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Abstract— Let B be any finite commutative ring with identity.

- C B[X' SeZo)--- C B[X; 25Z0] C B[X; 7], where a €
{2,3,5,7,---}, k > 1, is the descendlng chain of commutative
semigroup rmgs All these semigroup rings are containing the
polynomial ring B[X;Zo]. In this paper initially we introduced
the construction technique of cyclic codes through a semigroup
ring B[X; ﬁZO} instead of a polynomial ring. After this we
separately considered BCH, alternant, Goppa, Srivastava codes
and by this new constructions we improve the several results of
[1] by adopting the same lines as in [1].

Index Terms— Semigroup ring, BCH code, alternant code,
Goppa code, Srivastava code.

I. INTRODUCTION

In [1] A. A. Andrade and R. Palazzo Jr. discussed the
cyclic, BCH, alternant, Goppa and Srivastava codes through
polynomial ring B[X; Zo|, where B is any finite commutative
ring with identity. In this paper we introduce the construction
techniques of these codes through semigroup ring B[X; aikZo],
where a € {2,3,5,7,---}, k > 1, instead of a polynomial
ring B[X;Zo|, where we improve the results of [1]. In fact

- C B[X; %70 C B[X; ZxZ], where a € {2,3,5,7---},
k > 1, the descending chain of commutative semigroup ring
in which all these semigroups of the chain are containing
the polynomial ring B[X; Z¢], motivated to address the study
of [2], [3], [4], [5] in a unified way and obtain very useful
findings by comparaction.

This paper is organized as follows. In Section 2, we give
some basic results of semigroups and semigroup rings nec-
essary for the construction of the linear codes. In Section
3, we present the construction of cyclic codes through the
semigroup ring B[X; ﬁZO], where a € {2,3,5,7,---}, k> 1,
of generalized nature. In Section 4, we made the constructions
of BCH and alternant codes through B[X;:Zg] instead
of polynomial ring B[X;Zg]. In Section 5, we describe a
construction of Goppa and Srivastava codes through semigroup
ring B[ X; ﬁZO]. Finally, in Section 6, the concluding remarks
are drawn.

II. PRELIMINARIES

In this section we review basic facts from commutative
semigroup rings [6]. Assume that (S,*) is a semigroup
and (B,+,-) is an associative (commutative) ring. The set
SGR of all finitely nonzero functions f from S into B
forms a ring with respect to binary operations addition and
multiplication defined as (f + g)(s) = f(s) + g(s) and
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indicates

(fg)(s) = *;:Sf( )g(u), where the symbol Z

that the sum is taken over all pairs (¢,u) of elements of S
such that ¢ * u = s and it is understood that in the situation
where s is not expressible in the form ¢ * u for any ¢, u € S,
then (fg)(s) = 0. The set SGR is known as semigroup ring
of S over B. If S is a monoid, then SGR is called monoid
ring. This ring SGR is represented as B[S] whenever S is
a multiplicative semigroup and elements of SGR are written

either as Z f(s)s or as Z f(si)s;. The representation of

SGR w111 be B[X; 5] whenever S is an additive semigroup.
As there is an isomorphism between additive semigroup S and
multiplicative semigroup {X? : s € S}, so a nonzero element
f of B[X;S] is uniquely represented in the canonical form

Z flsi) X = Z JiX*, where f; 0, s; # s; for i # j.

The degree and order of an element a semigroup ring
B[X;S] are not generally defined but if we consider S to
be a totally ordered semigroup, we can define the degree and
order of an element of B[X;S] in the following manner; if

f= Z fiX*" is the canonical form of the nonzero element

fe R[X S], where s1 < s9 < -+ < 8y, then s, is called the
degree of f and we write deg( f ) = s,, and similarly the order
of f is written as ord(f) = s1. Now, if R is an integral domain,
then for f,g € B[X;S], we have deg(fg) =deg(f)+deg(g)
and ord(fg) =ord(f)+ord(g).

If S is Zy and B is an associative ring, the semigroup
ring SGR is simply the polynomial ring B[X]. Obviously
B[X] = B[X;Z] C B[X; 7). Furthermore as %7 is an
ordered monoid, so we can define the degree of an element (a
generalized polynomial) in B[X; - Zo).

In this paper initially we replaced the the construction tech-
nique of cyclic codes over a polynomial ring by a semigroup
ring B[X; ﬁZO], where a € {2,3,5,7,---}, k > 1. Further
we separately considered BCH, alternant, Goppa, Srivastava
codes and by this new way of construction with utilizing the
same lines as in [1] we improve the several results of [1]. That
is, in this work we take B as a finite commutative ring with
unity and in the same spirit of [1], we fixed a cyclic subgroup
of group of units of the factor ring B[X; 5 Zo]/(X™ — 1).
The factorization of X% — 1 over the group of units of
B[X; 2:Z]/(X™ — 1) is the main problem.

Under consideration processes of constructing linear codes
through the semigroup rings B[X; ﬁZo] are very similar to
linear codes over finite rings and this work needs Galois
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extension rings, because here some of properties of Galois
extension fields are failed.

The coding for error control has vital role in the design
of modern communication systems and high speed digital
computers. In this study we also mention that the codes
through a semigroup ring are more appropriate for computer-
to-computer communication.

ITII. CYCLIC CODES THROUGH THE SEMIGROUP RINGS

In [7], if the ideal I for the commutative ring & with
identity, is generated by the element a of R, then in any
quotient ring R of R, the corresponding ideal I is generated
by the residue class @ of a. Hence, every quotient ring of a
principal ideal ring is a princi}[)Fal ideal ring (PIR) as well.

