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Differential Entropy Estimation via One-Class SVM
Milena Marinho Arruda, Luciana Ribeiro Veloso and Francisco Marcos de Assis

Abstract— This paper introduces the use of Support Vector
Machine for entropy estimation of continuous random variables
with well-defined probability density function. The method is
based on support estimation and can converge to Shannon
entropy or zero-order Rényi entropy depending of effective
support set delimited. Simulated results indicate that the
method proposed for effective support characterization gives
asymptotically good results to Shannon entropy estimation in
comparative with other three estimators based on: histogram,
kernel smoothing and neighbor distances.
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I. INTRODUCTION

The information theory consolidates a mathematical
approach to understanding and development of research in
different scientific fields. It has been recently used for example
in neuroscience [1], [2], biomedical data [3], [4] and plant
wide diagnosis in industrial process [5], [6].

Entropy is the most common and basic concept of
information theory. Generally, entropy refers to disorder,
uncertainty or amount of information. Something transmits
information when it expresses messages that are not expected
or unknown, in this way, the least likely messages are those
that carry more information (when the transmitted message is
known, then the amount of information received is null).

However, although the concepts in information theory
are relatively simple, in practice, their estimation can be
a complex process. Histogram-based estimation and kernel
density estimation are widely used to estimate differential
entropy, but, for other measures these estimators can produce
bias [7], [8].

Furthermore, estimators that use nearest neighbors distances
[9], [7] has been used to minimize such problems. In addition,
although techniques using classifiers such as Support Vector
Machine (SVM) were slightly exploited for estimation of
measures in theory information, they have already shown good
results in plant wide diagnosis [10], [5].

In such context, this paper attempts to investigate the use
of these four estimators for differential entropy estimation and
compare them with theoretical values of entropy to random
variables with well defined distributions, i.e. exponential,
gamma, normal and uniform. In addition, a method to
characterize the effective support set is proposed for these
estimates in the one-class SVM algorithm.

This paper is structured as follows. Section II organizes
notations. Section III reviews definitions of entropy. Section
IV introduces briefly four entropy estimators. In section V,
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a method is proposed to effective support characterization.
Section VI presents the performed simulations. Finally, section
VII concludes the paper.

II. NOTATION AND TERMINOLOGY

During our discussions we denote random variables by
uppercase letters, their realizations by lowercase letters,
stochastic processes by uppercase bold letters and realizations
of d-dimensional random variables by lowercase bold letters.
The nth output of the process is indicated by subscripts, Xn.
The finite length sequence of a random variable is indicated
by subscript and superscript, XN

N−k = {XN−k, · · · , XN}.
Probability density function is denoted by f(·) and the set
where f(·) > 0 is called support set, it is expressed by J·K.

III. DIFFERENTIAL ENTROPY

The most common concept in information theory is
that defined by Claude Shannon [11]. For discrete random
variables, entropy is a measure of the average uncertainty and
the number of bits on average required to describe them.

When the random variable is continuous, there is a
differential entropy. According to Shannon it is related to the
shortest description volume of these variables [12]. Unlike
discrete entropy, differential entropy can be negative and it
occurs when this volume is less than one.

A generalization for differential entropy with parameter α
was defined by Alfréd Rényi [13] as

hα(X) =
1

1− α log

[∫
fα(x)dµ

]
, (1)

for 0 < α < ∞ and α 6= 1. When α → 1 we obtain the
Shannon entropy function

h(X) = h1(X) = −
∫
f(x) log f(x)dx, (2)

and when α→ 0, we obtain zero-order Rényi entropy

h0(X) = log φJXK, (3)

where φ(·) denotes the Lebesgue measure [14]. When the
random variables is discrete, the case of α = 0 is associated
with Hatley definition [15].

The asymptotic equipartition property (AEP) is a
direct consequence of the weak law of large numbers.
Considering continuous random variables, the AEP provides
an interpretation about differential entropy in which it is the
logarithm of the smallest volume that contains most of the
probability [12].

Differential Shannon entropy and zero-order Rényi entropy
can be related through AEP. Shannon entropy is related with
the logarithm of the size of the effective support set and Rényi
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entropy gives the logarithm of the Lebesgue measure of the
support set. In general, entropy will refer to Shannon entropy
[12].

