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Abstract— Under MIMO channels, the matched filter detection
becomes inefficient to deal with high data throughput demanding
systems. The performance or system capacity under conventional
detection will be substantially degraded when the spatial diversity
provided by multiple antennas can not be fully exploited and
the detection process is unable to efficiently separate the signal
from each antenna. The solution discussed in this paper seeks
to establish more efficient detectors for MIMO systems with the
aid of the lattice reduction (LR) technique. These detectors use
information from the interfering signals in a way to improve
the signal detection in the antenna of interest, thus providing
advantages over the conventional system, at the expense of in-
creasing complexity. The focus of this paper consists in comparing
the characteristics of three representative sub-optimal detectors
based on the maximum-likelihood function as well as on the
guided search principle, previously analyzed in [1]. In this way,
the complexity × performance trade-off for the sphere detector
(SD), the QR decomposition-based detector (QRD) the greedy
search detector (GSD) and its variants, all of them aided (or
not) by the LR technique are analyzed and its potential of use
in MIMO systems is put in perspective.

Keywords— MIMO systems, ML estimation; sub-optimum de-
tection, search algorithms, Lattice Reduction.

I. I NTRODUCTION

Systems with multiple transmitting antennas and multiple
receiving antennas (MIMO) present a remarkable performance
degradation under conventional detection process, which con-
sist of the matching filter to the signal of each propagation
branch between the transmitting and receiving antennas, due
to the combination of effects of interference on the signal
between the antennas, as well as the possible correlation
between the received fading signals. Thus, the conventional
receiver becomes inefficient in MIMO systems that require
high data throughput (multiplexing gain).

There are well established solutions in literature to cir-
cumvent this problem, all of them consisting of maximum-
likelihood detectors (MLD), which by transmitting the same
information symbol over all antennas (diversity gain), im-
proves the individual detection on each receiving antenna
following by efficiently combining the signals from each one
(spatial diversity), or under other hand, to use each antenna
to transmit different symbols, and thus providing higher data
throughput, providing in both case a clear advantage over the
conventional SISO systems.

However, the MLD, which consists of a conventional re-
ceiver followed by a maximum-likelihood sequence detector,
is impractical due to the fact that its complexity increasesex-
ponentially with the number of antennas (or users or problem
dimension). Therefore, new methods have been proposed in
order to overcome these disadvantages.
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The focus of this work are the sub-optimum guided search
detectors for MIMO systems based on the maximum likeli-
hood function. Among these, stand out the sphere detector
(SD), the QR decomposition based detector (QRD-M) and the
greedy search detector (GSD), and its association to the lattice
reduction, in a way to improve the system performance and/or
to reduce the complexity of this MIMO detectors, specially
when occurs the combination of higher order modulation with
large number of antennas.

II. SYSTEM MODEL

The linear MIMO channel is defined by a generic transmitter
transmitting simultaneously (in one symbol period,Ts) m

symbols,s1, . . . , sm, of a finite alphabet or constellationD ⊂
C. At the receiver, there aren signals,y1, . . . , yn, one in each
receiver antenna, received as a linear combination of them

input symbols plus the additive noise. It is usually assumed
in the literature that the number of received signals in then

antennas exceeds the number of symbols transmitted by the
m antennas, i.e.,n ≥ m. This ensures that the equations used
in the detection process will not be under-determined [2]. The
linear MIMO channel is described in a matrix notation as:

y = Hs+ v (1)

whereH ∈ C
n×m is the channel matrix andv ∈ C

n is the
additive noise. The vectorss ∈ Dm and y ∈ C

n represents
the transmitted symbols and the received signals, respectively
[3]. If H, s, y andv are complex matrix and vectors they can
be rewritten as:

HHH =

[
ℜ{H} −ℑ{H}
ℑ{H} ℜ{H}

]
SSS =

[
ℜ{s}
ℑ{s}

]

YYY =

[
ℜ{y}
ℑ{y}

]
VVV =

[
ℜ{v}
ℑ{v}

]

whereℜ{.} and ℑ{.} are the real and imaginary operators,
respectively [4].

Since the focus of this work is the MIMO detection, the
channel matrixH will be considered perfectly known at
the receiver, its complex values are described by a Rayleigh
distribution for the magnitude and by an Uniform distribution
for the phase. The transmitted symbols are modeled as random
independent and identically distributed (i.i.d) variables over
an alphabet of the constellationD. The noise is modeled by
a complex and circularly symmetrical Gaussian distribution,
with zero mean and varianceσ2. The objective of the receiver
is to estimates from y andH.

