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Compressed Sensing Encoders with Deterministic
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Abstract— We consider a WSN monitoring environmental
signals. Sensor nodes compress data employing the Compressive
Sensing (CS) framework, exploring signals sparsity to reduce the
number of transmissions. We propose the use of the Karhunen–
Loève Transform (KLT) as sparsifying basis and design maxi-
mally incoherent deterministic sensing matrices. Real–life signals
are used in simulation, and their CS measurements are quantized
before transmission. The rate–distortion performance obtained
after the reconstruction of monitored data is evaluated. Impor-
tant requirements for using this framework in an IoT scenario
are also investigated, such as the response time (latency) of the
WSN, the impact of packet loss in the reconstruction of the sensed
signals and the energy consumption of sensor nodes to transmit
coded measurements. Simulation results show that the KLT–
based deterministic sensing matrices overcome both Noiselets
and DCT–based deterministic ones, and the proposed CS coding
scheme is robust against packets loss.

Keywords— IoT, WSN, Compressive Sensing, KLT, determin-
istic sensing matrix.

I. I NTRODUCTION

Currently, most individuals are connected to the Internet us-
ing several devices (smart-phones, tablets, smart-TVs, among
others) employing the most diverse physical layer technologies
ranging from wire-lined to wireless. The Internet of Things
(IoT) [1] brings this connection to “things”, so that they can
process data and share information, providing a framework
for distributed applications. Some application domains and
relevant scenarios for IoT are defined in [1]. One of them,
that is the focus of this work, isEnvironmental Monitoring,
which has been largely implemented using a Wireless Sensor
Network (WSN) [2]. A WSN is anad hocnetwork, in which
sensor nodes are capable of communicating to deliver their
measurements to a base station (sink node).

Such a scenario entails the basic IoT environment, that is
composed by sensors, gateway and end–devices. The gateway
may be used as a node to communicate directly with the
sensors or it may also receive traffic from sensor nodes and
offer it to the Internet. Furthermore, the data can be monitored
from anywhere as in a home automation application [3], at the
gateway or directly at the node.

For the WSN to scale at manageable costs, the sensors
have memory and energy constraints. Thus, methods capable
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of increasing node autonomy are of relevance [4]. Following
this, we consider the Compressive Sensing (CS) framework [5]
as the data compression scheme in order to save sensor
nodes energy [6]. CS explores the fact that signals have a
sparse representation in a given basis and consequently can
be represented using few non–zero coefficients. These are
obtained through linear measurements that are incoherent with
the sparsifying basis. As a result, sensor nodes just need to
transmit few coefficients, saving energy and thence increasing
autonomy. In [6], a circuit example shows that it is better
to apply the CS coding framework in the digital domain
(i.e., after the ADC – analog to digital converter) than in the
analog domain (i.e., before the ADC). Linear programming or
greedy algorithms are used at the sink node to reconstruct the
monitored signal from the measurements [7].

Designing a good sensing matrix is a requirement for CS to
work. Random methods provide statistically good matrices [8];
in contrast, in [9] the deterministic design of maximally
incoherent sensing matrices for orthogonal or bi-orthogonal
sparsifying bases is presented. Deterministic sensing matri-
ces provide better rate–distortion performance than random
sensing matrices [9]. In this work, we pursue this further to
consider deterministic sensing matrices constructed using the
Karhunen–Lòeve Transform (KLT) [10] as sparsifying basis.
Doing so, we intend to increase the representation power
of CS coefficients, thus providing a better rate–distortion
performance.

The above is applied in a WSN-based IoT environment:i)
sensor nodes measure physical variables such as temperature
and humidity, ii ) the CS scheme is used to compress data
and produce/transmitiii ) quantized CS coefficients. From these
coefficients,iv) the sink reconstructs the original signal block
by using a specific reconstruction algorithm. The analysis
of such strategy allows to evaluate its use in an IoT sce-
nario for environmental monitoring. We determine which are
the sensors/network requirements for environment monitoring
with using the CS–based encoder, regarding energy and rate–
distortion performances.

Real–life environmental signals are considered in simula-
tions [11] aimed at evaluating the performance of the deter-
ministic optimal compressive sampling scheme. The analyzed
parameters are the coding rate in function of distortion, the
impact of signal coding in the response time/delay for data
availability, the energy consumption in function of the coding
rate and the packet loss.
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II. COMPRESSIVESENSING WITH DETERMINISTIC

SENSING MATRICES

A. Using Compressive Sensing for Signal Coding

Let a sensor node collectN samples of a signalx ∈ R
N .

