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Online Temperature Estimation using Graph Signals
Marcelo J. M. Spelta and Wallace A. Martins

Abstract— This article investigates the application of adaptive
graph signal processing on real-world data. Using temperature
measurements obtained from Brazilian weather stations, we
construct a graph signal and verify that it can be approximated
by a sparse frequency representation. Considering the properties
of bandlimited graph signals, we analyze the conditions for
perfect reconstruction and describe estimation methods based
on adaptive strategies, such as the LMS and RLS algorithms.
Numerical analyses suggest that these adaptive estimation algo-
rithms provide a smaller mean-square deviation when compared
to the optimal instantaneous linear estimator in noisy scenarios,
for both constant and slowly time-varying graph signals.

Keywords— Graph Signal Processing, Graph Signal Estima-
tion, Adaptive Filtering, Sensor Network.

I. INTRODUCTION

The desire to extend traditional signal processing techniques
to handle data naturally defined on irregular discrete domains
has led to the development of an emerging research field
known as graph signal processing (GSP) [1]. Relying on graph
structures with distributed vertices and weighted edges that
indicate the connection and similarity between neighboring
nodes, a graph signal consists in a vector formed by values
corresponding to the graph vertices in a specific time instant.
Recent papers point out the potential of the GSP framework
by proposing its use in various areas such as sensor networks
[2], classification tasks [2], and image processing [1].

This work focuses on the recovery of a bandlimited, or ap-
proximatelly bandlimited, graph signal from a reduced number
of sampled values. This problem is usually solved by a simple
least-squares interpolation procedure [3] that allows perfect
recovery of the original signal, if some requirements are met
[4]. Alternatively, an adaptive approach for estimating graph
signals has already been proposed [5], [6], [7]. This adaptive
estimation is based on the well-known least-mean-squares
(LMS) and recursive least-squares (RLS) algorithms [8] and is
expected to benefit from its characteristics of enabling online
reconstruction and tracking of time-varying signals. Besides
that, another reason for using adaptive strategies is that we
consider the reconstruction problem in noisy environments.

Inspired by the GSP signal compression application in [2],
one realizes that the signal extracted from a spatial distribution
of weather stations measuring local temperatures is usually a
smooth signal, allowing its approximation by a bandlimited
graph signal. The advantage of representing a temperature
graph signal by a reduced number of its samples is notorious
since it allows estimating temperature values in certain regions
without having a sensor at that place, reducing the amount
of sensor devices and information collected. However, one
must know how to solve the inverse problem of evaluating
the complete graph signal from its sampled representation,
assuming that the graph signal is bandlimited.
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Thus, in this work we analyze the performance of the adap-
tive algorithms for graph signal estimation proposed in [5], [6]
and compare their behavior with the instantaneous version of
a standard strategy [3], [4], based on an instantaneous least-
squares interpolation. In order to do so, we construct a graph
signal using the monthly average temperature measurements
obtained from Brazilian weather stations [9], as illustrated in
Fig. 1, and verify that this signal is approximately bandlimited.
Then, considering a sampled representation of the bandlimited
graph signal, we assess the estimation algorithms in both
static and time-varying scenarios, and verify that the adaptive
strategies outperform the traditional interpolation technique
in terms of mean-square deviation (MSD) for slowly time-
varying graph signals.

This paper is organized as follows: Section II introduces
some basic GSP concepts and Section III describes the adap-
tive strategies for graph signal reconstruction. In Section IV
we obtain an approximately bandlimited graph signal from
Brazilian temperature data and compare the performance of the
standard and adaptive algorithms for graph signal estimation.
At last, some conclusions are drawn in Section V.

(a) January (b) April (c) July
Fig. 1: Graph signals representing the monthly average tem-
peratures from Brazilian weather stations during the period of
1961-1990 [9].

II. GRAPH SIGNAL PROCESSING

Intended for modeling relations among objects, a graph
is a generic mathematical structure made up of vertices vi
connected by edges v̄ivj with respective weights aij . Basically,
a graph G = (V, E) consists of N nodes or vertices V =
{v1, v2, ..., vN} linked by a set of edges E = {v̄ivj}. Every
edge v̄ivj ∈ E is associated with a weight aij indicating a
similarity or proximity measure between nodes vi and vj ∈ V .
Considering a zero value for aij when v̄ivj /∈ E , we can define
the adjacency matrix A ∈ RN×N as the matrix formed by
elements aij . This adjacency matrix A is commonly used for
graph structure representation and plays an important role in
the emerging field of GSP [1], [10].

