resili to Packet L
ing matrices (DCT is the sparsifying basis). The signal blbels N = - Resllience to Facket Loss

512 samples, the quantizers have bit-depfBs 4, 6 and 8, andM € We now evaluate the impact of packet loss in the RD
{16, 32,64, 128, 256, 300}. . .
performance. The wireless channel is prone to packet Ig§s [1
and the CS encoder deals with it as described in the sequel.
We now test the proposal of using the KLT as spard&/hile sensor nodes transmiif quantized CS coefficients, the
basis in the CS scenario. The resulting RD performance sk node may receive only, < M < N coefficients. One
compared against the one obtained for deterministic sgnssupposes the existence of sequence numbers in the packets, a
matrix (computed for the DCT basis) in Figures 2 and 3; thesemmon practice in several network standards since it allow
present the RD performances of the CS quantized encodertidentify lost frames in the link layer or to reorder segtsen
temperature and humidity signals, respectively. One natesn the transport layer. These sequence numbers may be used
gain in using the KLT in place of the DCT. The length of signah the CS reconstruction to identify the lost measurements
block, quantizer bit—depths and amount of CS coefficierds aand thus ignore them in the reconstruction procedure — i.e.,
the same as those used in the previous experiment. coefficient losses is simply modeled as using a sensingxmatri
One observes that for both monitored signals an improweith pruned rows corresponding to the missing coefficients.
ment in the reconstruction of the signals (with a decrease inNow, we empirically evaluate the RD performance of the
the NMSE) as rate increases, since more coefficiemd ( CS scheme using the KLT-based deterministic sensing matrix
are used in the reconstruction procedure. An improvemanmider several packet loss conditions, and compare it ggains
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the former one using DCT as the sparsifying basis under t
same packet loss conditions. We present results for pac
loss percentages of 0%, 10%, 30% and 50%. A 0% pacl
loss means that all packets were received and a 10% pac
loss means that in average one in ten packets is lost. .
combinations of packet loss rate, bit-deptB) (and number

of coefficients (/) have been simulated. The dimension ¢ 0

==@== 0% packet loss DCT + Determinftic

=g = 10% packet loss DCT + Deterministic
=@ 0% packet loss KLT + Deterministic

=gl =10% packet loss KLT + Deterministic

Normalized MSE
Normalized MSE

=
& = —p

1 2 3 4 5 6 0 1 2 3 4 5 6

the signal block is set taV = 512; sensor node transmits R (bits/sample) R (bits/sample)
M € {16,32,64,128,256,300} CS coefficients; and bit—
depths are set t® € {4,6,8,10}. 0 0

Figure 4 shows the RD convex hulls for the reconstructic £ |[ZZ3maais i o 6 Lok S me i o S
of the signal using the KLT as the sparsifying basis. Tr ks ks
convex hulls are the operational curves of sensor nod E_ZO E_ZO
i.e., the quantizers that produce the best RD performanc 2 2 kol
We can observe just a small decrease in the NMSE in t 30 Bt abkel 30 ek
reconstruction when data is lost, showing that the propos °r g (bits/ssampfe) °° ©t g (bits?samp?e) °°

CS scheme is robust against packet loss. Figure 5 compe

the KLT with the DCT as the sparsifying basis for 0%, 10%,

30% and 50% packet loss. From these results one obserigs5. RD convex hulls for the reconstruction of temperatiie = 512
that the gain in using the proposed sensing matrices is @ ples) under different packet loss percentages for bettKtfi and the
. . . as sparsifying bases.

jeopardized by losing packets.

=% packet g Figure 6 presents the RD convex hulls for the recovered

= =10% packet logg

ok aieendetors  temperature signal (these are obtained as in the previous
% | sections) using distinct length® for the signal block. As

one observes, RD performance improves\agicreases. This

is expected since CS explores sparsity betteNamcreases.

1 NeverthelessN cannot be to large, for augmenting the signal

block produces a higher response time, since more time is

required to collect theV samples.

Normalized MSE
N N} )
kN N
T T

N
o
T

N
@
T

30 I I I I I
0 2

3
R (bits/sample)

T
Q =e—Convex hull - N = 1024
|k =a =Convex hull - N = 512|

v —+-Convex hull - N = 256
" Convex hull - N = 128]

Fig. 4. RD convex hulls for the reconstruction of temperat{ife = 512 20
samples) under different packet loss percentages using tfle d6 the
sparsifying basis and deterministic sensing matrices.

N
N
T

)
IN
T

Normalized MSE

N
3]
T

D. WSN Response Time and Energy Consumption

The CS-based coding strategy needs the sensor node to
store N samples of the interest signal, then to project tt 30 ; ; 5 ‘ :
signal on the sensing matrix to generate #eCS coefficients. R (bits/sample)
These are then quantized and forwarded to the sink node. This N .
. . . l/delay for data to be available at t é; 6. 'Rate—dlstortlon_ convex hulls for the_recons_truu:tuf temperature
IMposes a_Ume 'nterva_ elay : REnal with LASSO varying the length of monitored signal BdaV), using
sink. We will refer to this delay as the WSN Response TIM&LT as the sparse basis.