The CS framework considers this signal to have a sparse
representation

s= Ψx, (1)

where Ψ ∈ R
N×N is a transform matrix mappingx to a

sparses. The sparsity assumption, which has been the basis for
transform-based signal coding, means that most of the signal
energy is concentrated inS few coordinates ofs. The CS
framework pushes this concept further by coding the signal
into M linear measurements (or coefficients) in the form of

y = Φx, (2)

in which Φ ∈ R
M×N is called thesensing matrixwith

S < M < N . One observes that them-th coefficient iny is
obtained by the inner product betweenx and the measurement
function φm (the m-th row of sensing matrix). One can
reconstruct an approximation ofx from y looking for the
sparsest̂s such that

y = ΦΨ
∗ŝ, (3)

where Ψ
∗ is the complex conjugate transpose ofΨ, and

makingx = Ψ
∗ŝ.

Sparsity is in general assumed thel0 norm of the vector, the
amount of non–zero entries of the vector. However, using such
an approach to solve equation (3) leads to a combinatorial,
NP–complete problem [5]. Alternatively, a common compro-
mise is to minimize thel1 norm instead [7], leading to

ŝ= argmin
s

‖s‖1 s.t. y = ΦΨ
∗ŝ, producingx̂ = Ψ

∗ŝ. (4)

In the WSN monitoring application, CS can be used to
reduce the energy consumed by sensor nodes for coefficients
transmission since justM coefficients (y) instead ofN coeffi-
cients (x) are required. The coefficients are easily obtained by
simple multiplication ofx by a matrix, with low energy con-
sumption. Although traditional transform-based coding may
potentially employS < M values when compared to the CS
framework, any coefficient loss leads to a corresponding loss
of signal energy. In contrast, the CS framework is more re-
silient, since thesensing matrixspreads the information/energy
of a principal direction ofx in a way that could be classified
as being between the use of theN coefficients ofx and the
use of theS coefficients ofs (S < M < N ). Since one wants
this to happen with a few coefficients as possible (smallM ),
good sensing matrices design methods are required.

One should note that the values iny must be quantized
for transmission to the sink node [4]. Upon reception, the
sink node reconstructs the signal by solving the optimization
problem in equation (4).

B. The LASSO Reconstruction Method

In this work, we employ theLeast Absolute Shrinkage and
Selection Operator(LASSO) [12] to reconstruct the monitored
signal from received data. Concisely, the LASSO algorithm

reconstructs the signal from the CS measurements imposing a
thresholding operation on the coefficients and also on thel1
norm maximumτ , i.e.

argmin
x

‖Φx − y‖2 s.t. ‖x‖1 ≤ τ. (5)

We use the LASSO implementation contained in the SPGL1
software packet [13].

C. KLT–Based Sensing Matrices

In the CS framework, in principle, the more incoherent
thatΦ is to the sparsifying basisΨ, the less coefficients has
the y guaranteeing provably good signal estimates [5]. It has
been shown in [9] that, given an orthogonalΨ (N ×N ) the
maximally incoherent sensing matrixΦ (M×N ) to it is given
by

Φ = HΨ, (6)

whereH is formed by rows of the Hadamard matrix.
In this work, we explore the design given by eq. (6) and

evaluate the use of maximally incoherent deterministic sensing
matrices to the KLT in the CS framework. The KLT obtains
uncorrelated components providing the best coefficients en-
ergy concentration [14]. Nevertheless, for designing the KLT it
is necessary to have samples of the class of signals to process.
Although in the past this has been appointed as a technical
difficulty for designing generic compression systems, for com-
pressive sensing some signal space/characteristics knowledge
is always assumed to improve CS performance [15].

III. R ESULTS OFREQUIREMENTS FORIOT SENSORS

We start this section evaluating the possible gain of using
the KLT for sensing matrix design. For simulation of the
IoT scenario, we consider the Intel Berkeley laboratory WSN
data [11] – sensor nodes collecting environmental signals for
more than a month, from which we extract temperature and
humidity signals.

We compare the results ofΨ being the KLT or the DCT [16]
basis. The KLT basis is assumed to be known at both coder
and decoder. It is obtained from realizations of the monitored
signals, which in turn are not used in the RD assessment.

