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Adaptive Gain Methods to Improve Speech
Intelligibility under Reverberation

F. de S. Farias and R. Coelho

Abstract— The reflection of an acoustic signal on walls or
objects in an enclosed environment is perceived as reverbera-
tion. It is present daily in conference rooms, tunnels and any
closed spaces. The presence of reverberation can degrade speech
intelligibility and the performance of tasks that depend on it, such
as speech or speaker recognition. Many methods were proposed
to attenuate this degradation. A family of such methods acts on
clean speech, applying gains on parts of the signal in order to
improve intelligible when reverberated. These methods are called
adaptive gain methods. This study aims to evaluate the effect
of two adaptive gain methods, Adaptive Gain Control (AGC)
and Steady-State Suppression (SSS), in speech intelligibility.
The evaluation uses four objective measures: Coherence Signal
Intelligibility Index (CSII), Short Time Objective Intelligibility
(STOI), Speech Reverberation to Modulation Ratio (SRMR)
and Weighted Short Time Objective Intelligibility (WSTOI).
Results show that AGC improves speech intelligibility in studied
conditions, while SSS degrades it, a result in line with subjective
measures found in the literature.
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I. INTRODUCTION

The reflections of an acoustic signal on walls and objects
in the environment are perceived as reverberation. The first
and stronger reflections are called early reflections (ER), while
the numerous and attenuated reflections that come later are
called late reflections (LR). Reverberation is often observed in
real life situations, mostly in closed spaces such as in subway
stations, empty rooms or caves.

Studies of speech perception in rooms show that rever-
beration degrades speech intelligibility in two forms: self-
masking, which is the temporal blurring of the signal within
each phoneme, and overlap-masking, which is the masking of
phonemes by the reflections from previous phonemes [1], [2].
This degradation impacts on tasks such as automatic speaker
verification and speech recognition [3], [4].

Many methods were proposed to mitigate the degradation of
reverberation on speech intelligibility. One of the first and still
most popular class of methods is the inverse filtering, which is
the passing of a reverberated signal through a filter that inverts
the effects of reverberation [5], [6]. However, this method
relies on the inversion of the Room Impulse Response (RIR),
the representation of the reaction of a room to an impulsive
sound. This task is computationally expensive, especially in
highly reverberant conditions.

Another class of methods, the adaptive gain methods ad-
dress this problem by applying a gain on the speech signal
before it is reverberated. The modification is optimized based
on knowledge about the room and the speech signal, so the
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processed speech is more intelligible than the original when
reverberated [7], [8]. However, evaluation and comparison of
such methods has been done only in one highly reverberant
condition [9].

The goal of this work is to study the effect of two adaptive
gain methods, Steady-State Suppression (SSS) [10] and Adap-
tive Gain Control (AGC) [9] on speech intelligibility under
several previously unexplored reverberation conditions, thus
adding to the understanding of said methods. The evaluation
is conducted on a subset of the TIMIT database, on two
different rooms and seven different reverberation times (T60),
from 0.6s to 1.8s. The intelligibility is measured using four
objective metrics: Short-Time Objective Intelligibility (STOI)
[11], Weighted Short-Time Objective Intelligibility (WSTOI)
[12], Speech Reverberation Modulation Ratio (SRMR) [13]
and Coherence Speech Intelligibility Index (CSII) [14]. Results
show that AGC improves speech intelligibility on T60 longer
than 1.4s. Of the two rooms studied, it shows a significant
improvement in the biggest. SSS decreases intelligibility for all
studied conditions, a result that reflects previous experiments
[7], [10].

The remainder of this letter is organized as follows. Section
II describes two adaptive gain methods evaluated in this work.
Section III summarizes the objective intelligibility measures
used in the evaluation. In Section IV, the experimental results
are presented, followed by conclusion in Section V.

II. ADAPTIVE GAIN METHODS
This section briefly describes the adaptive gain methods that

are evaluated in this work.

A. Steady-State Suppression (SSS)
SSS [10] is an adaptive gain method that focus on suppress-

ing the steady part of the reverberant signal. It was developed
to reduce the intelligibility degradation on reverberated speech.

