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Lucas N. Ribeiro, Bruno Sokal, André L. F. de Almeida, João César M. Mota

Wireless Telecommunications Research Group (GTEL)
Universidade Federal do Ceará (UFC)
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Abstract—Large-scale antenna systems have attracted much
research efforts due to its application to modern mobile commu-
nications systems. Designing such arrays, however, can be chal-
lenging due to the computational efforts of classical signal pro-
cessing methods. To tackle this issue, we investigate Kronecker-
separable adaptive filtering methods. Simulation results suggest
that this approach exhibits better convergence properties in some
scenarios compared to the classical adaptive filtering benchmark.

Index Terms—Beamforming, Adaptive Filtering, Tensor Prod-
uct

I. INTRODUCTION

Large-scale (massive) sensor arrays systems have become
popular among different applications such as wireless com-
munications [1] and biomedical signal processing [2], for
example. Such large arrays bring desirable features such as
increased spatial resolution, large array gain, deep attenuation
outside passband, among others. Nevertheless, a price must be
paid to benefit from these attractive properties. Massive array
systems are usually expensive in many senses: signal process-
ing becomes involved, more efficient hardware implementa-
tions are necessary to achieve the promised gains, and higher
energy consumption is observed in some applications [3]. In
the present contribution, we are interested in addressing the
large computational cost of beamforming in massive antenna
arrays. To this end, we exploit the separability property of
uniform rectangular arrays (URA) and we put forward the
design of separable adaptive beamforming filters.

Separable filters have been investigated as a relatively
inexpensive implementation of large filters. In [4], we have
introduced a separable beamformer that exploits the multi-
dimensionality of volumetric arrays. Simulation results show
that the proposed filter, which is based on an alternating min-
imization strategy, exhibits modest computational complexity
reduction compared to the classical Wiener beamformer [5].
In the follow-up work [6], we obtain analytical expressions for
the separable filter of [4], which is based on sample estimates,
and conduct an asymptotic performance analysis. In [7], the
authors propose a separable least mean squares (LMS) algo-
rithm to identify a second-order separable system, i.e., a linear
and time-invariant system whose impulse response h can be
well approximated as a Kronecker product h ≈ a⊗b. In [8],
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we study the identification of third-order separable systems
by comparing the LMS strategy of [7] to that of [4]. We
observe that our approach yields better system identification
accuracy. Other classical signal processing algorithms such as
the generalized sidelobe canceler and the minimum variance
distortionless beamformers have been implemented by separa-
ble filters in [9] and [10], respectively. The works previously
mentioned reveal that separable filters can drastically reduce
the computational costs with small performance degradation
at massive filtering problems.

This present work is a follow-up of our contributions [4],
[6] and should be regarded as a proof-of-concept paper, in
which we sketch the potential of separable adaptive filters to
the large-scale array beamforming problem. In [4], [6], we
have employed deterministic gradients in the calculation of the
separable beamformers. We now adopt the stochastic gradient
technique, which leads to the LMS solution. More specifically,
we investigate the performance of the tensor LMS (TLMS)
algorithm of [7] and we propose a different implementa-
tion named alternating tensor LMS (ATLMS). Simulation
results show that the separable beamformers enjoy from faster
convergence compared to the conventional (non-separable)
normalized LMS (NLMS) benchmark. Our simulation results
also reveal some properties of the proposed ATLMS method.

We introduce our system model in Section II, present the
separable beamforming methods in Section III, show and
discuss the numerical results in Section IV and conclude the
work in Section V.

A. Notation

The transposed and the conjugated transposed (Hermitian)
of X are denoted by XT and XH, respectively. The (M×M)-
dimensional identity matrix is represented by IM . The absolute
value, the `2 norm, and the expected value operator are
respectively represented by | · |, ‖·‖2, and E [·]. The Kronecker
product is denoted by ⊗, O(·) represents the Big-O notation,
and b·c the floor operator.

II. SYSTEM MODEL

Let us consider a receiver system equipped with a URA of
N omni-directional antennas, with Nh columns and Nv rows
along the yz plane, as depicted in Figure 1. The antenna
array is tuned to operate at wavelength λ, and the inter-element
spacing in both horizontal and vertical directions is λ/2.
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Fig. 1. Uniform rectangular array (URA) with N = 3× 3 elements.

We assume that R independent narrow-band signals in far-
field propagation illuminate the URA. The sampled complex-
envelope of the r-th signal is denoted as sr[k] and it impinges
on the array from the azimuth φr and polar θr angles. The
signals are assumed to be mutually uncorrelated with zero
mean and unit variance, i.e.,

E
[
si[k]s

∗
j [k]
]
=

{
1, i = j

0, i 6= j
.