A. Rate–Distortion Performance Evaluation

Quantization is considered in the presented rate–distortion
performance analysis. For that purpose distinct bit-depthquan-
tizers are used testing the performance at different rates.The
rate at which each sensor transmits quantized CS coefficients
is defined as

R =
M

N
×H(yQ),bits/coeff, (7)

in whichN is the signal block dimension of the collected data,
M is the number of coefficients transmitted by sensor nodes
andH(yQ) is the entropy (in bits per sample) of the quantized
measured data1.

1For entropy computation, we consider that each possible quantizer output
value occurs at least once. Doing so, unused reconstructionvalues are ade-
quately taken into account. In addition, the experiments usedifferent estimates
of H(yQ) depending onM and quantizer bit-depthB. However, if an
adaptive arithmetic encoder was considered, the rate would be approximated
by the entropy.
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As leading signal reconstruction metric (the one used for al-
gorithm evaluation) we employ theNormalized Mean Squared
Error (NMSE)

NMSE=
E[(x− x̂)2]

‖ x ‖2
, (8)

whereE[·] is the expected value operator,x is the actual data
value andx̂ its reconstructed version.

For each rateR, the NMSE is computed and, to yield a
more accurate rate-distortion (RD) analysis, each point inthe
presented RD curves results from an ensemble of 100 runs,
each one with a distinct block of samples, and the NMSE is
presented in dB scale.

B. CS–Based Encoder Performance

Figure 1 presents the RD compromise for coding the tem-
perature signal using a deterministic sensing matrix or a one
based on Noiselets [8]. These CS-encoder designs are denoted
by DCT + Deterministic and DCT + Noiselets, respectively.
The same sparsifying basis is assumed in the two cases.
However, in the deterministic approach, one constructs the
sensing matrix using equation (6), while in the second this is
done using Noiselets [8]. For the results in Figure 1,N = 512
samples, the quantizers have varying bit-depthsB= 4, 6 and
8, andM ∈ {16, 32, 64, 128, 256, 300}. As one readily sees,
the deterministic sensing matrix brings improvements in rate-
distortion performance over the one using Noiselets.
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Fig. 1. RD performance for the reconstruction of temperature for the
deterministic (DCT + Deterministic) and random (DCT + Noiselets) sens-
ing matrices (DCT is the sparsifying basis). The signal blockhas N =
512 samples, the quantizers have bit–depthsB= 4, 6 and 8, andM ∈
{16, 32, 64, 128, 256, 300}.

We now test the proposal of using the KLT as sparse
basis in the CS scenario. The resulting RD performance is
compared against the one obtained for deterministic sensing
matrix (computed for the DCT basis) in Figures 2 and 3; these
present the RD performances of the CS quantized encoder for
temperature and humidity signals, respectively. One notesa
gain in using the KLT in place of the DCT. The length of signal
block, quantizer bit–depths and amount of CS coefficients are
the same as those used in the previous experiment.

One observes that for both monitored signals an improve-
ment in the reconstruction of the signals (with a decrease in
the NMSE) as rate increases, since more coefficients (M )
are used in the reconstruction procedure. An improvement

in the reconstruction can also be observed when sensor node
uses quantizers with more bits. Moreover, we verify a better
rate–distortion performance for results considering KLT as the
sparsifying basis, since this transform is the one that makes the
signals the most sparse, and the deterministic sensing matrix
used is optimum for the given basis.
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Fig. 2. RD performance for the reconstruction of temperature for KLT–based
(KLT + Deterministic) and DCT–based (DCT + Deterministic) deterministic
sensing matrices. The signal block hasN = 512 samples, the quantizers have
bit–depthsB= 4, 6 and 8, andM ∈ {16, 32, 64, 128, 256, 300}.
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Fig. 3. RD performance for the reconstruction of humidity for KLT–based
(KLT + Deterministic) and DCT–based (DCT + Deterministic) deterministic
sensing matrices. The signal block hasN = 512 samples, the quantizers have
bit–depthsB= 4, 6 and 8, andM ∈ {16, 32, 64, 128, 256, 300}.

C. Resilience to Packet Loss

We now evaluate the impact of packet loss in the RD
performance. The wireless channel is prone to packet loss [17],
and the CS encoder deals with it as described in the sequel.
While sensor nodes transmitM quantized CS coefficients, the
sink node may receive onlyL ≤ M < N coefficients. One
supposes the existence of sequence numbers in the packets, a
common practice in several network standards since it allows
to identify lost frames in the link layer or to reorder segments
in the transport layer. These sequence numbers may be used
in the CS reconstruction to identify the lost measurements
and thus ignore them in the reconstruction procedure – i.e.,
coefficient losses is simply modeled as using a sensing matrix
with pruned rows corresponding to the missing coefficients.