This method suppresses spectrum regions deemed less im-
portant to intelligibility based on a parameter D [15]. This
parameter measures the spectral transition of the signal. When
it is lower than a certain threshold, the signal is attenuated.

The calculation of D follows these steps:

1) Extraction of the temporal envelope: It is performed first
splitting the signal in 1

3 octave bands, followed by using
the Hilbert transform in each band.

2) Calculation of regression coefficients: First, the signal is
downsampled. Then, five adjacent values of the logarith-
mic time trajectory are used to calculate the regression
coefficients.

3) Calculation of parameter D: the parameter is obtained
by mean square of the regression coefficients.
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D =
1

N

∑
|ci|2 (1)

where N is the number of bands and ci is the regression
coefficient in band i.

Experiments with consonant recognition in reverberant con-
ditions show that the method improves intelligibility in low
reverberation for hearing impaired subjects, but degrades in-
telligibility for normal hearing subjects [7], [10].
B. Adaptive Gain Control (AGC)

AGC [9] is a method that optimizes the signal gain using a
nonstationarity measure. It aims to reduce the overlap-masking
in nonstationary regions of the reverberant speech [16].

In this method, the signal gain is designed to optimize a
speech-to-late-reverberation ratio (SLRR) by Lagrange multi-
plier.

y(x) = c1x+ c2x
b +

l

2b
(lλ− 2b) (2)

where λ is the Lagrange multiplier and c1 and c2 are
determined by the boundary conditions.

The calculation of the gain follows these steps:
1) Nonstationarity estimation: The nonstationarity index

used in this work is the normalized distance between the
mel-frequency cepstral coefficients (MFCCs) in adjacent
frames.

ξi =
||mi −mi−1||

||mi||+ ||mi−1||
(3)

2) Computation of LR power: The LR signal is estimated
by convolving the original signal with a pulse-train
model for the LR part of the room impulse response
(RIR) based on the velvet noise [17].

3) Computation of the gain: This is done in three parts.
The first is the computation of the logarithm of νξ, a
sigmoid function of the nonstationarity index ξ.

log(νξ) = q(ξ|s, log(β), log(α)) (4)

where s is the slope factor of the function, α and β
determine the range of interest.
The gain penalty λνξ

is calculated from each νξ through
the equation:

λξ =
2b ∗ (ρ− 1)(αbν − ανb)

l2(νb − αb − b(ν − α)ψb−1)
+

2b

l
(5)

where l is the power of the LR part of the signal and b is
the shape parameter in the probability density function
of x.
The second step is the selection of λ, where two cases
apply depending on the value of l. For l ≤ λ̃:

λ = max(λ̃, λξ) (6)

where λ̃ is the critical value in which y = β and λ = λ̃.
For l > l̃,

λ = λν ,

(
log(ν = q(

λνξ

λ̃
|s, log(νξ), log(α))

)
(7)

constrain the maximum boosting power to ν ∈ (α, νε).

From that, yi(x) can be obtained through equation (2)
and the gain is then defined by

gi =

√
yi
xi

(8)

4) Smoothing of the gain: The smoothing is made using
two sigmoid functions u and d which serve, respectively,
as the upper and lower bounds of the gain, effectively
reining the amount of gain modification the algorithm
does.

gi =

{
min(u(ξi, gi), gi), gi > 1

min(d(ξi), gi), gi ≤ 1
(9)

Subjective evaluations compare this method with SSS in one
room, under one strong reverberant condition. Results show
show that speech processed with AGC is more intelligible than
unprocessed reverberated speech or speech processed with
SSS.

III. OBJECTIVE INTELLIGIBILITY MEASURES
This section describes objective intelligibility measures

(OIM), STOI [11], WSTOI [12], SRMR [13] and CSII [14],
used to evaluate the reverberated and processed speech.
A. Short Time Objective Intelligibility (STOI)

STOI was developed to predict the intelligibility of noisy
speech processed by time-frequency weighting masks, such as
speech enhancement methods. Experiments presented in [11]
show it yields high correlation with the intelligibility of speech
distorted by additive noise and processed by different types of
speech enhancement algorithms.