IV. ESTIMATORS OF ENTROPY

In this section, four estimators to entropy are presented
for continuous random variables. Here we will consider two
estimators that may depend on the estimate of the probability
density function and two that are direct entropy estimation.

A. Histogram Approach

The simplest and most common approach to estimate the
differential entropy of a continuous random variable uses
histogram-based estimation technique.

This technique divides the range of random variable into
bins of length ∆, and furthermore, it assume that the
probability density function is continuous within the bins.

For each box size, the number of observations is counted
and the estimate is defined by

f̂(x) =
number of observations in the same bin as x

N
, (4)

where N is the sample size. The estimation of differential
entropy is related by discrete entropy in the sense [12]

Ĥ(X) + log ∆→ h(X), (5)

where Ĥ(X) is the discrete entropy of quantized variable into
bins and it is interpreted as Ĥ(X) = −∑ f̂(x) log f̂(x).

B. Kernel Density Estimator

A kernel density estimator (KDE) is a nonparametric
estimation of the probability density function of a random
variable. This distribution is defined by a smoothing function
(defines the shape of the curve used to estimate), and a
bandwidth value (controls the smoothness of the resulting
density curve).

Considering x1, x2, · · · , xN realizations of a continuous
random variable with unknown distribution. For any real
values of x, the kernel density estimator is given by

f̂(x) =
1

Nh

N∑
i=1

Θ

(
x− xi
h

)
, (6)

where N is the sample size, h is the bandwidth and Θ(·) is
the kernel smoothing function.

A kernel is a non-negative real-valued integrable function
that satisfy two additional requirements: 1) Normalization:∫∞
−∞Θ(u)du = 1; and 2) Symmetry: Θ(u) = Θ(−u).

Several types of kernel functions are commonly used, such
as: uniform, triangle, Epanechnikov and Gaussian. In this
paper the gaussian kernel was used, so, Θ(u) = 1√

2π
exp−

1
2u

2

.
After determine density function, the entropy can be

estimated using (5).

k(vi,vj) = 〈ψ(vi), ψ(vj)〉
Projection in feature space

Support Vectors

Training
Samples

fDF > 0Outliers

fDF < 0

1

Fig. 1. Classification based on one-class SVM: the training samples are
separated from the origin into the feature space by support vectors.

C. Kozachenko-Leonenko Estimator

Unlike a histogram and KDE methods, the Kozachenko-
Leonenko (KL) estimator was defined to direct entropy
estimation [9].

The KL estimator considers that the probability distribution
of the distances between xi and its k-th nearest neighbor is a
trinomial distribution and estimates the entropy by

ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log ε(i), (7)

where ψ(·) is digamma function, N is the sample size, cd is
the volume of the d-dimensional unit ball (for the Euclidean
norm cd = πd/2/Γ(1 + d/2)) and ε(i) is twice the distance
from xi to its k-th neighbor.

D. One-class SVM

One-class SVM was proposed by Schölkopf et al. [10]
for estimating the support of a high-dimensional distribution.
In addition, it was originally proposed for zero-order Rényi
entropy estimation by [5].

This algorithm map the training data into the feature space
using an inner product space (computed by a kernel) and then
a decision function is used to identify whether any samples is
within the support set, see Fig. 1.

Let training vectors (d-dimensional vectors of realizations
of continuous random variables) denoted by x1,x2, · · · ,xN ∈
X , where N is the sample size and X is a compact subset of
RN . In addition, Ψ(·) is a feature map X → F , that is, a map
into an inner product space F such that the inner product in
the image of Ψ(·) can be computed by evaluating some simple
kernel,

k(vi,vj) = 〈Ψ(vi),Ψ(vj)〉 , (8)

where, 〈·〉 denotes inner product and in this paper it is the
radial basis function (RBF) kernel.

The basic idea of the one-class SVM is to map the training
vector on a characteristic space in order to separate the vectors
of the origin with maximum margin. Therefore, Schölkopf et
al. [10] proposes the following quadratic problem

min
ω∈F,ξ∈RN ,ρ∈R

1

2
||ω||2 +

1

νN

∑
i

ξi − ρ
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subject to (ω · ψ(Xi)) ≤ ρ− ξi, ξi ≤ 0. (9)

And reduces it to the dual problem:

min
α

1

2

∑
ij

αiαjk(xi,xj)

subject to 0 ≤ αi ≤
1

νN
,
∑
i

αi = 1, (10)

where α denotes a vector with the coefficients of support
vectors, ν ∈ (0, 1] denotes an upper bound on the fraction
of training points outside the estimated region (outliers).