A. Graph Signal and Fourier Transform
A signal x : V → R defined on the vertices of a graph G

with N nodes can be described as a vector x ∈ RN , where
its n-th component xn represents the function value at vertex
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vn ∈ V [1]. An example of a graph signal representation can
be seen in Fig. 1, where the color of each vertex vn indicates
its value xn according to the colorbar scale.

A useful toolset for traditional signal processing is the
Fourier transform, which expands an original time-domain
signal into a Fourier basis of signals that are linear-filtering
invariant. Likewise, the graph Fourier transform (GFT) of a
graph signal x ∈ RN can be defined as its projection onto
a set of orthonormal vectors {un} ⊂ RN , where n ∈ N ,
{1, 2, . . . , N}. Thus, the GFT of x is represented as [1], [2]

s = UTx , (1)

where U ∈ RN×N is the eigenvector matrix corresponding to
the spectral decomposition of A = UΛUT .

Although U in (1) diagonalizes the graph adjacency matrix
A as in [2], [11], alternative approaches use the spectral
decomposition of the Laplacian matrix L = K − A, where
K ∈ RN×N is a diagonal matrix with diagonal entries ki :=∑N
j=1 aij , instead [1]. Moreover, for recovering the original

signal x from its frequency decomposition, we can also define
the inverse graph Fourier transform (IGFT) of s as

x = Us . (2)

B. Sampling and Reconstruction of Graph Signals
Similarly to the definition used for time signals, we can

extend the idea of bandlimited signals to graph structures and
say that a graph signal xo ∈ RN is bandlimited or spectrally
sparse (ssparse) when its frequency representation s given by
the GFT in (1) is sparse. Taking F as an index subset of N
(F ⊆ N ), a graph signal xo is defined as F-ssparse if s is
such that sN\F is a zero vector [12], i.e., the components of s
with indices in N\F are equal to zero, where N\F denotes
the difference between sets N and F . In other words, this
support or frequency set of F can be described as F = {f ∈
N | sf 6= 0} [5]. Thus, if we consider that UF ∈ RN×|F| and
sF ∈ R|F| are, respectively, the matrix formed by eigenvectors
and the frequency representation indexed by the elements in
F , from (2) we can write that

xo = UFsF . (3)

Bandlimited time signals can be sampled and reconstructed
with no loss of information as long as the Nyquist criterion is
satisfied; we describe now a similar result for graph signals.
First, consider that the sampling and reconstruction operations
over a graph signal xo can be seen as the result of pre-
multiplying the original signal by a sampling matrix D ∈
RN×N and an interpolation matrix Φ ∈ RN×N . For perfect
recovery of the original graph signal, we intend to design
matrices D and Φ such that xo = ΦDxo for any bandlimited
xo described by (3) with a specific UF , i.e., for ssparse graph
signals represented by the same frequency components.

Sampling is the operation of observing the value of a graph
signal on a sampling set S ⊆ V . In this context, we can define
DS ∈ RN×N as a diagonal matrix with entries di, in which
di = 1 if vi ∈ S and di = 0 otherwise. Thus, we obtain the
sampled vector xS ∈ RN by sampling |S| components of a
generic graph signal x as

xS = DSx . (4)

In order to recover a original bandlimited signal xo from
its sampled version xS , we remember the IGFT expression of

an F-ssparse signal in (3) and verify that, when
(
UT
FDSUF

)
has full rank, the interpolation matrix Φ can be chosen as [4]

Φ = UF
(
UT
FDSUF

)−1
UT
F . (5)

Thus, by considering expressions (4) and (5), it is clear that the
sampling and interpolation procedure described by ΦDSxo

results in the original graph signal xo = UFsF [3], [4].
Therefore, we conclude that perfect reconstruction of an F-

ssparse graph signal from its sampled version xS is possible
as long as the chosen sampling set S guarantees that [4], [13]

rank(DSUF ) = |F| . (6)

As rank(DS) = |S|, from (6) we conclude that a necessary
condition for perfect recovery of a sampled graph signal is
that |S| ≥ |F|, i.e., the number of samples retained must be
at least the amount of non-zero frequency components of s.