The STOI score is the correlation coefficient between the
spectral envelopes of clean and relative enhanced signal. This
measure is obtained through six steps:

1) Segmentation: the clean and the distorted signals are
separated in short time Hann-windowed frames. Spectral
decomposition of both signals using the FFT.

2) Extraction of silence: silent regions of the clean speech
are excluded from the computation. This selection is
based on the energy of each frame compared with the
frame with highest energy of the signal.

3) Grouping: the signals are grouped in a vector of 30
frames across 15 1/3-octave bands.

4) Normalization: the distorted signal is normalized in
comparison to the clean signal.

5) Calculation: STOI is calculated as an average of the cor-
relations between each group in the clean and distorted
signal.

6) Mapping: to translate the values of STOI to word
recognition ratio (WRR), a mapping function must be
used. It takes the form of

STOImap =
100

1 + exp(a ∗ STOI + b)
(10)

in which STOImap is the predicted intelligibility score,
STOI is the output of the algorithm, a and b are two
free parameters, adjusted according to the experiment.
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Fig. 1: Waveforms and spectrograms of the following signals, respectively: clean speech, reverberated speech (Petkov room,
T60 = 1.8s), reverberated speech processed using SSS and reverberated speech processed using AGC.

B. Weighted Short Time Objective Intelligibility (WSTOI)
WSTOI uses mutual information to provide an estimate of

the intelligible content of the speech signal and give a better
prediction of it’s intelligibility [12]. It is a measure built on top
of STOI, shown in Section III-A. The main difference from
STOI is the use of a mutual information estimation to weight
the contribution of each time-frequency cell and improve the
intelligibility prediction. As it is shown in [12], this measure
obtained better accuracy than STOI in speech distorted by
several types of noise in several SNRs.

This metric follows the same steps as STOI, adding the fol-
lowing processing in the clear speech, after the Segmentation
step:

1) Prediction: the next phoneme is predicted using a LPC
predictor that uses the previous two phonemes.

2) Mutual information calculation: the mutual information
between the clear and predicted speech is calculated.

The mutual information is used to weight the correlation
between each group of clear and distorted signals, giving
then a different and more accurate score. One side effect of
the weighting is that the silence extraction step is no longer
necessary.
C. Speech Reverberation Modulation Energy Ratio (SRMR)

SRMR is an adaptive non intrusive measure of quality
of reverberated and processed speech signals. It is the ratio
between the average of the modulation energy of the first four
modulation bands of a signal and the average of rest of the
bands, as can be seen in equation (11). Studies show this ratio
has great correlation with perceptual quality and intelligibility
measures in reverberant conditions [13].

To calculate this ratio, the following steps are required:

1) Separation: the signal is separated in 23 bands, resem-
bling the function of the human cochlea.

2) Extraction of envelope: for each frequency band, the
temporal envelope is extracted and split into frames.

3) Calculation of Modulation Energy: the modulation spec-
tral energy is calculated as the squared magnitude of the
discrete Fourier transform of the the temporal envelope.

4) Calculation of the Modulation Ratio: the modulation
frequency bins are grouped in 8 bands. ξk is the average
of the modulation energy in modulation band k. The
ratio is then given by:

SRMR =

∑4
k=1 ξk∑K
k=5 ξk

(11)

D. Coherence Speech Intelligibility Index (CSII)
CSII was developed to estimate intelligibility in speech

distorted by additive noise or bandwidth reduction. This
measure is based on the SII, but uses the coherence-based
(Speech to Distortion Ratio) SDR function instead of the
SNR of the former. The three level CSII is presented in
[14]. In the experiments performed using Hear In Noise Test
(HINT) sentences both in normal hearing and hearing impaired
subjects, this measure yields high correlation with the average
perceptual intelligibility. The calculation of the three level
CSII follows these steps:

1) Separation: the speech signal envelope is divided in
three amplitude levels.

2) Segmentation: both the clean and distorted signals are
split in 30 ms segments.

3) FFT: the short time FFT is applied to both signals.
4) Coherence Calculation: magnitude-squared coherence

between the clean and distorted signal is calculated and
summed over the entire signal.