The maximum likelihood detector or optimum detector
operationalizes, from (1), the test of all possible combination
of symbols transmitted fromm antennas, applying all possible
values of candidate symbols to the minimization of a cost
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function based on minimum Euclidean distance froms to the
received signal, expressed by:

ŝ = min
s∈Dm

‖y −Hs‖2 (2)

However, this strategy results in exponential complexity with
respect to the number of antennas and constellation size. Ifthe
constellation size of transmitted symbols isM, e.g. in BPSK
modulation,M = 2, and existsm transmitting antennas, the
detector need to search over a set of sizeMm . Under high
order modulation formats, this complexity becomes prohibitive
even for a moderate number of transmitting antennas [5].

III. L ATTICE REDUCTION (LR)

The LR is a mathematical concept utilized to solve many
problems involving point lattices. In signal processing, specif-
ically, the constellation formed by the symbols of a modulated
signal can be seen as a lattice; in this way, with the LR
one seeks for better ways to represent a lattice [6]. In the
MIMO signal detection the LR can be used to improve the
conditioning of the channel matrix, thus allowing to use sim-
pler detectors, and consequently less computationally complex,
maintaining acceptable performance, and also reducing the
complexity of near optimum detectors.

The LR is performed in the pre-detection phase, by gener-
ating an uni-modular matrixT that multiplied byH results
in a modified channel matrix with columns closer to the
orthogonality condition, this matrix represents a signal basis
with lower order than the original matrixH [6].

There are many definitions for the LR, depending on the
reduction criteria adopted. In this work the chosen algorithm
is the Lenstra-Lenstra-Lovász reduction (LLL orL3) [7]; ac-
cording to [6], LLL reduction shows a good trade-off between
the quality of the results and complexity. The LLL uses the
QR decomposition, reflections, translations and exchangesof
the columns of the channel matrix, in a iterative way to obtain
the channel matrix with reduced basis.

The algorithm depends on theδ parameter, with1
4
< δ ≤ 1.

The choice of theδ value affects the quality of the reduced
basis and its computational complexity. Bigger values ofδ

results in better basis at cost of a higher complexity; a common
choice isδ = 3

4
, as suggested in [6]. Furthermore, the symbols

vector s, and the channel matrixH, are transformed to a
reduced basis applying the uni-modular matrixT:

z = T−1s (3)

H̃ = HT (4)

Finally, the matrix form of the MIMO channel with the
channel matrix of reduced basis̃H can be obtained:

y = Hs+ v ⇒ y = (HT)
(
T−1s

)
+ v ⇒ y = H̃z+ v (5)

Thus, with this new matrix form to describe the channel, from
eq. (2) one can obtain a new minimization function for the
MLD detector and the others analyzed in this work:

ŝ = min
s∈Dm

‖y −Hs‖2 ⇒ ẑ = min
z∈Dm

‖y − H̃z‖2 (6)

From the eq. (6), the structure of all the detector analyzed here
can be modified to work with the LR.

IV. SUB-OPTIMUM GUIDED SEARCH DETECTORS

A. MIMO Sub-optimum Detector Based on QR Decompositon
From eq. (2), we apply theQR decomposition [8] to the

channel matrixH

H = Q

[
R

0

]

where Q ∈ C
n×m is an orthogonal matrix,R ∈ C

m×m

is an triangular superior matrix, and0 is a matrix of zeros,
dimension(n−m)×m.

The QR decomposition ofH is an orthogonal reduction to a
triangular superior form. From the relationH = QR and from
the non-singularity ofR, we can conclude that the columns
of Q forms an orthogonal base forR(H), whereR(.) is the
vectorial space operator. In this way, the matrixP = QQT

is the orthogonal projection inR(H). Note thatQHQ = I,
with {.}H being the transpose conjugate operator andI is the
identity matrix. In this way, pre-multiplying (2) byQH results
in a tree shaped structure with depthm due to the triangular
property of theR matrix.

‖y −Hs‖2 = ‖y −QRs‖2 = ‖QHy −Rs‖2 (7)

To simplify, let bex = QHy. So, the minimization problem
becomes:

ŝML = min
s∈Dm

‖x−Rs‖2 (8)

After applying the QR decomposition and pre-multiplying by
QH , theM algorithm is applied to estimate the symbols in a
sequential way [9], as described below.