Now, we empirically evaluate the RD performance of the
CS scheme using the KLT-based deterministic sensing matrix
under several packet loss conditions, and compare it against
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the former one using DCT as the sparsifying basis under the
same packet loss conditions. We present results for packet
loss percentages of 0%, 10%, 30% and 50%. A 0% packet
loss means that all packets were received and a 10% packet
loss means that in average one in ten packets is lost. All
combinations of packet loss rate, bit-depth (B) and number
of coefficients (M ) have been simulated. The dimension of
the signal block is set toN = 512; sensor node transmits
M ∈ {16, 32, 64, 128, 256, 300} CS coefficients; and bit–
depths are set toB ∈ {4, 6, 8, 10}.

Figure 4 shows the RD convex hulls for the reconstruction
of the signal using the KLT as the sparsifying basis. The
convex hulls are the operational curves of sensor nodes,
i.e., the quantizers that produce the best RD performances.
We can observe just a small decrease in the NMSE in the
reconstruction when data is lost, showing that the proposed
CS scheme is robust against packet loss. Figure 5 compares
the KLT with the DCT as the sparsifying basis for 0%, 10%,
30% and 50% packet loss. From these results one observes
that the gain in using the proposed sensing matrices is not
jeopardized by losing packets.
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Fig. 4. RD convex hulls for the reconstruction of temperature(N = 512
samples) under different packet loss percentages using the KLT as the
sparsifying basis and deterministic sensing matrices.

D. WSN Response Time and Energy Consumption

The CS-based coding strategy needs the sensor node to first
store N samples of the interest signal, then to project the
signal on the sensing matrix to generate theM CS coefficients.
These are then quantized and forwarded to the sink node. This
imposes a time interval/delay for data to be available at the
sink. We will refer to this delay as the WSN Response Time.

We have seen that as the quantizer bit-depth andM in-
crease, the signal quality also increases at the expense of an
increase in rate. In this section, we empirically evaluate other
possible compromises of the CS-encoder parameters (N , M
andB) and aspects such as energy consumption and response
time. We consider the reconstruction of a temperature signal,
quantizer bit–depthsB ∈ {4, 6, 8, 10} and signal block lengths
N ∈ {128, 256, 512, 1024} collected samples; forN = 128
samples, sensor nodes transmitM ∈ {16, 32, 64, 80, 100} co-
efficients, forN = 256 samples,M ∈ {16, 32, 64, 128, 200},
for N = 512 samples,M ∈ {16, 32, 64, 128, 256, 300}, and
for N = 1024 samples,M ∈ {16, 32, 64, 128, 256, 512}. KLT
is considered as being the sparsifying basisΨ.
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Fig. 5. RD convex hulls for the reconstruction of temperature(N = 512
samples) under different packet loss percentages for both the KLT and the
DCT as sparsifying bases.

Figure 6 presents the RD convex hulls for the recovered
temperature signal (these are obtained as in the previous
sections) using distinct lengthsN for the signal block. As
one observes, RD performance improves asN increases. This
is expected since CS explores sparsity better asN increases.
Nevertheless,N cannot be to large, for augmenting the signal
block produces a higher response time, since more time is
required to collect theN samples.
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Fig. 6. Rate–distortion convex hulls for the reconstruction of temperature
signal with LASSO varying the length of monitored signal block (N ), using
KLT as the sparse basis.

In order to better investigate the IoT requirements based on
the length of signal block, we propose the following experi-
ment. We consider that a fifteen–node WSN is monitoring a
temperature signal. These are a subset of the 54-sensors from
the Intel Berkeley Research lab [11]. A single sensor node
S47, located at(39.5, 14) m 2, collects temperature samples
and transmits the measurements to the sink node (S0), located
at (0.5, 17) m. The other thirteen nodes are used as routers
to forward the packets from sensor to sink. In each of the 10
simulation runs used to average the results, the position ofthe

2The coordinates are relative to the upper right corner of thelab.
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thirteen routers is drawn from the remaining ones. TrueTime
1.5 [18] is used to perform the simulations, the IEEE 802.15.4
standard [19], referred to as ZigBee and widely used for WSN
and IoT, is considered for communication between nodes while
the AODV (Ad hoc On–Demand Distance Vector) routing
protocol is used for routing. To evaluate energy consumption,
we consider a state–based energy model [4] for the sensor
nodes. The active state cycled among the operation modes:
measurement, processing, transmission and data reception.
These operation modes have different power consumptions,
which multiplied by the time spent in the activity provide an
estimate of the consumed energy.