5) Combination: the scores for each amplitude level are
combined to compose one score for the audio signal.

6) Mapping: to translate the values of STOI to WRR
scores, a mapping function must be used. It takes the
form of

CSIImap =
100

1 + exp(a ∗ CSII + b)
(12)

in which CSIImap is the predicted intelligibility score,
CSII is the output of the algorithm, a and b are two
free parameters, adjusted according to the experiment.
IV. EXPERIMENTAL RESULTS AND DISCUSSION

The methods were evaluated on a subset of the TIMIT
database [18] composed of 240 speech utterances. The signals
are monaural, on average 3 seconds long and are sampled
at 16kHz. The experiments were conducted on speech rever-
berated using an implementation of the Image Source Model
(ISM) method [19]. This study used 14 reverberating condi-
tions: two different rooms, taken from [2], [9] and seven T60:
0.6s, 0.8s, 1.0s, 1.2s, 1.4s, 1.6s, 1.8s. The room sizes, source
and sensor positions are summarized in Table I.

Room Room Dimensions (m) Source Position (m) Receiver Position (m)
Nabelek [7.5× 6.1× 3.6] [1, 1, 1.5] [3.82, 3.82, 1.5]
Petkov [20× 30× 8] [10, 5, 3] [10, 25, 1.8]

TABLE I: Experimental Reverberated Conditions

The effect of reverberation and processing on speech is
illustrated in Figure 1, where a speech utterance is presented,
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respectively: clean, i.e. non-reverberated, reverberated using
the ISM algorithm in the Petkov room under reverberation time
T60 = 1.8s, and then processed, respectively, with the SSS
and AGC methods, explained in Section II. The processing
of speech using AGC divided the audio files in 40ms lenght
frames with 50% overlapping.Intelligibility measurement was
performed using in a frame basis procedure with 50% over-
lapping in all objective measures.

The free parameters a and b of the mapping functions were
calculated through nonlinear least squares fitting between the
subjective intelligibility in [2] for T60 = 0.8s and 1.2s the
average OIM scores in those conditions. Table II presents the
parameters for each OIM, with the Subjective Intelligibility
(SI) and the corresponding Predicted Intelligibility (PI) ob-
tained after mapping.

Objective Measure Parameters T60 SI [2] PI

STOI a -4.18 0.8 86.9% 86.39%
b 0.67 1.2 85.8% 85.35%

WSTOI a -4.28 0.8 86.9% 86.39%
b 0.71 1.2 85.8% 85.53%

CSII a -4.55 0.8 86.9% 86.33%
b 1.07 1.2 85.8% 85.53%

TABLE II: Mapping Parameters

A. Intelligibility Results
1) STOI results

Table III presents the average predicted intelligibility ob-
tained using STOI, for the reverberated speech processed
with SSS and AGC, as well as the unprocessed (UNP).
Two room sizes were used, Nabelek [7.5m × 6.1m × 3.6m]
and Petkov [20m × 30m × 8m]. Reverberation times T60 =
0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8s.

Room T60 UNP SSS AGC

Nabelek
[7.5× 6.1× 3.6]

0.6 89.34% 87.59% 88.79%
0.8 86.39% 84.74% 86.19%
1.0 84.76% 83.20% 84.74%
1.2 85.35% 83.77% 85.26%
1.4 81.01% 79.66% 81.36%
1.6 80.05% 78.77% 80.48%
1.8 78.34% 77.18% 78.89%

Average 83.61% 82.13% 83.67%

Petkov
[20× 30× 8]

0.6 85.53% 83.72% 85.34%
0.8 82.45% 80.71% 82.55%
1.0 77.89% 76.31% 78.36%
1.2 75.40% 73.92% 76.02%
1.4 71.11% 69.89% 72.17%
1.6 69.71% 68.56% 70.84%
1.8 66.03% 65.16% 67.47%

Average 75.44% 74.04% 76.11%

TABLE III: Average predicted intelligibility using STOI.

AGC results indicate the method improves speech intelli-
gibility under intense reverberation. Room size influences the
effect, as can be seen comparing the average improvement in
Petkov room (0.66%) and in Nabelek room (0.07%). Note that
this solution seems to be better suited to longer reverberation
times. Improvement is obtained for T60 longer than 1.4s for
Nabelek room and 0.8s for Petkov room.