1) The M Algorithm:Beginning with the last element ofs,
sm , the algorithm calculates the metric in (8) for all possible
values ofsm ∈ Dm using

|xm − rm,m ŝm |2, (9)

whererm,m is the (m,m)th element ofR. The metrics of this
nodes are ordered and it holds only theM nodes with smaller
values; the others are discarded. The surviving nodes are then
extended to each ofM symbols, resulting inMM branches;
again, from this new branches, only theM branches with the
smaller values is saved and then expanded again to moreM
branches, until the process reaches the last layer (m). Fig. 1
illustrates the process for a system withm = n = 3, M = 2
branches, and quaternary modulation,M = 4.
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Fig. 1. M algorithm. The numbers outside the circles are the symbols of the
constellation (nodes), those inside the circles are the accumulated metric until
that node. The solid circles are theM nodes chosen by the algorithm in each
layer, while the doted ones are the excluded nodes. Doted lines indicate the
not expanded branches. The double lined circle shows the obtained solution.
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The branches values are calculated utilizing a modified
minimization function metric from (8). For a tree with length
i, 1 ≤ i ≤ m, the metric for each branch becomes:

|xm−i+1 −Rm−i+1si|
2, (10)

wherexi is the i-th element ofx, Ri is the i-th row of R
andsi is the vector with the appropriated nodes of a particular
branch.

B. Sub-optimum MIMO Sphere Detector

The sphere detector (SD), searches over the nodess ∈ Dm

of the lattice that are inside of a hyper-sphere of radiusd,
centered at the received vectory [10]. In this way, the search
space is smaller and as a consequence, the final computational
complexity is smaller too.

The SD must determine which points of the constellation
(nodes) are inside of the search sphere, although if the detector
have to test the Euclidean distance of all nodess in order to
determine which one lies on the search sphere of radiusd, an
exhaustive search still exists. Hence, it is hard to determine
which lattice nodes lay inside of them-dimensional sphere,
but it is trivial to do it in a uni-dimensional casem = 1. In
this way, the algorithm can go from the dimensionk to the
dimensionk+1. This means that the nodes at the dimensionm

and radiusd can be determined iteratively by determining all
the nodes contained into hyper-spheres of smaller dimensions
(1, 2, . . . ,m) and the same radiusd. Consequently, the SD
search method can be represented by a tree, as in the case
of the QRD-M, the branches of thek -th layer of the tree
corresponds to the nodes of the lattice that lays inside the
sphere of radiusd and dimensionk [11]. An example of the
SD search in a system withm = n = 3, search radiusd = 6,
and binary modulation can be seen in the Fig. 2.
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Fig. 2. SD search tree,d = 6. Numbers at the side of each branch are
lengths; numbers inside the nodes are the accumulated metrics;double lined
circle indicates the optimal solution; doted branches are non-visited nodes.

The pointHs is inside the sphere of radiusd if and only if:

d2 ≥ ‖y −Hŝ‖2 (11)

So, the main problem must be broken into sub-problems; in-
stead of trying to determine the points of the constellationthat
lay inside of the hyper-dimensional search sphere, it determine
the points that lay inside of multiple uni-dimensional spheres.
In order to proceed that, the QR decomposition is applied to

H in (11). From the pre-multiplication byQH , as in (8), one
can immediately obtain:

‖x−Rŝ‖2 ≤ d2 (12)

The SD core consists of the enumeration method [12], which
enumerates the possible symbols that lay inside the sphere,
based on the conditional observation:

If : p
△
= x−Rŝ, (13)

Then: ‖plk‖
2 > d2 ⇒ ‖p‖2 > d2

where plk ∈ C
k is the vector composed by the lastk

components ofp. Hence, at each new iteration, the algorithm
executes a search with depthk in the tree of search withm
layers: fork = 1, plk will be composed by the componentm
of p; for k = 2, plk will be composed by the componentsm
andm−1 of p, and so on. Due to the upper triangular structure
of R, the vector‖plk‖ will depends only onŝlk , where
ŝlk ∈ Dk is the vector composed by the lastk components of
ŝ. Hence, stating that for some vectorŝ ∈ Dm with index k,
‖plk‖

2 > d2, any other vector̃s ∈ Dm for which s̃lk = ŝlk
can be excluded from the search. The SD uses this observation
to enumerate in an efficient way all the points in the hyper-
sphere supplied by the equation (12). After this enumeration
the vector with the possible symbols is saved, and those that
have the lower value based on the modified MLD equation (8)
will be the chosen as the output symbol of the algorithm.