We have seen that as the quantizer bit-depth &hdn-

crease, the signal quality also increases at the expense of 4n order to better investigate the 10T requirements based on

mcre_r;sle In rate. In_ this S]:?CI:IOI’](,:;\IG emglrlcally eva;;atmo the length of signal block, we propose the following experi-
possible compromises of the CS-encoder parame M ment. We consider that a fifteen-node WSN is monitoring a

gnd B) and aspects such as energy consumption and resmt%?ﬁperature signal. These are a subset of the 54-sensors fro

7er bit—denth d sianal block | Hnﬁe Intel Berkeley Research lab [11]. A single sensor node
quantizer bit-depth® € {4, 6, 8, 10} and signal block lengths Sy7, located at(39.5,14) m 2, collects temperature samples

N € |{128,256,512, (11024} colgzﬂ(i:ted samples; foV = 128 5 transmits the measurements to the sink nogy (ocated
s;af_m_p es, sfensor_no es tranls te {16,32,64,80,100} co- at (0.5,17) m. The other thirteen nodes are used as routers
efficients, forV = 256 samples,M € {16, 32, 64,128, 200}, to forward the packets from sensor to sink. In each of the 10

for N = 512 samples,M € {16, 32,64,128,256,300}, and simulation runs used to average the results, the positidheof
for N = 1024 samples M e {16, 32, 64,128,256, 512}. KLT

is considered as being the sparsifying baBis 2The coordinates are relative to the upper right corner oflabe

N
]
T
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thirteen routers is drawn from the remaining ones. TrueTinevaluated the response time of the WSN, varying the length

1.5[18] is used to perform the simulations, the IEEE 802.150f the signal block, and we also analyzed the impact of packet

standard [19], referred to as ZigBee and widely used for WINss in the reconstruction of the environmental signal.

and loT, is considered for communication between nodesawhil We concluded that sensors using embedded CS encoders
the AODV (Ad hoc On-Demand Distance Vedtarouting are suitable for WSN-based loT environments, and the usage

protocol is used for routing. To evaluate energy consumptioof KLT as the sparsifying basisl improves the encoder
we consider a state—based energy model [4] for the senperformance with respect to the rate—distortion behavior.

nodes. The active state cycled among the operation modes:
measurement, processing, transmission and data reception
These operation modes have different power consumptiong;
which multiplied by the time spent in the activity provide an
estimate of the consumed energy. 5

Table | presents the response time of the WSN and th[e]
energy consumption (per sample) of the transmitted sensor
node for distinct values ofV. Aiming at a fair comparison, [3!
a fixed reconstruction quality is imposed, and one selects an
NMSE around -24 dB. For eacN the corresponding/ and
quantizer for that NMSE are employed, yieldingf = 32
coefficients and3 = 8 bits for N = 128; M = 32 coefficients
and B = 8 bits for N = 256; M = 32 coefficients and3 = 6
bits for N = 512; and M = 32 coefficients and3 = 6 bits for
N = 1024. As expected, the response time increases with th[g]
signal block length. For emergency situations, this is ands [6]
to be considered if fire alarm is one of the WNS objectives,
since the larger the block lengtN, the slower the network
response, i.e., the larger the response time. 7

On the other hand, one observes from the numbers in
Table | that energy consumption reduces /ssincreases.
This is so because the CS-encoder better explores signall
sparsity asN increases, being required to transmit a smaller
ratio of measurements relative to the block length, dé/N (g
decreases a8/ increases, consuming less energy per coded
signal sample or observation time interval.

(4]

TABLE | (101

RESPONSE TIME AND ENERGY CONSUMPTIONPER SAMPLE) FOR
DIFFERENT VALUES OFNN AND A FIXED NMSE OF -24 DB.
N

(1]

Resp. Time (sec)| Energy Cons. (J/sample]

[12]
128 158 0.0017
256 28.6 0.0013 [13]
512 542 0.0011
1024 105.4 0.0009 [14]

[15]

IV. CONCLUSIONS

In this work, we employed a WSN monitoring environmen[-le]

tal signals in an IoT environment. Sensor nodes use Compres-
sive Sensing as a data compression framework. Doing so, ilnﬁ
intends to provide a transmission scheme with low complexi
since sensor nodes have memory and energy constraints.

We proposed the usage of KLT as the sparsifying ba ilsg]
within the design of maximally incoherent sensing matrice
aiming at providing sensing functions which concentrateemo
energy into the CS coefficients and, then improving rat%—g]
distortion performance.

We verified that the KLT-based deterministic sensing ma-
trices overcame both the Noiselets and the DCT-based de-
terministic ones in terms of rate—distortion performanéée
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