Moreover, as Section III describes adaptive reconstruction
algorithms which allow the graph signal to vary in time and
might be corrupted by noise, it is of interest to use the standard
interpolation ideas presented so far for comparison purposes.
In fact, employing the interpolation strategy for handling
time varying bandlimited graph signals is straightforward, as
presented in Algorithm 1. This algorithm basically computes
an instantaneous least-squares linear estimate x̂o[k] for the
original bandlimited signal xo[k] based on the current sampled
signal DSxw[k] at time instant k ∈ Z, where xw[k] is the
measured graph signal vector, possibly corrupted by noise.
Although Algorithm 1 is a fast method that allows perfect
reconstruction for bandlimited graph signals in ideal scenarios,
its use in noisy environments might be limited due to its
inherent instantaneous nature.

Algorithm 1 Instantaneous linear interpolation

1: k ← 0
2: Φ = UF

(
UT
FDSUF

)−1
UT
F

3: while (true) do
4: x̂o[k] = ΦDSxw[k]
5: k ← k + 1
6: end

C. Sampling Set Selection
As so far we have considered recovering a bandlimited

graph signal xo[k] from sampled values xS [k], any choice of
sampling set S respecting condition (6) results in a perfect
recovery of the original graph signal when applying the
interpolation method in Algorithm 1. However, in a practical
situation in which one acquires data from distributed sensors,
it is expected that the resulting measurements are corrupted
by noise.

Based on this assumption, a more adequate modeling for a
practical graph signal is represented by

xw[k] = xo[k] +w[k] , (7)

where xw[k] is the noisy random signal1 available at the
vertices of the graph, xo[k] ∈ RN is the original bandlimited
graph signal, and w[k] is a zero-mean noise vector with
covariance matrix Cw[k] ∈ RN×N .

Considering the model in (7), if one evaluates some com-
mon figures of merit (FoM) for an estimated graph signal
x̂o[k], such as the mean-square deviation (MSD) defined as

MSD = E
{
‖x̂o[k]− xo[k]‖22

}
, (8)

1In this work, x denotes a random vector with realizations denoted as x.



XXXVI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2018, 16-19 DE SETEMBRO DE 2018, CAMPINA GRANDE, PB

or the squared deviation (SD) given by

SD = ‖x̂o[k]− xo[k]‖22 , (9)

it is simple to verify that an estimate x̂o[k] based on the linear
interpolation procedure ΦDS results in

MSD(S) = E
¶
‖UF

(
UT
FDSUF

)−1
UT
FDSw[k]‖22

©
,

SD(S) = ‖(UT
FDSUF )−1UT

FDSw[k]‖22 .
(10)

Both expressions in (10) present an explict dependency on
DS , which indicates that the sampling set S could be properly
chosen to reduce a desired FoM. Nonetheless, the resulting
optimization problem is combinatorial in nature.

In order to obtain an interesting trade-off between rea-
sonable reconstruction performance and time required for
calculating the sampling set S, a common approach is to
employ a greedy algorithm for minimizing a specific FoM. A
greedy algorithm basically reduces the overall computational
complexity by searching for an optimal selection at each stage
and expecting to find a near optimal final value. Detailed in-
formation regarding the reconstruction performance of greedy
strategies in GSP is presented in [12].

Particularly, in this work we use the sampling set method
presented in Algorithm 2, which employs at each iteration
a greedy search for the index n ∈ N to be added to the
current set S in order to maximize the minimum non-negative
eigenvalue of (UT

FDS∪{n}UF ). The number of indexes in the
final set S is denoted as M . This method has been initially
suggested in [4] and takes the same form as one of the
sampling strategies described in [5]. In fact, following an idea
similar to [4], it can be shown that Algorithm 2 uses a greedy
scheme for minimizing the SD in (10).

Algorithm 2 Greedy algorithm for selection of S
1: S ← ∅
2: while |S| < M do
3: m = argmax

n∈N
λ+min(UT

FDS∪{n}UF )

4: S ← S + {m}
5: end
6: return S

Although more general selection approaches allow adaptive
graph sampling [5], in which DS [k] might change at each
instant k, this work considers a static sampling matrix DS for
the sake of simplicity. This assumption implies there is prior
knowledge about the signal representation in the frequency
domain, which defines UF , while the adaptive sampling idea
is more suitable for the cases where the support F is unknown.