1) Radius of the Sphere:In order to achieve high efficiency
with SD, a critical parameter namely the radius of the search
sphere (d) must be adjusted, or in case of an algorithm
with iterative upgradable search radius, the initial radius. It is
essential to defined carefully, therefore, in the case of it being
too large the search will result in a exponential complexity
with the number of antennas or users, without showing any
advantage over the MLD. In other way, in the case of a too
small radius, the algorithm will have a great chance of not
finding any point inside the search sphere.

A better way to determine the radius is the pruning proce-
dure, when the algorithm reaches the last node of a branch
of the search tree with an accumulated metricM , we can
suppose that the solution of (8) must be inside of the sphere
‖x−Rŝ‖2 ≤ M . So, in the case ofM < d the algorithm can
maked = M , and continue the search with a smaller search
radius. With this method the search tree applies successive
pruning which is able to reduce the number of visited nodes
in comparison to the original [3]. Under pruning procedure,
the initial radius is defined asd = ∞, and then it is updated
every time that the algorithm finds a branch that have the
Euclidean distance from the received vector smaller than the
actual search radius. Furthermore, the critical task of finding
an appropriate initial radius, and a function to update the radius
are eliminated.

C. Sub-optimum MIMO Greedy Search Detector
In a same way as the other detectors of this work the greedy

search detector (GSD) starts with the QR decomposition of
the channel matrix (H), taking into account eq. (8). The GSD
takes advantage of the superior triangular characteristicof R to
calculate the Euclidean distance step-by-step, from the antenna



XXX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT’12, 13-16 DE SETEMBRO DE 2012, BRASILIA, DF

m until the first one, as shown in Fig.3. In this flow chart, the
nodes represents the modulation symbols. The GSD method
is organized intom stages, each stage represents one antenna;
at each stage existsC nodes. Each node is connected toC
nodes of the previous stage and toC nodes of the next stage,
with exception of the stage 1 andm, because in stage 1 does
not have a previous stage and is connected to the root node;
in the stagem has no next stage and it is connected to the
final node. Between this nodes there is the partial Euclidean
distance, i.e., the metric of the previous nodes added to the
metric of the current node, until that at the end of themth
stage, the algorithm is able to compute the total metric for a
specific candidate vector.
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C C C

Stage 1 Stage 2 Stage m-1 Stage m
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Fig. 3. Flow chart of the GSD for a generic system withm antennas and
modulation withC symbols.

Two distinct phases will be executed in the GSD detection
process: a) the phase of nodes reduction, followed by b) the
phase of branches extension [13]. On the first one a reduction
of the quantity of candidate nodes is performed through a tree
search similar to that performed by the SD and QRD-M. On
the second phase the branches extension is performed, i.e.,
from the last stage to the first, the algorithm performs, at the
current stage, a symbol swap by the others possible symbols,
been capable to form a list of vectors from where it will select
the one that better satisfies (8).

V. PERFORMANCE ANDCOMPLEXITY ANALYSIS

Considering a wireless MIMO communication system with
m = n = 4, high order modulation (16-QAM) under flat
Rayleigh fading, Monte-Carlo simulations results have been
obtained in order to analyze and compare the performance-
complexity trade-off of the three detectors with and without
the LR technique aiding.
A. Performance of the MIMO Detectors

Fig. 4 presents the symbol error rate (SER) versus the
SNR curves. Unlike the results analyzed in [1], where QPSK
modulation was utilized, in this work, the GSD under high
order modulation has been shown unsatisfactory performance,
even under LR aiding, the GSD was able to achieve only a
marginal performance improvement. On the other hand, the
QRD-M had been able to achieve near-ML performance for
M = 128, as one can see from Fig. 4. However, withM =
127, the performance of this detector was far from near-ML
performance; even with the aid of the LR, the improvement of
performance was only marginal. The performance of the SD

remained near-ML, as expected. In this way, on the LR aided
version of the SD (LR-SD), the improvement can be noted in
terms of complexity.
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Fig. 4. SER for the SD, QRD-M and GSD detectors inm = n = 4 system
and 16-QAM modulation.

B. Computational Complexity

The complexity of the MIMO detection algorithms with
and without the aid of LR was analyzed in terms of the real
operations terms. The three algorithms discussed herein use the
QR decomposition procedure in its guided search mechanisms.
The complexity of the LR is in the first line of Tab. I; the LR
uses the QR decomposition so can be seen that its complexity
is very close to the QR decomposition itself. Hence, the final
complexity of the detectors aided by the LR is the detector’s
complexity plus the complexity of the QR decomposition and
the LR procedure.