Let xn[k] represent received signal at antenna n and instant
k, pr = sinφr sin θr and qr = cos θr the horizontal and
vertical direction cosines [5], respectively, then the received
signal vector x[k] = [x1[k], . . . , xN [k]]T can be written as

x[k] =

R∑
r=1

a(pr, qr)sr[k] + b[k] = As[k] + b[k], (1)

where a(pr, qr) = [a1(pr, qr), . . . , aN (pr, qr)]
T denotes the

array steering vector, A = [a(p1, q1), . . . ,a(pR, qR)] ∈ CN×R
the array manifold matrix, s[k] = [s1[k], . . . , sR[k]]

T the
impinging signals vector with autocorrelation matrix Rss =
E
[
s[k]sH[k]

]
= INs , and b[k] ∈ CN the complex additive

white Gaussian noise vector with zero mean and variance σ2
b .

From our URA assumptions, it follows that

an(φr, θr) = ejπ[(nh−1)pr+(nv−1)qr], (2)

with n = nh + (nv − 1)Nh, nh ∈ {1, . . . , Nh}, and nv ∈
{1, . . . , Nv}.

It is well-known that URA array steering vectors can be
Kronecker-separated into a horizontal and a vertical factors as
a result of array bi-dimensionality [5]. One can factorize (2)
as

an(pr, qr) = a(h)nh
(pr)a

(v)
nv

(qr), (3)

where a
(h)
nh (pr) = ejπ(nh−1)pr and a

(v)
nv (qr) = ejπ(nv−1)qr .

From (3) and defining ah(pr) =
[
a
(h)
1 (pr), . . . , a

(h)
Nh

(pr)
]T

,

av(qr) =
[
a
(v)
1 (qr), . . . , a

(v)
Nv

(qr)
]T

, the steering vectors can
finally be factorized as a(pr, qr) = av(qr)⊗ ah(pr). In the
next section, we present adaptive beamforming filters that
exploit this algebraic structure to enhance its performance.

III. BEAMFORMING METHODS

In this work, we are interested in recovering a desired
source, hereafter referred to as sd[k], from the interfering ones
by employing a large antenna array. To this end, we make use
of a spatial filter (beamformer) and optimize it according to
the the minimum mean square error (MMSE) criterion, i.e.,
we seek the beamforming filter w ∈ CN which minimizes the
mean square error (MSE) function

JMSE(w) = E
[
|sd[k]−wHx[k]|2

]
(4)

= σ2
s − pH

xsw −wHpxs +wHRxxw,

where Rxx = E
[
x[k]xH[k]

]
= AAH + σ2

nIN denotes the
received signal autocorrelation matrix, pxs = E [x[k]s∗d[k]] =
Aed denotes the cross-covariance vector, and er ∈ CR the
r-th canonical vector in the R-dimensional space. It is well
understood that the Wiener filter wopt = R−1xxpxs yields
the global minimum of (4). Its calculation, however, requires
knowledge on the array manifold matrix A, which may
be expensive to acquire in practice. Adaptive filtering is a
classical and computationally inexpensive alternative to the
Wiener filter. The LMS algorithm and its normalized flavor
are the workhorse solutions for minimizing (4). Nevertheless,
they face slow convergence as the filter length grows [11].

To address the computational complexity issue and to ex-
ploit the URA separability, we have put forward separable
extensions of the classical Wiener filter in [6]. Specifically,
we proposed optimizing a separable beamforming filter w =
wv ⊗ wh, with wh ∈ CNh and wv ∈ CNv by calculating
deterministic gradients of (4). Here, by contrast, we present
two adaptive solutions which employ the stochastic gradient
technique to optimize the separable filter. The first solution,
referred to as TLMS, was first introduced in [7], [12] by
Rupp and Schwarz to tackle the slow convergence issue of
the NLMS algorithm. The second solution, hereafter called
ATLMS consists of a different implementation of the TLMS
algorithm inspired by the alternating minimization strategy of
[4], [6], [8]. In the remainder of this section, we present the
TLMS and ATLMS algorithms and briefly comment on their
stability, convergence and computational complexity proper-
ties.

A. Tensor LMS Algorithm

We begin by noting that the output signal y[k] = wHx[k]
of the separable filter w = wv ⊗ wh can be written in two
equivalent manners [4], [7]:

y[k] = wH
hX[k]w∗v = wH

huh[k], (5)

= wH
vX

T[k]w∗h = wH
vuv[k], (6)

where X[k] is a (Nh × Nv)-dimensional matrix obtained by
reshaping x[k], and uh[k] and uv[k] are referred to as the
horizontal and vertical sub-array received signals [4], [6].
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The NLMS algorithm can be derived with respect to the
horizontal and vertical sub-arrays. At instant (iteration) k, we
have:

e[k] = sd[k]− (wv[k]⊗wh[k])
Hx[k], (7)

wh[k + 1] = wh[k] + µ̃[k]uh[k]e
∗[k], (8)

wv[k + 1] = wv[k] + µ̃[k]uv[k]e
∗[k], (9)

where the step size µ̃[k] is normalized as [7]

µ̃[k] =
µ

‖uh[k]‖22 + ‖uv[k]‖
2
2

. (10)

In the original TLMS paper [7], (i) uh[k] and uv[k] are
computed, (ii) the instantaneous error (7) is calculated, then
(iii) the sub-filters are updated following (8) and (9). An
extra step can be considered to check convergence. TLMS
is summarized in Algorithm 1 considering a standard filter
initialization and K available samples.

