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Antenna array optimization for channel model usin
spherical harmonics decomposition

Leandro R. Ximenes, André L. F. de Almeida

Resumo—Este artigo aborda a otimizagdo de arranjos de antennas was reduced then to the beamforming techniqule, unt
antenas. Para este fim, usamos um modelo de canal recentethe promising use of MIMO systems raised the possibility of

baseado em harménicos esféricos, que permite a dissociacdo do§egigns specified antennas to exploit the richness of sedite
padrdes das antenas do meio de propagacgdo. Foram derivadas_.

duas técnicas de otimizagdo baseadas nos métodos de Gaus§-'gna?ls ([6l, .[7]’ etc). o )

Newton (GN) e do Gradiente (SD), bem como seus custos This work is part of antennas optimization techniques for
computacionais em funcéo do nimero de antenas e da ordemMIMO systems. Since the construction of the channel matrix
esférica. Nossos resultados fornecem uma comparagéo dessegoes not take into account only the power gain of each path,

métodos, variando basicamente estes dois parametros, mostdim but also the phases of the same, these design techniques
gue ambos podem dar resultados 6timos, sendo o método do GN ’

mais rapido e mais estavel para os casos de dinamica lenta. ~ Présent innovation upon conventional ones. Another padint o

innovation is that our channel model is built here by the use o

esféricos, Gauss-Newton, Algoritmo do Gradiente SpherlcaI.Harmomps_. This model allows to separate thelxnatr
channel into receiving antennas, propagation medium and

Abstract— This paper addresses the optimization antenna ar- " . .
rays. For this purpose, we use a recent channel model based_transmIttlng antennas ( [8]). This separation of the ardsnn

on the use of spherical harmonics, which allows decoupling the in this way is crucial to optimize the radiating elements.
patterns of the antennas from the propagation medium. We also Without this, one must know exactly the total correlation
derived two techniques of optimization based on methods of matrix of all the antennas, without even know the notion
Gauss-Newton (GN) and of Steepest-Descent (SD), as well agyt oniimal radiation pattern, besides being computatignal

their computational costs as functions of number of antennas . This i t ¢ thod. wh th
and of the spherical order. Our results provide a comparison of Very expensive. IS 1S contrary to our method, where the

these methods, varying basically these two parameters, showingCO€fficients of spherical harmonics to generate the patiam
that both can give optimal results, being GN method faster and be easily found. It is also important to note that the teches

Palavras-Chave— MIMO, Otimizaca de antenas, Harmdnicos

stabler for low dynamic cases. identify the optimal radiation pattern (including amptigiand
Keywords— MIMO, Antenna Optimization, Radiation pattern, ~ Phase), but still does not take into account the practiealibf
nsaSpherical Harmonics, Gauss-Newton, Steepest-Descent physical construction of the antennas.

This paper begins with a basic description of the channel
model using spherical harmonics in the section Il. In sectio

i . i . [, the mathematical formulation about two optimization
With the rapid growth of wireless data traffic, new standarqfethods are presented: Gauss-Newton (GN) and Steepest-

have been struggling towards antenna and propagation®hafgescent (SD), followed by the presentation of their computa
teristics matching. This concept is part of we call expiti tiona costs. Inside the Simulations section (section thigse

the spatial diversity. The benefits of multiple inputs wm methods are compared in terms of flops according to some
outputs (MIMO) systems falls under the multiple signalgarameters, as the spherical orders. Finally, a sectioringsbr

arriving at the receiving antennas through the (so-called}i- he conclusions and perspectives about this work.
paths ( [1], [2]). In a matter of fact, spatial diversity islpn

one of the diversities related to antennas, as well as therpat

diversity and polarization diversity, but except as othsew Il. CHANNEL DECOMPOSITION MODEL

stated, it is treated here as the one that encompasses all ‘?_fet E.(6,¢) and Ey(6,4) be the electric fields for a
a bl )

them. receiving and a transmitting antenna, respectively, whese

Hence, antennas have ascended from minor supportifi.senations by spherical harmonics expansions ( [9]) [10
actors to the main actors in the wireless communlcatlormay be given according to

Until recently designing antennas (and arrays of them) was

I. INTRODUCTION

based basically only on power specifications, choosingipec Lr I o

radiation patterns characteristics and frequency band, ( [ Ea(0,9) = \/EZ Z AY,"(0, ¢) @)
[4], [5], and others). In other words, the use of arrays of Ir=0m==lr

antennas corresponded to alter the directivity, reduce sid Lt It

lobes, among other points of smaller importance for signal Ey(0,¢) = \/EZ Z B'Y™(0,¢) 2)
correlation and symbol interference. The research field in It=0 m=—1It