From Tab. I, it is evident that the QR decomposition
complexity, with O(m3) order, is dominant in determining
the complexity of the central search functions of the QRD-M
and GSD, that show a complexity of orderO(m2MM) and
O(m2M2), respectively. Furthermore the SD in it’s best case
(lower complexity), show a complexity of orderO(m2M).

TABLE I

REAL OPERATIONSCOMPLEXITY FOR THE THREEMIMO DETECTORS.

LR 2

3
m3 + 29m2 +

5

3
m− 3

QR 2

3
m3 +m2 +

1

3
m− 2

QRD-M
[(

m2 + 7m
)

M + 6
]

M

GSD
(

m2 + 7m
)

M2 +
(

m2 + 5m+ 6
)

M

SD
(

m2 + 5m
)

Mγm

Since the QR decomposition is a common step to the three
detectors, the complexity of this step is prominent. For the
remaining steps, the QRD-M shows a fixed complexity in
relation to the SNR, depending only on theM size, quantity
of transmitting antennas,m, and the modulation order,M.
Obviously the higherM is, more branches will be expanded,
higher will be the complexity but better will be the quality
of the solution given by the algorithm. On the other hand,
the GSD also has fixed complexity regarding the SNR, being
dependent only on them andM.

The SD complexity is variable, stochastic and dependent
of the channel condition and noise level [10], besides the
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quantity of antennas and modulation order. Depending on the
combination of this factors, the complexity can be incremented
from quadratic polynomial (best case) to exponential [14].
Therefore, it is hard and complex to determine a closed expres-
sion to describe the SD complexity. The expression obtained
here is a simplifying expression, however it is sufficient to
accomplish the proposed analysis for this work. Hence, Tab.
I presents in addition to them andM, the parameterγ, that
represents the dependence of the SD to the channel conditions
(or noise level), beingγ ∝ SNR−1.

Thus, interesting, even when one adds the complexity of
the LR to the complexity of SD, what, apparently raises
the total complexity, in practice it does not happens, due to
the LR effect over the detection step. Therefore, due to the
LR procedure, the reduced channel matrix is closer to the
orthogonality condition, requiring a fewer branches expansions
in order to the algorithm find the near-ML solution. This
can be seen in Fig. 5, which presents, in a complementary
way to the Tab. I, the equivalent operations obtained from
the computational time taking into consideration the MatLab
implementations of the three detectors. This computational
time has been converted into the number of equivalent real
operations, simply dividing this time by the average time
necessary to the execution of one real sum.
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Fig. 5. Equivalent Real Operations obtained from the equivalent computa-
tional timeversusSNR. System withm = n = 4 and 16-QAM modulation.

From the Fig. 5 one can see the advantage of the LR-
SD over the SD; i.e., for the SNR= 26 dB, the LR-SD
performed nearly20% less operations. At a lower SNR level
this proportion is hold, while for the lowest SNR region, the
difference is slightly smaller, but the LR-SD always presents
advantage in terms of computational complexity reduction
regarding the SD with no LR aiding.

However, with the LR aiding the other detectors have
presented slightly higher complexities; this occurs due tothe
addition of operations caused by the operations of the LR,
that is not compensated by the amount of extended branches,
since that in this detectors the number of expanded branches
is fixed. In the QRD-M case, however, it was expected that
with the LR aid would be possible to use lowerM values in
order to achieve near-ML performance with lower complexity.
Thus, one can conjecture that in a system with a higher order
modulation and/or higher quantity of antennas the reduction

of the complexity or improvement in the performance of a
MIMO QRD-M receiver, when aided by the LR, will be more
remarkable. Even so, in low SNR situations, the LR QRD-M
complexity remain lower than the SD one, been an option for
a system operating under this configuration.

In terms of performance and complexity, the numerical
results allows us to conclude that among the analyzed MIMO
detectors, the SD remains as the best option. With the LR
aiding, its complexity is substantially reduced, making its use
even more advantageous in practical communication systems.

VI. CONCLUSION

In order to find alternatives to the exponential complexity
inherent to the MLD detector, three sub-optimal detectors
suitable for MIMO systems have been analyzed, with(out)
the LR aiding. The QRD-M, GSD and SD algorithms were
analyzed in terms of SER performance× SNR, as well as
computational complexity, characterized by the number of
real operations required. The best performance-complexity
trade-off was obtained by the LR-SD, which presented near-
ML performance with lower complexity regarding the one of
the SD, QRD-M and LR-QRD-M. The GSD presented poor
performance, been not suitable for the system configurations
analyzed. The QRD-M was suitable only for low SNR situ-
ations, where its complexity results lower than the SD and
LR-SD.
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