The decision function check whether each data point of
quantized maximum range is within the support set of the
model of random variables and it is defined as follows

fDF (x) = sgn

(∑
i

αi(xi,xj)− ρ
)
, (11)

where ρ =
∑
j αjk(xi,xj) is the distance from the separate

hyperplane to the origin and sgn is the sign function.
Note that we need to delimit the maximum region in which

the support set is defined. For this, a lower bound (xlb) and
upper bound (xub) are defined as minimum and maximum
values of training vectors added by the margin called δ
according to following inequality

N∑
i=1

αie
−γ||xlb−xi||2 <

N∑
i=1

αie
−γ||xlb−xmin||2 = e−γδ

2

, (12)

where e−γδ
2

= ρ.
Then, the maximum support is uniformly quantized into

nbins intervals with bin size ∆. If the random variable is
one-dimensional, the entropy estimation of variable is

ĥ(X) = log(nx ×∆), (13)

where nx is the number of points within the range. Otherwise,
for each dimension the distribution model is specified in order
to determine the maximum support (Cartesian product) to then
estimate the entropy, see Algorithm 1.

Algorithm 1 presents the pseudocode of one-class SVM
entropy estimator to multi-dimensional random variables. To
attend zero-order Rényi entropy, this method consider the
fraction of outliers of the data is quite small (ν = 0.01) [5].
While to attend Shannon entropy, effective support needs a
characterization.

V. EFFECTIVE SUPPORT SET CHARACTERIZATION

The applications that uses one-class SVM algorithm
to estimation of entropy have been used to attend
zero-order Rényi entropy [5]. However, both estimations of
zero-order Rényi entropy and Shannon entropy differ only on
characterization of support set.

Shannon entropy estimations are made from the logarithm
of the size of the effective support set. Therefore, it is
necessary establish a characterization of effective support set
in one-class SVM algorithm. The effective support is one that
contains most of data sample.

Algorithm 1: One-class SVM for entropy estimation

Input: X , nbins // X is N × d matrix

Output: ĥ
1 γ = 0.1
2 ν = 0.01
3 vbins = 1
4 for i = 1 to d do
5 Determine the model and δ for X(·, i)
6 lb(i) = min1:nX(·, i)− δ
7 ub(i) = max1:nX(·, i) + δ

8 ∆(i) = ub(i)−lb(i)
nbins

9 vbins = vbins×∆(i)

10 ŝupp(X) = [lb(1),∆(1), ub(1)]×· · ·× [lb(3),∆(3), ub(3)]
11 Determine the model for X
12 nx = |fDF (ŝupp(X)) == 1|
13 ĥ = log(nx × vbins)
14 return ĥ

Fig. 2. Probability density function for a random variableX in four scenarios:
gamma, exponential, normal and uniform distributed. The filled area represents
the region with probability less than 15% of the maximum probability.

In this section we propose a way to determine the effective
support on the distributions for use of one-class SVM
algorithm to the Shannon entropy estimation by adjusting the
fraction of outliers in the algorithm.

Considering the probability density function of some
well-defined distribution, we propose that the fraction of
outliers is equivalent to fractions of samples that occur with
probability less than 15% of the maximum probability. When
this area is null we consider ν = 0.01.

Example 1: Let a random variable X gamma-distributed
with shape k and scale θ, their probability density function is

f(x) =
1

Γ(k)θk
xk−1e−x/θ, (14)

with x ∈ (0,∞). Suppose that k = 3 and θ = 2, the maximum
value of f(x) is 0.1353 and occur when x = 4. The area
with probability less than 0.15× 0.1353 = 0.0203 represents
approximately 6%, then, ν = 0.06, see Fig. 2.
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VI. RESULTS

With the purpose of evaluating the four presented estimation
methods, we generated 20000 samples independent and
identically distributed of the continuous random variables with
a well-defined distribution, among which: exponential, gamma,
normal and uniform. Theoretical values for differential entropy
of these distributions will be our referential during subsequent
simulations.