SSS displays speech intelligibility degradation in all pre-
sented conditions. Contrary to AGC, the room size seems to
have little effect in the performance (−1.47% intelligibility

difference in Nabelek room, versus −1.40% in Petkov room).
The decline on softer reverberation, though, is more accentu-
ated than in higher reverberation (average −1.78% difference
in T60 = 0.6, against −1.01% in T60 = 1.8). These results
agree with the previous subjective intelligibility studies [10],
[7].
2) WSTOI Results

The predicted intelligibility using WSTOI is summarized
in Figures 2 and 3. The vertical axis represents the predicted
intelligibility in %, while the horizontal axis displays the T60
in seconds. Unprocessed speech (UNP) is represented as the
white bars, the speech processed with SSS as the grey bars
and the processed by AGC as the black bars.
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Fig. 2: Average predicted intelligibility using WSTOI in
Nabelek room.
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Fig. 3: Average predicted intelligibility using WSTOI in
Petkov room.

As can be seen, T60 impacts more the speech intelligibility
in a bigger room. The average difference from T60 = 0.6s
to T60 = 1.8s in Nabelek room is −11.17% and in Petkov
room it is −19.94%. The average intelligibility gain using
AGC is 0.39%. The biggest impact is in Petkov room with
T60 = 1.8s. SSS presents an intelligibility loss of an average
−1.47% across all studied conditions.
3) SRMR results

Table IV presents the predicted intelligibility obtained with
the SRMR measure.

As expected, the behavior of SSS processed speech is
similar to the values obtained with other measures (an av-
erage −1.08% intelligibility difference from the unprocessed
speech). The AGC processed speech, however, is underesti-
mated (an average −0.12% loss, where all other measures
accuse improvement).
4) CSII results

The predicted intelligibility obtained using CSII is illus-
trated in Figures 4 and 5. Speech is represented as with Figures
2 and 3.

This experiment indicates improvement in intelligibility of
speech processed by AGC, as was also found in most other
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Room T60 UNP SSS AGC

Nabelek
[7.5× 6.1× 3.6]

0.6 88.56% 87.50% 87.86%
0.8 86.14% 85.21% 85.55%
1.0 85.08% 84.20% 84.54%
1.2 85.35% 84.45% 84.80%
1.4 83.15% 82.36% 82.68%
1.6 82.74% 81.97% 82.29%
1.8 82.06% 81.32% 81.64%

Average 84.72% 83.86% 84.19%

Petkov
[20× 30× 8]

0.6 90.19% 88.24% 89.08%
0.8 89.03% 87.26% 88.05%
1.0 86.48% 86.48% 87.19%
1.2 87.02% 85.55% 86.27%
1.4 86.01% 84.68% 85.32%
1.6 85.44% 84.13% 84.79%
1.8 84.56% 83.36% 83.94%

Average 86.96% 85.67% 86.38%

TABLE IV: Average predicted intelligibility using SRMR.
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Fig. 4: Average predicted intelligibility using CSII in Nabelek
room.
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Fig. 5: Average predicted intelligibility using CSII in Petkov
room.

measures (0.31% improvement). However, the pattern of SSS
processed speech is the inverse (it shows improvement, where
the other measures show degradation).

V. CONCLUSION
This work investigated the effect of two adaptive gain

methods, AGC and SSS, on the intelligibility of reverber-
ated speech under conditions never previously studied. To
evaluate these methods, speech segments from the TIMIT
corpus were artificially reverberated and processed, then had
their intelligibility measured using four objective intelligibility
measures widely known in the literature. The experiments
shown AGC method improves intelligibility, mostly in bigger
rooms. The effect is also more pronounced in longer T60. The
experiments showed the effect of room size and reverberation
time in the performance of both methods. The larger the room,
more pronounced is the improvement in speech intelligibility
using AGC. This method also performs better in longer T60.
SSS processed speech was found to be less intelligible than
unprocessed speech in both large and small rooms, a result
that agrees with previous experiments.
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