. ) . , where Lt and Lr are the greatest used orders for representing
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Organizing the coefficients of the spherical harmonics in Next section will approach two methods for antenna opti-

vectors, we get: mization: Gauss-Newton and Steespest Descent.
a=[A) A7t AY Al A2 . Al ()
b— [Bg Bfl B? Bll 32_2 Bﬁ] @) A. Gauss-Newton method

Assuming also that the receiving array of a wireless link hasThe Gauss-Newton (GN) method let us to find the set of

. . Solutions for a number of linear or nonlinear equations gisin
P antennas, and the transmitting one iaantennas, then in an iterative process. BeinB” the variable to be optimized
a MIMO system the coefficients can be grouped as P ' P

(so the function (11) is minimized), then:

a(1) b(1)
2 b(2
A= a(: ) , B= (; ) ) (5)  Biy =B - (I,B0)"IB))I (BT f(BL) (13)
a('P) b(@) where k is the iterative index, and is the Moore-Penrose

pseudoinverse. The maximum value achievedkfas usually
These matrix configurations allow to rewrite the channgfien by a stopping criterion. In fact, using the Gauss-Newt
matrix as the multiplication of three independent matric®s method for only one linear function (of one unknown variable
(receiving array),M (propagation medium), an (Trans- goes not need an iterative process. Therefore, in our case, i

mitting array) ( [8]). Considering that both arrays have Wgne variable to be foundR), the jacobian ternd ; become a
polarizations (vertical and horizontal), and thereforsuasing  simple differencial operation,

that the channel matrix has four subchannels (i.e. the numbe

of combinations for co-and cross polarizations), we carlljina . O(H— AMB;j)
express them as Jr(By) = oBT =-AM (14)
He. — A.M..B.T ©6) and the method of Gauss-Newton is reduced to a simply use
b MR of pseudoinverse in a closed-form solution. Substituing) (1
Hy, = AnMyB 7. (7) and (14) in (13), we finally obtain
_ T
Hyy = AthvBh . (8) BT _ (AM)TH (15)
Huh = AnMusBa' 9)

Even though the GN method was reduced to a single
where the subscripts foH and M show the polarization equation, it could be applied to optimize not only one vdsab
from transmitter side (left subscript) to the receiver sideut two or three. In other words, the Gauss-Newton method
(right subscript). Among the usefulness of this model, it isould find simultaneously unknown matrices and/or M
possible, for instance, designing a receiver that favaeswv  and/orB. For this reason, we will keep the terminology Gauss-
polarization for one antenna pair, and the H-V polarizatioNewton for this non-iterative method.
for some other, as well as to analyse the isolated impact
of the propagation scenario on the overall Cross-Polaoizat
Ratio (XPR). Of course, the channel knowledge envolving- Steepest-descent method

the polarization has to be knowa priori to optimize in this  Minimizing the quadratic norm (12), the cost functioh

fashion. can be given by
Separating the channel in this way requires that another
step has to be taken so that our channel is coherent with JBT] = ||f||? = E[||H - AMB”|?] (16)

most current bidirectional channel models (e.g. [11]), ago S _
others). This step is to return the matrices (Eqgs. 6-9) iheo t The optimization using the steepest-descent method tell us

classical single MIMO channdll form to find the minimum point of the cost function through using
its gradient. In other words, assuming that there is only one
H— { Hyy + Hpy ] (10) point of minimum and no point of maximum, then simply
Hyn + Hun .
vVJB' = 9JB] _ 17

IIl. OPTIMIZING ANTENNAS’ EXPANSION COEFFICIENTS OBT

For sake of antenna optimization let us define

Ty _ H _
f=H,— AMB” (11) vJBT] = —2(AM)?[E[H] - AMBT|  (18)

) . and the equations for the steepest-descent algorithm is
as the function that relates the error between any desirgg ined
channelH, and channel composed by specific matrides
M B. In th ff |'i h thi
and n t e matter o aqt, our goal is to match this set Bfﬂ -BT ﬁvJ[BT] (19)
of three matrices such that minimizes the norm 2

/]| = [[H, — AMBT|| (12) B{,, = Bl + p(AM)”(E[H] - AMB;)  (20)
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C. Convergence properties and numerical complexity IV. SIMULATION RESULTS