Table I presents the response time of the WSN and the
energy consumption (per sample) of the transmitted sensor
node for distinct values ofN . Aiming at a fair comparison,
a fixed reconstruction quality is imposed, and one selects an
NMSE around -24 dB. For eachN the correspondingM and
quantizer for that NMSE are employed, yielding:M = 32
coefficients andB = 8 bits forN = 128; M = 32 coefficients
andB = 8 bits forN = 256; M = 32 coefficients andB = 6
bits forN = 512; andM = 32 coefficients andB = 6 bits for
N = 1024. As expected, the response time increases with the
signal block length. For emergency situations, this is an issue
to be considered if fire alarm is one of the WNS objectives,
since the larger the block lengthN , the slower the network
response, i.e., the larger the response time.

On the other hand, one observes from the numbers in
Table I that energy consumption reduces asN increases.
This is so because the CS-encoder better explores signal
sparsity asN increases, being required to transmit a smaller
ratio of measurements relative to the block length, i.e.,M/N
decreases asN increases, consuming less energy per coded
signal sample or observation time interval.

TABLE I

RESPONSE TIME AND ENERGY CONSUMPTION(PER SAMPLE) FOR

DIFFERENT VALUES OFN AND A FIXED NMSE OF -24 DB.

N Resp. Time (sec) Energy Cons. (J/sample)
128 15.8 0.0017
256 28.6 0.0013
512 54.2 0.0011
1024 105.4 0.0009

IV. CONCLUSIONS

In this work, we employed a WSN monitoring environmen-
tal signals in an IoT environment. Sensor nodes use Compres-
sive Sensing as a data compression framework. Doing so, one
intends to provide a transmission scheme with low complexity,
since sensor nodes have memory and energy constraints.

We proposed the usage of KLT as the sparsifying basis
within the design of maximally incoherent sensing matrices,
aiming at providing sensing functions which concentrate more
energy into the CS coefficients and, then improving rate–
distortion performance.

We verified that the KLT–based deterministic sensing ma-
trices overcame both the Noiselets and the DCT–based de-
terministic ones in terms of rate–distortion performance.We

evaluated the response time of the WSN, varying the length
of the signal block, and we also analyzed the impact of packet
loss in the reconstruction of the environmental signal.

We concluded that sensors using embedded CS encoders
are suitable for WSN–based IoT environments, and the usage
of KLT as the sparsifying basisΨ improves the encoder
performance with respect to the rate–distortion behavior.

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito, “The internet of
things: A survey,”Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct.
2010.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
Sensor Networks: A Survey,”Computer Networks, vol. 38, no. 4, pp.
393–422, March 2002.

[3] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay,“Towards
the implementation of iot for environmental condition monitoring in
homes,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3846–3853, Oct
2013.

[4] F. R. Henriques, L. Lovisolo, and M. G. Rubinstein, “DECA: distributed
energy conservation algorithm for process reconstructionwith bounded
relative error in wireless sensor networks,”EURASIP Journal on
Wireless Communications and Networking, vol. 2016, no. 163, pp. 1–18,
July 2016.

[5] D. L. Donoho, “Compressed Sensing,”IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[6] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and
analysis of a hardware-efficient compressed sensing architecture for data
compression in wireless sensors,”IEEE Journal of Solid-State Circuits,
vol. 47, no. 3, pp. 744–756, March 2012.

[7] E. Cand̀es, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
February 2006.

[8] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,”Applied and
Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, January
2001.

[9] L. Lovisolo, M. P. Pereira, E. A. B. da Silva, and M. L. R. Campos, “On
the Design of Maximally Incoherent Sensing Matrices for Compressed
Sensing and its Extension for Biorthogonal Bases Case,”Digital Signal
Processing, vol. 27, pp. 12–22, April 2014.

[10] R. Dehghannasiri, X. Qian, and E. W. Dougherthy, “Intrinsically
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Boano, and M. Alves, “Radio Link Quality Estimation in Wireless
Sensor Networks: A Survey,”ACM Transactions on Sensor Networks,
vol. 8, no. 4, pp. 1–34, September 2012.

[18] A. Cervin, D. Herinksson, B. Lincoln, J. Eker, and K.-E.Arzèn, “How
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