Algorithm 1 Tensor LMS algorithm
Require: Step parameter µ, sample size K

1: k ← 1
2: Initialize wh[k] and wv[k] as [1, 0, . . . , 0]T

3: for k = 1 : K do . Note we use MATLAB’s notation
4: uh[k]← X[k]w∗v[k]
5: uv[k]← X[k]Tw∗h[k]
6: e[k]← sd[k]− (wv[k]⊗wh[k])

Hx[k]
7: µ̃[k]← µ

‖uh[k]‖22+‖uv [k]‖22
8: wh[k + 1]← wh[k] + µ̃[k]uh[k]e

∗[k]
9: wv[k + 1]← wv[k] + µ̃[k]uv[k]e

∗[k]
10: Check convergence
11: end for
12: return wv[k + 1]⊗wh[k + 1]

B. Alternating Tensor LMS Algorithm

Note, however, that one can update wh[k] and wv[k] in
different forms. In the ATLMS algorithm, wh[k] and wv[k] are
computed in the alternating fashion of [6]. More specifically,
for a fixed wv[k], we (i) compute uh[k], (ii) the instanta-
neous error (7), then (iii) the horizontal sub-filter is updated
following (8). Steps (i)-(iii) are repeated over Kh iterations.
Next, for a now fixed wh[k], we (iv) compute uv[k], (v)
the instantaneous error (7), then (vi) the vertical sub-filter
is updated as in (9). Steps (iv)-(vi) are repeated over Kv

iterations. Since each sub-filter is updated according to the
classical NLMS fashion, the step size parameters set as

µ̃h[k] =
µ

‖uh[k]‖22
, µ̃v[k] =

µ

‖uv[k]‖22
. (11)

ATLMS is summarized in Algorithm 2 considering a standard
filter initialization and K available samples, which are divided
in blocks of Kb = b K

Kh+Kv
c samples.

The comparison of Algorithms 1 and 2 gives some insight
on their behavior and differences. In the former, both sub-
filters are updated at each iteration, whereas, in the latter,
the solution iterates through the horizontal and vertical di-
rections in an alternate fashion. This strategy is essentially

a block coordinate descent [13]. Although these algorithms
are algebraically similar, it is unclear if they yield the same
performance in terms of convergence rate and source recovery.
The simulations results presented in Section IV shed a light
on this question.

Algorithm 2 Alternating Tensor LMS algorithm
Require: Step parameter µ, sample parameters K, Kh, Kv

1: k ← 1
2: Kb ← b K

Kh+Kv
c

3: Initialize wh[k] and wv[k] as [1, 0, . . . , 0]T

4: for k = 1 : Kh +Kv : Kb(Kh +Kv) do
5: for kh = k : k +Kh − 1 do
6: uh[kh]← X[kh]w

∗
v[kh]

7: e[kh]← sd[kh]− (wv[kh]⊗wh[kh])
Hx[kh]

8: µ̃h[kh]← µ
‖uh[kh]‖22

9: wh[kh + 1]← wh[kh] + µ̃h[kh]uh[kh]e
∗[kh]

10: end for
11: for kv = k +Kh : k +Kh +Kv − 1 do
12: uv[kv]← X[kv]

Twh[kv]
∗

13: e[kv]← sd[kv]− (wv[kv]⊗wh[kh + 1])Hx[kv]
14: µ̃v[kv]← µ

‖uv[kv ]‖22
15: wv[kv + 1]← wv[kv] + µ̃v[kv]uv[kv]e

∗[kv]
16: end for
17: Check convergence
18: end for
19: return wv[kv + 1]⊗wh[kh + 1]

C. Convergence and Computational Complexity

As already mentioned in [7], the theoretical analysis of
separable adaptive filters is challenging due to their cascaded
nature. It can be shown that TLMS converges in the MSE as
long as [7]

0 < µ <
2

‖uh[k]‖22 + ‖uv[k]‖
2
2

.

Since each ATLMS block-descent consists of a standard and
independent NLMS algorithm, we choose the step size factors
to satisfy 0 < µ < 2

‖uh[k]‖22
and 0 < µ < 2

‖uv[k]‖22
. In our

experiments, we consider that the adaptive algorithm has
converged when ‖w[k + 1]−w[k]‖22 ≤ ε, where ε > 0 is
a small tolerance.