The computational cost comparison between both methodsThe upper bound for ergodic capacity during optimization
is done based on the flops required by each one for convisr-set by the proper choice dH, for equation (11). In
gence. The flops are standard forms of comparison and mégst, H, could be chosen such that the optimization would
surement, where 1 flop corresponds to a float-point operatigi@ximize/minimize other metrics. Our optimal channel is
(sum or multiplication).The comparisons are done basicalthosen as a full rank, full orthogonal matrix. Then we assume
by looking at the ergodic capacities and the number of flojigr convenience, the identity matrix. The identity matiixthe
required until the steady-state. best matrix to show the independent subchannels one MIMO

1) Gauss-Newton computational costhe equation (15) System can have, as well as we can easily see its eigenvalues.
can be implemented by several forms, each one having its owrdn the simulation example we usA composed by four
computational cost. On the other hand, the evaluation of tagtennas, each one with random patterns. The number of
pseudoinverse of a matrix may be treated equivalently,rim te SPherical harmonics modes is seté = 16 (truncated at
of flops, to the computation of the Singular Value Decomp@&pherical orderL = 3). The matrix B has arbitrarily the
sition (SVD) of the same matrix. In fact many mathematicgame number of antennas and spherical modes. In this first
libraries (e.g. IMSL, LAPACK) compute the pseudoinverse b§imulation, the propagation scenario is also random, where
means of the SVD algorithm ( [12]). The computational cos¥l here is not built from spatial information of clusters and

in flops for equation (15) using the application of the Golugheirs gains like in the last simulation of this paper, butysly
Reisch SVD algorithm is as a gaussian distributed complex random matrix with zero

mean and unitary variance. The power of bathand M
are unitary, as well as the channel matrix, and therefore the
O = 9M} +8 M} Ny + My[AN? + N, (2M, —1)+ N; (2N, —(211]) capacity increase is due to augment of the spatial diversity
If it is assumed a spherical harmonics truncating ordet . . ) ) ,
L, = Ly, such thatM = M, = M, = (L + 1), then the A. Simulation | - Rich-scattering scenario
equation above can be rewritten as 1) Steepest Descent (SDQDther steepest descent parame-
ters are the following:

( ) ( ) ( )N, ‘ t(zz) ) o Number of statistical realizations for meaR:= 100

For paired systems\,. = N, = N), simpler equation can  The ergodic capacity for 1000 iterations of the steepest-
be derived descent algorithm as function of the spherical ordeiare

seen at figure 1, and as function of the transmitting antennas
N at figure 3.
O=9(L+1)°+10(L+1)*+N(L+1)*(6N —2) (23)

Steepest Descent Pattern optimization

2) Steespest Descent computational coStarting from a0f
equation (20), the number of multiplication®rf) and sum- ———
mations Q9 for one iteration are given by I )

Om = MtNt(MT + Nr + 1) + MTNT(Nt + Mt) (24)

Os = NrNt(Mr+Mt+1)+MtMr(Nt+NT)—MTNt—MtNT
(25)

Ergodic Capacity (bps/Hz)
) w w
ul o «
\

N
=]

Once again, ifM, = M; = (L +1)?,

[
o

Om = (L+1)*(N, + N;) + (L + 1)?N;(2N, +1)  (26) ;
Os = (L+1)*(Ny+N,)+(L+1)*(2N, N; — N; — Nr)+ N, N,

@n _ o . .
. Fig. 1. Steepest-Descent antennas optimization. Ergo vs Spherical
and if N, = N, = N, or TeeP P gogiity vs Sp

Om =2(L+1)'N + (L +1)*(2N? + N) (28) The radiation pattern of the transmitting array is progres-
B 4 9 9 9 sively changed as seen by the sequence (Fig.2), where it is
Os =2(L+ 1N+ (L+ 17 EN"=2N)+ N* (29)  g00n the patterns fai*”, 15", 50" and 100" iterations.
Then, the overall number of flops required for one iteration 2) Gauss-Newton versus Steepest-Descéuaimitted that
is both methods achieve convergence, and the optimizationserr
are small enough so the capacity keeps itself within thedgtea

. ) ) ) state, the comparison between them are mainly done by taking
O=4L+1)'N+(L+1)"4N" = N)+N (30) into account the computational costs.
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e 5o [ I Steepest Descent (SD) |
| Order [[ k T flopsk [ flops(total) | Capacity (bps/Hz) |
L= 92 11.29
L=1 512 33.26
L=2 960 1,852 1,777,920 37.16
L=3 77 5,072 390,544 37.16
L =4 24 11,516 276,384 37.16
TABELA I
(a) 5" iteration (b) 15" iteration SD COMPUTATIONAL COST- T NOT ACHIEVED CONVERGENCE

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

10° N=4,L=4

—*— Gauss-Newton

3 —+— Steepest-Descent 't (SD)