III. ADAPTIVE ESTIMATION OF GRAPH SIGNALS

A first attempt to merge the traditional area of adaptive
filtering [8] with the brand-new field of GSP is done in [5],
where the authors suggest LMS-based strategies for handling
the problem of graph signal reconstruction. Additionally, an
RLS-based algorithm is proposed in [6] for an identical
estimation task.

The reason for using an adaptive strategy in a graph
estimation context comes from the possibility of robust online
estimation and tracking of time-varying graph signals. The
robustness of the adaptive approach is handy to work in noisy
scenarios such as (7), when we expect an adaptive strategy
to provide a smaller MSD in comparison to an instantaneous
signal interpolation, as in Algorithm 1.

A. LMS Estimation
The most widely used algorithm in adaptive filtering is

the LMS [14], [15]. Among many reasons, such as its stable
behavior for finite-precision implementation, the popularity of
the LMS algorithm is mainly due to its simplicity and low
computational complexity [8].

Particularly, for graph signal reconstruction [5], [16] the
LMS algorithm is designed to minimize the mean-square
sampled deviation, i.e.,

min.
sF [k]

E
{
‖DS(xw[k]−UFsF [k])‖22

}
. (11)

By using a stochastic gradient approach for the minimiza-
tion problem in (11), one finds an update expression for
sF [k + 1]. Moreover, using the IGFT in (2), one can easily
find an estimate x̂o[k] for the bandlimited graph signal xo[k]
in (3), which corresponds to the LMS update equation [16]

x̂o[k + 1] = x̂o[k] + µUFUT
FDS(xw[k]− x̂o[k]) , (12)

where µ ∈ R+ is the so-called convergence factor [8],
a parameter that controls the algorithm behavior to either
improve its convergence speed or reduce the steady-state error.

Thus, the procedure for finding an online estimation of
xo[k] based on the LMS update equation (12) is presented
in Algorithm 3. The initial value x̂o[0] must be a bandlimited
signal (such as x̂o[0] = 0) and the step-size parameter µ must
be sufficiently small to promote stability [5].

Algorithm 3 LMS estimation of graph signals

1: k ← 0
2: while (true) do
3: x̂o[k + 1] = x̂o[k] + µUFUT

FDS(xw[k]− x̂o[k])
4: k ← k + 1
5: end

B. RLS Estimation
Another well-known technique in the adaptive filtering area

is an iterative procedure that solves the least-squares problem
for each incoming signal in a recursive form, called the
RLS algorithm [8]. The LMS strategy takes a long time
until reaching its steady-state, calling for alternatives, such
as the RLS, a much faster approach. However, the trade-
off for using a faster convergence algorithm like the RLS is
a considerable increase in computational complexity, which
might be a limiting factor, depending on the application.

Similarly to the LMS idea, the RLS algorithm for estimating
graph signals [7] intends to minimize an error function, which
in this case is given by

min.
sF

k∑
l=1

βk−l‖DS(xw[l]−UFsF )‖2
C−1

w
+ βk‖sF‖2Π , (13)

where 0 � β ≤ 1 is the forgetting factor, and Π is a
regularization matrix, usually taken as Π = δI, for a small
δ > 0.

When solving the convex problem in (13), one finds that
the estimate for the bandlimited signal xo[k] is equal to

x̂o[k] = UFΨ−1[k]ψ[k] , (14)

where Ψ[k] ∈ R|F|×|F| and ψ[k] ∈ R|F| are

Ψ[k] = βΨ[k − 1] + UT
FDSC

−1
w [k] UF ,

ψ[k] = βψ[k − 1] + UT
FDSC

−1
w [k] xw[k].

(15)
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Then, based on the update equations (14) and (15), we
present the complete RLS method for graph signal estimation
[7] in Algorithm 4. The initial values of this algorithm can be
taken as Ψ[0] = Π and a random ψ[0], such as ψ[0] = 0.

