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Antenna array optimization for channel model using
spherical harmonics decomposition

Leandro R. Ximenes, André L. F. de Almeida

Resumo— Este artigo aborda a otimização de arranjos de
antenas. Para este fim, usamos um modelo de canal recente,
baseado em harmônicos esféricos, que permite a dissociação dos
padrões das antenas do meio de propagação. Foram derivadas
duas técnicas de otimização baseadas nos métodos de Gauss-
Newton (GN) e do Gradiente (SD), bem como seus custos
computacionais em função do número de antenas e da ordem
esférica. Nossos resultados fornecem uma comparação desses
métodos, variando basicamente estes dois parâmetros, mostrando
que ambos podem dar resultados ótimos, sendo o método do GN
mais rápido e mais estável para os casos de dinâmica lenta.

Palavras-Chave— MIMO, Otimizaçã de antenas, Harmônicos
esféricos, Gauss-Newton, Algoritmo do Gradiente

Abstract— This paper addresses the optimization antenna ar-
rays. For this purpose, we use a recent channel model based
on the use of spherical harmonics, which allows decoupling the
patterns of the antennas from the propagation medium. We also
derived two techniques of optimization based on methods of
Gauss-Newton (GN) and of Steepest-Descent (SD), as well as
their computational costs as functions of number of antennas
and of the spherical order. Our results provide a comparison of
these methods, varying basically these two parameters, showing
that both can give optimal results, being GN method faster and
stabler for low dynamic cases.

Keywords— MIMO, Antenna Optimization, Radiation pattern,
nsaSpherical Harmonics, Gauss-Newton, Steepest-Descent

I. I NTRODUCTION

With the rapid growth of wireless data traffic, new standards
have been struggling towards antenna and propagation charac-
teristics matching. This concept is part of we call exploiting
the spatial diversity. The benefits of multiple inputs Multiple
outputs (MIMO) systems falls under the multiple signals
arriving at the receiving antennas through the (so-called)multi-
paths ( [1], [2]). In a matter of fact, spatial diversity is only
one of the diversities related to antennas, as well as the pattern
diversity and polarization diversity, but except as otherwise
stated, it is treated here as the one that encompasses all of
them.

Hence, antennas have ascended from minor supporting
actors to the main actors in the wireless communications.
Until recently designing antennas (and arrays of them) was
based basically only on power specifications, choosing specific
radiation patterns characteristics and frequency bands ( [3],
[4], [5], and others). In other words, the use of arrays of
antennas corresponded to alter the directivity, reduce side
lobes, among other points of smaller importance for signal
correlation and symbol interference. The research field in
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antennas was reduced then to the beamforming technique, until
the promising use of MIMO systems raised the possibility of
designs specified antennas to exploit the richness of scattered
signals ( [6], [7], etc).

This work is part of antennas optimization techniques for
MIMO systems. Since the construction of the channel matrix
does not take into account only the power gain of each path,
but also the phases of the same, these design techniques
present innovation upon conventional ones. Another point of
innovation is that our channel model is built here by the use of
Spherical Harmonics. This model allows to separate the matrix
channel into receiving antennas, propagation medium and
transmitting antennas ( [8]). This separation of the antennas
in this way is crucial to optimize the radiating elements.
Without this, one must know exactly the total correlation
matrix of all the antennas, without even know the notion
of optimal radiation pattern, besides being computationally
very expensive. This is contrary to our method, where the
coefficients of spherical harmonics to generate the patterncan
be easily found. It is also important to note that the techniques
identify the optimal radiation pattern (including amplitude and
phase), but still does not take into account the practicalities of
physical construction of the antennas.

This paper begins with a basic description of the channel
model using spherical harmonics in the section II. In section
III, the mathematical formulation about two optimization
methods are presented: Gauss-Newton (GN) and Steepest-
Descent (SD), followed by the presentation of their computa-
tional costs. Inside the Simulations section (section IV),these
methods are compared in terms of flops according to some
parameters, as the spherical orders. Finally, a section V brings
the conclusions and perspectives about this work.