(O sppoc @=00010)
SD p.o.c. (4= 0.0020)

—=sppoc. (1=0.0025

(c) 50t" iteration (d) 100%" iteration

Fig. 2. Steepest-Descent pattern optimization
1
Steepest Descent pattern optimization — Number of antennas N 05 k=13
80
_ s w0 I 2 £
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Fig. 4. Computational cost comparison between GN and SD wiftardnt
adaptation steps

@
3

Capacity (bpsiHz)

N
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steps to reach the point of convergence (p.o.c.). Moreover,

w
8
|
|
|

- even being clear that increasing this value turns the sstepe
” = descent faster, its stability is not guaranteed.
10 - - It is also noteworthy that hardly the SD algorithm will be
faster considering that the GN takes only one iterationugho

time. In fact, the advantage of steepest descent over thessau
F;g. 3. Steepest-Descent antennas optimization. Ergogeciiy vs Number newton will come for highly dynamic channels, making selera
of antennasV . .

matrix inversions very cumbersome.

~ Datas about convergence of the two methods are inserigd simulation Il - bidirectional, single-scattering sceita

in the tables | and Il. For the Gauss-Newton (GN) method, it o h tational t of the G Newton d

is presented the optimized capacity and the number of ﬂc\)ﬁst n%e € (k:)ompdu a |ort1§ cos S ef lautss- eb fn 9;5
to achieve it. In addition, for the steepest-descent is sho ot change based on € number ot clusters, but on the
the number of flops for one iteratiofiqps/¥, the number of number of antennas and spherical modes, the impact of using
iterative stepsk) and then the total numbe,r of flops. bidirgctional sceqarios will change only for the 'SI:.) tecluaiq '

In spite of the fact that pseudoinverse has a high compu-ThIS chang.e is due to.the fact that 'reallstlc scenarios
tational cost, which makes the number of flops by iteratidj &y "ot provide enough_ richness t_o achieve the _theorgtlcal
greater for the GN method, the several steps required by o p_?_rformhance. T(_) |IIus_tratS th'jd?ﬁed’ the |S|mL_JIat|o
steepest descent make it more expensive at the end. The fi i verines the capam_ty gains by adding up sing e-soager
4 shows the cost-behavior of the SD algorithm for differe usters in the propagation medium. The design param_ejers_f
steps’ sizes. Note that the value of the step does not chaliy® steepest-descent were kept, but after every 500 aagati

the number of flops by iteration, but the number of require%l new cIusFer was allocated 1o the scenario. In other words,
a cluster with unity power and a specific pair of DOA/DOD

was added to the calculation of the mati& ( [8]).

l Gauss-Newton (GN) l Ten clusters were added in total. All directions of arrival
| Order || flops(total) [ Capacity (bps/Hz) | . . .
— = g and departure were chosen with zero mean and unit variance
L=1 1,088 37.16 Gaussian distributions with respect to the azimuthal deord
L=2 8,163 37.16 nate. Regarding the elevation angle, DOAs were assumed in an
L=3 39,424 37.16 . . . . .
=4 146875 3716 uniform distribution betweed = 0 and ¢ = = /2 (horizontal
TABELA | plane), while DODs of each added cluster followed a fixed

progression of 10 degrees steps frém: 7/2. The choice of
the distributions cited above was based on the naturaliposit
of higher elevation for the transmission antennas in m@tati

GN COMPUTATIONAL COST
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so; by the richness of scenarios (where the number and positions
. of scattering clusters are crucial), once the adaptive gg®c
w0l tended slower to the optimal curve for a low number of

clusters.

V. CONCLUSION

We have presented an updated MIMO channel model, and
also a comparative analysis envolving two methods of artenn
optimization based on it. These are the Gauss-Newton (GN)
and the Steepest-Descent (SD). Meanwhile the GN is reduced
a simple equation for one unknown matrix, and requires some
extra computational work to calculate the pseudoinverse , t
SD algorithm needed several iterations, surpassing thelbve
cost of GN for most of the cases, being the worst between
both. The exception comes when dealing with high-dynamical
systems, where the fixed and non-adaptive solution of the GN
may lead to poorer behaviors, even though no problems with
stability are presented.

The methods of antenna optimizations here have shown
very interesting results and applicability on increasimg t
capacity, although it is required knowledge of the channel
matrix (in this case, knowledge of one end of the wireless
link and the propagation scenario). This is also a drawback
of some other optimization methods like the water-fillingt b
however, the approach of antenna optimization using spéeri
harmonics modelling presents a new and promising field of
study, since some future considerations and discoverigs ma
greately reduce such problem.

Capacity (bps/Hz)
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