In the simulations, parameters were defined for each
method. Histogram-based technique has always used 100
bins. KDE estimator used h = 0.01. Kozachenko-Leonenko
estimator used k = 1. One-class SVM was implemented
according to Algorithm 1 including the characterization of
the effective support set (see Fig. 2). In the Table I are
arranged the value of the parameter ν using the methodology
presented for two set of parameter for each one of four
different distributions.

Fig. 3, 4, 5 and 6 show the results for entropy estimation
as function of the number of data samples, considering
exponential, gamma, normal and uniform distributions
respectively. In all figures, black lines indicate the analytical
entropy value, continuous magenta lines indicate histogram
technique, continuous green lines indicate KDE, continuous
red lines indicate KL estimation and continuous blue line
indicate one-class SVM estimation.

In most simulations, KDE was the estimator that took
longer to converge (see Fig. 3, 4 and 5). Algorithms that
have no dependency on the estimation of probability density
function (KL and one-class SVM estimators) presented faster
convergence. The KL estimator has a correction term that is
crucial for debiasing it for large numbers of samples [16]. As
well as histogram-based technique both gives asymptotically
good results.

The first interesting features of the one-class SVM method is
that using our proposal of effective support characterization, it
is possible choose to estimate both zero-order Rényi entropy
and Shannon entropy. For Shannon entropy estimation, this
method gives good results in our simulations considering
different parameters of each distribution. In some situations
the algorithm was the first to converge to the analytical values
in function of number of samples analyzed.

However, if the probability density function takes an infinite
value for some sample realization, the effective support
characterization is not efficient. For example for X ∼ Γ(0.5, 1)
(see Fig. 4), the estimation converge to zero-order Rényi
entropy. This is because the outliers are those samples that
happen with probability less than a fraction of the maximum
value of density probability. In this case, histogram technique
and KDE also presented most significant errors in estimation.

Concerning the time of the entropy estimation all methods
consume little time. Nevertheless, the one-class SVM
estimator is more time consuming and its time is related
with parameter ν. When ν assume the minimum value (0.01)
each trial takes approximately 0.15s while histogram, KDE
and KL takes 0.05s, 0.006s and 0.015s, respectively. In our
simulations the maximum value of ν was 0.15 and each
trial takes approximately 2.7s. We ran these estimates on a
computer with a 2.70 GHz processor.

TABLE I
PARAMETER ν FOR DISTRIBUTIONS EXPONENTIAL, GAMMA, NORMAL

AND UNIFORM.

Distribution Exp(1) Γ(3, 2) N (2, 9) U(−1, 1)

ν 0.15 0.0606 0.0514 0.01
Distribution Exp(2) Γ(2, 0.5) N (0, 1) U(0, 0.5)

ν 0.15 0.0694 0.0478 0.01
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Fig. 3. Entropy estimation for 20000 realizations for X ∼ Exp(2) (upper)
and X ∼ Exp(1) (lower).
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Fig. 4. Entropy estimation for 20000 realizations for X ∼ Γ(3, 2) (upper)
and X ∼ Γ(0.5, 1) (lower).

VII. CONCLUSIONS

The one-class SVM was firstly used to attend zero-order
Rényi entropy. However, zero-order Rényi entropy and
Shannon entropy, both for continuous random variables,
can be related through asymptotic equipartition property.
Based on this relationship we proposed the effective support
characterization that extend this method to Shannon entropy
estimation.
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Fig. 5. Entropy estimation for 20000 realizations for X ∼ N (0, 1) (upper)
and X ∼ N (2, 9)(lower).
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Fig. 6. Entropy estimation for 20000 realizations for X ∼ U(−1, 1) (upper)
and X ∼ U(0, 0.5) (lower).

The method proposed gives asymptotically good results for
Shannon entropy estimation in seven of eight cases analyzed.
The special case occur when when probability density function
assume infinity value and the estimation always converge to
zero-order Rényi entropy.

Results of performed simulations to evaluate and compare
the entropy estimation using the proposed SVM and three
other estimators showed there is not significant difference
between the methods. In some situations the proposed
algorithm is the first to converge according to the number of
sample data presented.

Although one-class SVM is more time consuming, it can be
useful in applications for causality analysis with non-stationary
data and can be applied to estimation of others measures like
as transfer 0-entropy [5].
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