II. CHANNEL DECOMPOSITION MODEL

Let Ea(θ, φ) and Eb(θ, φ) be the electric fields for a
receiving and a transmitting antenna, respectively, whosere-
presentations by spherical harmonics expansions ( [9], [10])
may be given according to

Ea(θ, φ) =
√
4π

Lr
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lr
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m=−lr

Am
l Y m
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whereLt andLr are the greatest used orders for representing
the functionsEa(θ, φ) andEb(θ, φ). Likewise,Am

l andBm
l

are the spherical harmonics coefficients for each electric field.
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Organizing the coefficients of the spherical harmonics in
vectors, we get:

a = [A0
0 A−1

1 A0
1 A1

1 A−2

2 ... ALr
Lr] (3)

b = [B0
0 B−1

1 B0
1 B1

1 B−2

2 ... BLt
Lt ] (4)

Assuming also that the receiving array of a wireless link has
P antennas, and the transmitting one hasQ antennas, then in
a MIMO system the coefficients can be grouped as
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These matrix configurations allow to rewrite the channel
matrix as the multiplication of three independent matrices: A
(receiving array),M (propagation medium), andB (Trans-
mitting array) ( [8]). Considering that both arrays have two
polarizations (vertical and horizontal), and therefore assuming
that the channel matrix has four subchannels (i.e. the number
of combinations for co-and cross polarizations), we can finally
express them as

Hvv = AvMvvBv
T . (6)

Hvh = AhMvhBv
T . (7)

Hhv = AvMhvBh
T . (8)

Hhh = AhMhhBh
T . (9)

where the subscripts forH and M show the polarization
from transmitter side (left subscript) to the receiver side
(right subscript). Among the usefulness of this model, it is
possible, for instance, designing a receiver that favors the V-V
polarization for one antenna pair, and the H-V polarization
for some other, as well as to analyse the isolated impact
of the propagation scenario on the overall Cross-Polarization
Ratio (XPR). Of course, the channel knowledge envolving
the polarization has to be knowna priori to optimize in this
fashion.

Separating the channel in this way requires that another
step has to be taken so that our channel is coherent with
most current bidirectional channel models (e.g. [11]), among
others). This step is to return the matrices (Eqs. 6-9) into the
classical single MIMO channelH form

H =

[

Hvv +Hhv

Hvh +Hhh

]

(10)

III. O PTIMIZING ANTENNAS’ EXPANSION COEFFICIENTS

For sake of antenna optimization let us define

f = Ho −AMB
T (11)

as the function that relates the error between any desired
channelHo and channel composed by specific matricesA,
M andB. In the matter of fact, our goal is to match this set
of three matrices such that minimizes the norm

||f || = ||Ho −AMB
T || (12)

Next section will approach two methods for antenna opti-
mization: Gauss-Newton and Steespest Descent.

A. Gauss-Newton method

The Gauss-Newton (GN) method let us to find the set of
solutions for a number of linear or nonlinear equations using
an iterative process. BeingBT the variable to be optimized
(so the function (11) is minimized), then:

B
T
k+1 = B

T
k − (Jf (B

T
k )

H
Jf (B

T
k ))

†
Jf (B

T
k )

Hf(BT
k ) (13)

where k is the iterative index, and† is the Moore-Penrose
pseudoinverse. The maximum value achieved fork is usually
given by a stopping criterion. In fact, using the Gauss-Newton
method for only one linear function (of one unknown variable)
does not need an iterative process. Therefore, in our case, if
one variable to be found (B), the jacobian termJf become a
simple differencial operation,

Jf (B
T
k ) =

∂(H−AMB
T
k )

∂BT
k

= −AM (14)

and the method of Gauss-Newton is reduced to a simply use
of pseudoinverse in a closed-form solution. Substituing (11)
and (14) in (13), we finally obtain

B
T = (AM)†H (15)

Even though the GN method was reduced to a single
equation, it could be applied to optimize not only one variable,
but two or three. In other words, the Gauss-Newton method
could find simultaneously unknown matricesA and/or M
and/orB. For this reason, we will keep the terminology Gauss-
Newton for this non-iterative method.

B. Steepest-descent method

Minimizing the quadratic norm (12), the cost functionJ
can be given by

J [BT ] = ||f ||2 = E[||H−AMB
T ||2] (16)

The optimization using the steepest-descent method tell us
to find the minimum point of the cost function through using
its gradient. In other words, assuming that there is only one
point of minimum and no point of maximum, then simply

∇J [BT ] =
∂J [BT ]

∂BT
= 0 (17)

∇J [BT ] = −2(AM)H [E[H]−AMBT ] (18)

and the equations for the steepest-descent algorithm is
obtained

B
T
k+1 = B

T
k − µ

2
∇J [BT ] (19)

B
T
k+1 = B

T
k + µ(AM)H(E[H]−AMB

T
k ) (20)
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C. Convergence properties and numerical complexity

The computational cost comparison between both methods
is done based on the flops required by each one for conver-
gence. The flops are standard forms of comparison and mea-
surement, where 1 flop corresponds to a float-point operation
(sum or multiplication).The comparisons are done basically
by looking at the ergodic capacities and the number of flops
required until the steady-state.