Algorithm 4 RLS estimation of graph signals

1: k ← 0
2: while (true) do
3: Ψ[k] = βΨ[k − 1] + UT

FDSC
−1
w [k] UF

4: ψ[k] = βψ[k − 1] + UT
FDSC

−1
w [k] xw[k]

5: x̂o[k] = UFΨ−1[k]ψ[k]
6: k ← k + 1
7: end

IV. NUMERICAL SIMULATIONS

In order to compare the performance of the adaptive strate-
gies presented in Section III with the standard method for
reconstructing graph signals in Algorithm 1, we collect two
datasets from the Instituto Nacional de Meteorologia (INMET)
website [9]: the first one contains the latitude and longitude
coordinates of active weather stations, while the second dataset
presents a monthly average temperature recorded in some of
these stations, during the 1961-1990 period. From these data
we obtain a total of 299 nodes for our graph G = (V, E),
in which each of these vertices represents a weather station.
Thus, a node vn of the graph G and its signal value xn[k]
are given, respectively, by the geographical coordinates and
the average temperature of the associatied weather station
in a given month. For reproducibility purposes and future
experiments, this compiled location and temperature dataset
has been made available at [17].

As we have no explicit connection between weather stations,
we are free to design the set E and choose the weights {aij}.
For simplicity, we construct the graph edges by connecting
a vertex vn to its 8 closest neighbor nodes [1], considering
that the distance between two nodes is given by the Haver-
sine formula [18], which evaluates the great-circle distance
between points using their latitude and longitude coordinates.
Thus, based on this procedure we obtain the graph structures
displayed in Fig. 1.

As GSP techniques require the use of either the Laplacian or
adjacency matrix, we need to define the edge weights {aij}
of A, which can be seen as a similarity measure between
neighboring vertices. Like [1], we evaluate the edge weights
{aij} based on the Gaussian kernel weighting function

aij =

{
exp

(
− dH(i,j)2

2θ2

)
, if v̄ivj ∈ E ,

0 , otherwise,
(16)

where dH(i, j) is the Haversine distance between vertices vi
and vj , θ is taken as 2 ·103 and the condition v̄ivj ∈ E checks
if the edge connecting nodes vi and vj is part of the set E .

A common assumption in GSP literature is that smooth
signals on graphs present a bandlimited or approximately
bandlimited frequency representation, in this case given by
their low-frequency components or eigenvectors. As a graph
signal xw[k] obtained from temperature measurements across
the country presents this smooth behavior (despite minor
outlier points) at every instant k, we expect xw[k] to be
approximately bandlimited, which would allow us to test the
sampling and reconstruction strategies mentioned in Sections
II and III. However, before doing so we need to decide how
many frequency components are necessary for representing the
graph signal with an acceptable deviation error.

As this task consists in a signal compression problem,
we take a similar procedure to [2] and evaluate the average
reconstruction error (ARE) ‖xo − x̄Po ‖2/‖xo‖2 for different
estimates x̄Po using only P frequency components of the
original bandlimited graph signal xo, taken as the signal from
the July dataset depicted in Fig. 1(c). The signal x̄Po is obtained
by sorting the absolute values of signal s obtained from (1)
and selecting the indices p of the P -largest components |sn| to
form the auxiliar set FP . Based on these indices p ∈ FP ⊆ N ,
we pick the p-th eigenvector of U and the p-th frequency
component of s to define UFP

and sFP
. Then, the estimate

x̄Po using P components is given by UFP
sFP

.
Following this compression procedure, we compute the

percentual ARE for different values of used components P and
display the results for the range [50, 250] in Fig. 2. Considering
that a deviation error of 2.5% is acceptable in the current
application, we approximate the original graph signal by its
P = 200 largest frequency components. From this assumption
we can define the bandlimited set F = FP , where |F| = P .

50 100 150 200 250
0

5

10

15

Fig. 2: Percentage of reconstruction error when the original
signal is compressed using P frequency components.

Based on this approximately F-ssparse signal xo, we need
to take a practical project decision and select both the amount
|S| and which vertices vn ∈ V of the graph signal should be
sampled. As stated in [12], increasing the number of samples
in S always decreases the MSD in (8). However, as we also
want to reduce the amount of nodes to be measured, we
consider that |S| = 210 provides a reasonable trade-off and
then find the sampling set S by using Algorithm 2, with
M = |S| = 210. Then, at this point we obtain the sampled
bandlimited graph signal which will be used to test the linear
interpolation and adaptive reconstruction strategies.