Regarding computational complexity, TLMS, and ATLMS
perform O(Nh+Nv) multiplications while NLMS O(N). The
convergence rate is the most important aspect in this sense,
since both strategies are linear with the filter length. In the
next section, we plot the learning curve of these algorithms to
investigate their convergence properties.

IV. SIMULATION RESULTS

In this section, we present simulation results to investigate
the performance of the separable beamformers using NLMS as
benchmark. We set as figure of merit the sample MSE, defined
as

MSE(w) =
1

K

K−1∑
k=0

∣∣sd[k]−wHx[k]
∣∣2 ,
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and calculated over K = 104 samples. We consider a URA
of N = Nh × Nv = 8 × 8 antennas, which is a reasonable
setup for a 5G base-station [14], and R = 4 QPSK-modulated
impinging signals. The results are obtained by means of Monte
Carlo simulations with 104 independent experiments, wherein
the directional cosines pr and qr are uniformly selected from
the interval [−0.9, 0.9] and the convergence tolerance is set to
ε = 10−9. As the QPSK signals have unit power, we define
the signal to noise ratio (SNR) as SNR = 1/σ2

b . Since massive
MIMO systems will likely operate in the low SNR regime, we
set SNR = 0dB in our simulations.

We first study the learning curve of ATLMS for different
iteration intervals Kh and Kv and step size factors in Figures 2
and 3. In the former figure, the learning curves are obtained
for µ = 0.5. In this scenario, we observe that Kh = Kv = 100
yields the fastest convergence. In the latter figure, where
the learning curves were calculated for µ = 0.1, we note
that Kh = Kv = 10 presents the best convergence rate.
Interestingly, ATLMS converges to the same MSE for all
Kh and Kv tuples, approximately −15 dB for µ = 0.5 and
−16.5 dB for µ = 0.1. Therefore, we conclude that the
iteration intervals Kh and Kv affect mostly the algorithm
convergence rate. If the these parameters are chosen too large,
then the convergence rate only worsens. If they are relatively
small (up to 100 iterations), then they can be optimized
for a given step size parameter. However, Figures 2 and 3
show that the convergence performance difference between
Kh = Kv = 1, 10, and 100 is not much significant. In
the following simulations, we choose Kh = Kv = 10, as
it provides the fastest convergence for µ = 0.1.

Now we investigate the convergence rate of the adaptive
beamformers for different step size µ. In Figure 4, we ob-
serve the well-known behavior of the NLMS algorithm: its
convergence rate sharply decreases as µ increases. Note that
it becomes especially slow for µ = 0.1 and 0.05. In a practical
setup, the system designer typically seeks a step size that
strikes a good compromise between convergence rate and
MSE. Figure 4 reveals that µ = 0.5 achieves this trade-off for
the given parameters. The separable beamformers, by contrast,
converge much faster for all considered step sizes, as one
can see in Figures 5 and 6. We observe a striking result for
µ = 0.05: the separable beamformers achieve convergence
in about 5000 iterations, while NLMS converge in more
than 10000 iterations. These results suggest that the separable
beamformers are more efficient in computational terms, as they
converge faster and each filter update requires a number of
multiplications still linear with the array size.

Although TLMS and ATLMS seem to yield the same
performance, one can find some differences. For the given
parameters, we see by comparing Figure 5 to 6 that ATLMS
has, at convergence, a larger misadjustment and attains a
slightly worse MSE level. Moreover, the convergence rate of
ATLMS is slightly poorer. Simply put, TLMS performs better
than ATLMS for the considered scenario. A natural question
rises: is this true in general? Simulations considering different
scenarios would be necessary to answer, and, such extensive
analysis is out of the scope of this paper. It is important to
mention that although ATLMS does not exhibit any significant

Fig. 2. ATLMS learning curves for different iteration intervals Kh and Kv .
µ = 0.5.

Fig. 3. ATLMS learning curves for different iteration intervals Kh and Kv .
µ = 0.1.

improvement over TLMS, there are practical scenarios where
this alternating strategy seems promising as it gives more
flexibility in the filter optimization, e.g., the filter designer can
choose to favor a sub-array over the other by manipulating Kh

and Kv , which is impossible with TLMS.

V. CONCLUSION

Simulations results have shown that the separable beam-
formers converge faster than the traditional NLMS beam-
former. For the considered scenarios and parameters set,
ATLMS does not present any significant improvement com-
pared to TLMS. Nonetheless, ATLMS offers more design
flexibility, which can be useful to some practical applications
in wireless communications systems. Future work include
theoretical performance analysis and application to realistic
mobile communication scenarios with massive multi-antenna
systems.
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Fig. 4. NLMS learning curves for different step size µ.
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Fig. 5. TLMS learning curves for different step size µ.
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