1) Gauss-Newton computational cost:The equation (15)
can be implemented by several forms, each one having its own
computational cost. On the other hand, the evaluation of the
pseudoinverse of a matrix may be treated equivalently, in term
of flops, to the computation of the Singular Value Decompo-
sition (SVD) of the same matrix. In fact many mathematical
libraries (e.g. IMSL, LAPACK) compute the pseudoinverse by
means of the SVD algorithm ( [12]). The computational cost
in flops for equation (15) using the application of the Golub-
Reisch SVD algorithm is

O = 9M3
t +8M2

t Nr+Mt[4N
2
r +Nr(2Mr−1)+Nt(2Nr−1)]

(21)
If it is assumed a spherical harmonics truncating orderL =

Lr = Lt, such thatM = Mr = Mt = (L + 1)2, then the
equation above can be rewritten as

O = 9(L+1)6+10(L+1)4Nr+(L+1)2(4N2
r+2NtNr−Nt−Nr)

(22)
For paired systems (Nr = Nt = N ), simpler equation can

be derived

O = 9(L+ 1)6 + 10(L+ 1)4 +N(L+ 1)2(6N − 2) (23)

2) Steespest Descent computational cost:Starting from
equation (20), the number of multiplications (Om) and sum-
mations (Os) for one iteration are given by

Om = MtNt(Mr +Nr + 1) +MrNr(Nt +Mt) (24)

Os = NrNt(Mr+Mt+1)+MtMr(Nt+Nr)−MrNt−MtNr

(25)
Once again, ifMr = Mt = (L+ 1)2,

Om = (L+ 1)4(Nr +Nt) + (L+ 1)2Nt(2Nr + 1) (26)

Os = (L+1)4(Nt+Nr)+(L+1)2(2NrNt−Nt−Nr)+NrNt

(27)
and if Nr = Nt = N ,

Om = 2(L+ 1)4N + (L+ 1)2(2N2 +N) (28)

Os = 2(L+ 1)4N + (L+ 1)2(2N2 − 2N) +N2 (29)

Then, the overall number of flops required for one iteration
is

O = 4(L+ 1)4N + (L+ 1)2(4N2 −N) +N2 (30)

IV. SIMULATION RESULTS

The upper bound for ergodic capacity during optimization
is set by the proper choice ofHo for equation (11). In
fact, Ho could be chosen such that the optimization would
maximize/minimize other metrics. Our optimal channel is
chosen as a full rank, full orthogonal matrix. Then we assume,
for convenience, the identity matrix. The identity matrix is the
best matrix to show the independent subchannels one MIMO
system can have, as well as we can easily see its eigenvalues.

In the simulation example we useA composed by four
antennas, each one with random patterns. The number of
spherical harmonics modes is set toM = 16 (truncated at
spherical orderL = 3). The matrix B has arbitrarily the
same number of antennas and spherical modes. In this first
simulation, the propagation scenario is also random, where
M here is not built from spatial information of clusters and
theirs gains like in the last simulation of this paper, but simply
as a gaussian distributed complex random matrix with zero
mean and unitary variance. The power of bothA and M

are unitary, as well as the channel matrix, and therefore the
capacity increase is due to augment of the spatial diversity.

A. Simulation I - Rich-scattering scenario

1) Steepest Descent (SD):Other steepest descent parame-
ters are the following:

• adaptive stepµ = 0.001
• Number of statistical realizations for mean:R = 100

The ergodic capacity for 1000 iterations of the steepest-
descent algorithm as function of the spherical orderL are
seen at figure 1, and as function of the transmitting antennas
N at figure 3.
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Fig. 1. Steepest-Descent antennas optimization. Ergodic capacity vs Spherical
orderL

The radiation pattern of the transmitting array is progres-
sively changed as seen by the sequence (Fig.2), where it is
shown the patterns for5th, 15th, 50th and100th iterations.

2) Gauss-Newton versus Steepest-Descent:Admitted that
both methods achieve convergence, and the optimization errors
are small enough so the capacity keeps itself within the steady-
state, the comparison between them are mainly done by taking
into account the computational costs.
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Fig. 2. Steepest-Descent pattern optimization
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Fig. 3. Steepest-Descent antennas optimization. Ergodic capacity vs Number
of antennasN

Datas about convergence of the two methods are inserted
in the tables I and II. For the Gauss-Newton (GN) method, it
is presented the optimized capacity and the number of flops
to achieve it. In addition, for the steepest-descent is shown
the number of flops for one iteration (flops/k), the number of
iterative steps (k) and then the total number of flops.