In the following simulations we consider the MSD in
(8) as figure of merit for comparing algorithms and take a
reference signal x̄o, defined as the 210-frequency component
representation of the approximately F-ssparse graph signal in
Fig. 1(c). The simulation results were generated with each
estimation algorithm running during 5000 iterations, and this
procedure was repeated 10 times, forming the ensemble. From
this ensemble, the MSD is estimated as the average for
each iteration k. Parameters were set as: initial estimation
x̂o[0] = 0 ∈ R299, noise covariance matrix Cw = σ2

wI, with
σ2
w = 0.01, convergence factor µ = 0.25, and forgetting factor
β = 0.95.

Fig. 3 depicts the results for the first reconstruction simula-
tion, where we represent the graph readings xw[k] by the noisy
scenario in (7) with a constant graph signal xo[k] = x̄o until
time instant k = 2500, when the reference signal is scaled by
a factor of 1.1. The MSD values in Fig. 3 are considerably
large due to the high dimension of the reconstructed vectors
and the high noise level. The initial iterations suffer even more,
considering the initialization step with x̂o[0] = 0.

As expected, from Fig. 3 we observe that the standard
online interpolation method in Algorithm 1 presents the fastest
convergence speed, reaching its steady-state value after the
first iteration. However, as this traditional strategy ignores
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Fig. 3: MSD for different reconstruction algorithms using a
constant signal xo[k] with a step-transition at k = 2500.

previous values, after a short time it is also noticeable that by
using adaptive strategies such as the LMS and RLS algorithms
one can achieve a more accurate estimation of the original
graph signal xo[k], because they provide a lower level of MSD.
Additionally, it is clear that the RLS algorithm presents a much
faster convergence than the LMS method.

For assessing the performance with time-varying signals,
we remember that the temperature follows a regular daily
behavior, reaching a peak around mid-day and decreasing
to its lowest values in the night period. Then, we assume
that a simplified temperature measurement changes in time
according to the periodic formula

xo[k] =

[
1 +A sin

(2πk

T

)]
· x̄o , (17)

where A is a scalar used to indicate the range of temperatures
and T is a constant for defining the daily periodic behavior.

Fig. 4 illustrates the tracking behavior when we consider
a reference signal xo[k] in (17) with T = 5000 and two
different temperature ranges A = 0.5 and A = 0.05, and
run the simulation procedure described previously. From these
results we verify that once more the traditional interpolation
scheme overcomes the adaptive algoritms in terms of tracking
speed in the initial iterations. Furthermore, we observe that the
reduction in the estimation deviation (MSD) brought by using
adaptive strategies depends on the daily temperature range,
where the implementation of adaptive algorithms seems more
suitable to track signals in slowly time-varying environments.

0 2000 4000

0

20

40
LMS

RLS

Instantaneous

(a) A = 0.5

0 2000 4000

0

20

40
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RLS

Instantaneous

(b) A = 0.05

Fig. 4: MSD for different reconstruction algorithms when
xo[k] varies as (17) with (a) A = 0.5 and (b) A = 0.05.

In fact, this idea of a slowly time-varying graph signal
depends not only on the amplitude range A, but also on the
parameter T in (17), which is related to the time interval tk
taken between consecutive signal measurements at instants k
and k + 1. If the time interval tk is small enough, we can
consider that the temperature graph signal changes slowly and
then the use of the LMS and RLS adaptive algorithms for
estimating the original signal from its samples is justified since
they outperform the traditional interpolation in terms of MSD
in these scenarios, as displayed in Fig. 4(b). Particularly, when
complexity is not an issue the RLS algorithm can be seen
as a more adequate choice since it presents a good trade-off
between MSD and speed of convergence.

V. CONCLUSIONS

The recently developed GSP framework produces inter-
esting insights about signals defined on irregular structures,
allowing one to perform some processing on them. Based on
this, we have verified that a graph signal can be estimated
from a reduced set of vertex values in applications where
the signal spatial variations is smooth, as is usual in a
temperature measurement network. For a practical application
this reduction implies budget and maintenance savings, since
one can employ a smaller number of sensor devices in the
network, but it also requires an adequate method for recovering
the original graph signal.

In this paper we compared a standard online interpolation
strategy to adaptive methods for signal reconstruction and,
based on the obtained results, we concluded that the adaptive
algorithms achieved a smaller estimation error for slowly time-
varying graph signals.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, pp. 83–98, May
2013.

[2] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7,
pp. 1644–1656, 2013.

[3] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques
for interpolation in graph structured data,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 5445–5449,
May 2013.

[4] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
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