In spite of the fact that pseudoinverse has a high compu-
tational cost, which makes the number of flops by iteration
greater for the GN method, the several steps required by the
steepest descent make it more expensive at the end. The figure
4 shows the cost-behavior of the SD algorithm for different
steps’ sizes. Note that the value of the step does not change
the number of flops by iteration, but the number of required

Gauss-Newton (GN)
Order flops(total) Capacity (bps/Hz)

L = 0 107 11.28
L = 1 1,088 37.16
L = 2 8,163 37.16
L = 3 39,424 37.16
L = 4 146,875 37.16

TABELA I

GN COMPUTATIONAL COST

Steepest Descent (SD)
Order k flops/k flops(total) Capacity (bps/Hz)

L = 0 † 92 † 11.29
L = 1 † 512 † 33.26
L = 2 960 1,852 1,777,920 37.16
L = 3 77 5,072 390,544 37.16
L = 4 24 11,516 276,384 37.16

TABELA II

SD COMPUTATIONAL COST - † NOT ACHIEVED CONVERGENCE
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SD p.o.c. (µ = 0.0010)
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SD p.o.c. (µ = 0.0025)

k = 13

Fig. 4. Computational cost comparison between GN and SD with different
adaptation steps

steps to reach the point of convergence (p.o.c.). Moreover,
even being clear that increasing this value turns the steepest
descent faster, its stability is not guaranteed.

It is also noteworthy that hardly the SD algorithm will be
faster considering that the GN takes only one iteration through
time. In fact, the advantage of steepest descent over the Gauss-
newton will come for highly dynamic channels, making several
matrix inversions very cumbersome.

B. Simulation II - bidirectional, single-scattering scenario

Once the computational cost of the Gauss-Newton does
not change based on the number of clusters, but on the
number of antennas and spherical modes, the impact of using
bidirectional scenarios will change only for the SD technique.

This change is due to the fact that realistic scenarios
may not provide enough richness to achieve the theoretical
MIMO performance. To illustrate this effect, the simulation
here verifies the capacity gains by adding up single-scattering
clusters in the propagation medium. The design parameters for
the steepest-descent were kept, but after every 500 iterations
a new cluster was allocated to the scenario. In other words,
a cluster with unity power and a specific pair of DOA/DOD
was added to the calculation of the matrixM ( [8]).

Ten clusters were added in total. All directions of arrival
and departure were chosen with zero mean and unit variance
Gaussian distributions with respect to the azimuthal coordi-
nate. Regarding the elevation angle, DOAs were assumed in an
uniform distribution betweenθ = 0 and θ = π/2 (horizontal
plane), while DODs of each added cluster followed a fixed
progression of 10 degrees steps fromθ = π/2. The choice of
the distributions cited above was based on the natural position
of higher elevation for the transmission antennas in relation
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Fig. 5. SD optimization for bidirectional channels with progressive addi-
tion of single-scattering clusters.5(b)-5(f) illustratesome optimized radiation
patterns

to the reception ones (mobile terminals), and the existenceof
rays coming from all directions in the horizontal plane.

The figure 5 shows this simulation. The figure 5(a) brings
the optimization behavior when the number N = 1, 2, 3 and
4. In the same plot it is seen the optimal performance (dashed
lines). The ladder-form of the curves (mainly seen forN = 4)
happens due to the addition of new clusters. The vertical lines
cut the curves where are plotted the radiation patterns shown
from fig.5(b) to fig.5(f). The number at the bottom corresponds
to the number of cluster added.

It is interesting to note that smaller arrays exploit less
the richness of scenarios, and consequently the gains after
optimization are smaller. This could be seen also in the figure
for i.i.d.channel (fig.1 and fig.3). Moreover, the promising
performance of MIMO systems ( [1], [2]) is chiefly ruled

by the richness of scenarios (where the number and positions
of scattering clusters are crucial), once the adaptive process
tended slower to the optimal curve for a low number of
clusters.

V. CONCLUSION

We have presented an updated MIMO channel model, and
also a comparative analysis envolving two methods of antenna
optimization based on it. These are the Gauss-Newton (GN)
and the Steepest-Descent (SD). Meanwhile the GN is reduced
a simple equation for one unknown matrix, and requires some
extra computational work to calculate the pseudoinverse , the
SD algorithm needed several iterations, surpassing the overall
cost of GN for most of the cases, being the worst between
both. The exception comes when dealing with high-dynamical
systems, where the fixed and non-adaptive solution of the GN
may lead to poorer behaviors, even though no problems with
stability are presented.

The methods of antenna optimizations here have shown
very interesting results and applicability on increasing the
capacity, although it is required knowledge of the channel
matrix (in this case, knowledge of one end of the wireless
link and the propagation scenario). This is also a drawback
of some other optimization methods like the water-filling, but
however, the approach of antenna optimization using spherical
harmonics modelling presents a new and promising field of
study, since some future considerations and discoveries may
greately reduce such problem.
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