Consequently the ring i = &fizig], where ¢ is a power of
a prime p, is a PIR as F,[X;Zo] is a Euclidean domain ([8,
Theorem 8.4]). Further by the same [1] if ¢ is a power of a
prime p, then R = Z(g([i(_l()’] is a PIR.

For a finite commutative ring B with identity and for a €
{2,3,5,---}, k > 1, the following

C  BIX; X2 C B[X;L4Z) C B[X;1Z]
@] U @]
=  B[X;Zo -+ = B[X;Z = B[X;Z]

is strict descending chains of commutative semigroup rings.

By the same argument [1], the quotient ring of Euclidean

. . FoX; % Z .
monoid domain R = % where ¢ is a power of a

prime p and a € {2,3,5,---}, k > 1, is a PIR and ® =
Ly X ;L7
% is the PIR. The homomorphic image of a PIR is

again a PIR [10, Proposition (38.4)].

By [1] if B be a commutative ring with identity, then
R = ?)EX_Z{’} is a finite ring. And the linear code C of
length n over B is a B-module in the space of all n-tuples
of B", and a linear code C over B is cyclic, if whenever
v = (vo,v1,v, - ,vn_1) € C, every cyclic shift v(1) =
(Un—1,v0,01," ", Up_2) € C,withv; € B,for0 <i<n-—1.

Now suppose again that B is a commutative ring with

L1

identity, then ® = B[);,flzo], where a € {2,3,5,7,--},
k > 1, is a finite ring, by [6, Theorem 7.2]. By a linear code C'
of length a*n over B we mean a B-module in the space of all
akn-tuples of B“k", and a linear code C over B is cyclic, if

whenever v = (v, v, ,v2,v1, -, V,.k,_, ) € C, every cyclic
s @ TE
a

shift v(1) = (v, 00, vy ) € C, with v, € B,
LSS L akno2
for0<i< %
B[X;LZ
Theorem 1: A subset C' of R = % where a €

{2,3,5,7,---}, k > 1, is a cyclic code if and only if C' is an
ideal of R.

Proof: Suppose that the subset C' is a cyclic code. Then
C is closed under addition and under multiplication by X %ﬁ
But then it is closed under multiplication b}ll powers of X oF
and linear combinations of powers of X «F. That is, C is
closed under multiplication by an arbitrary pseudo polynomial.
Hence C is an ideal. Now suppose that the subset C' is an
ideal in R. Then C is closed under addition and closed under
scalar multiplication. Hence C' is a B-module. It is also closed

under multiplication Py any ring element, in particular under
multiplicatioln by X o*. Hence C is a cyclic code. |
Let f(X4F) € B[X; Z:Z] be a monic pseudo polynomial

B[X; - Zo)
Sk

of degree m, then R = be the set of residue

(F(X aF))
classes of pseudo polynomials in B[X; G%ZO] modulo the

ideal (f(X)) and a class can b% represented as a(X r%k) =
To -+ Xk +- - +am+lX%fl. A simple kind of ideal
is a principal ideal, whiclﬁl consists of all multiples of a fixed
pseudo polynomial g(X «* ) by elements of %, called generator
pseudo polynomial of the ideal. Now we shall prove some
results which show a method of obtaining the generator pseudo
polynomial of principal ideal. This method will serve as basis
for the construction of a principal ideal in the ring . )
Lemma 1: Let I be an ideal in the ring R = %ZZ)U],
where a € {2,3,5,7,---} and k > 1. If the leading coefficient
of some pseudo polynomial of lowest degree in [ is a unit in
B, then there exists a unique monic pseudo polynomial of
minimal degree in I.

Proof: Let g(X «%’C) be a pseudo polynomial of lowest
degree m in I. If the leading coefficient @,, of g(X ai’c) is
a unit in B, it is 1always possiblle to obtain a monic pseudo
polynomial gll(X aF ) = ﬁlg(X aF ) with the same degree in 1.
Now, if g(X «F ) and h(X <% ) are monic pseudo polynomials
of m}nimal deg11ree m in1 I, then the pseudo polynomial
k(X aF) = g(X «F )—h(X F) is a pseudo polynomial in T alnd
has degree fewer than m. Therefore, by the choice of G(X o)
follows that &(X ) = 0, and thus (X aF ) = E(Xﬁ).l [
Theorem 2: Let I be an ideal in the ring & = %le)o]’
where a € {2,3,5,7,---},and k ? 1. If the leading coefficient
of some pseudo polynomial g(X <% ) of lowest degree in I ils a
unit in B, then I is the principal ideal generated by g(X % ).

Proof: Let a(X a%) be a pseudo polynomial in I. By
Eucliglean algorithlm there are unique pseudolpolyno?lials
Q(X?) and 7(X oF ) such that a(XaF) = q(XF)ngTk) +
F(XaF),  Where F(XeF) = 0 or deg(r(X?)) <
deg(g(XaF)). By the definition of an ideal, 7(Xa¥) € I.
Thus by the choice of y(ka), we have that F(Xﬁ) =0 and
therefore, a(X ai’“) = q()lf na )g(X ma ). Thus every polynomlial
in [ is multiple of g(X <% ), that is, I is generated by g(X % )
and hence principal. [ ]

Lemma 2: Let r(XaF) be a pseudo polynomial in
BIX; X7Z). T r(XF) # 0 and deg(r(X+)) <
deg(f(XF)), then F(XF) £ 0 in R

Proof:  Suppose that 7(XaF) = 0. Therefore there
is q(XaL’C) # 0 in B[#ZO] such that T(Xaik) =
f(Xa%)q(X%k) Since f(X <F) is regular and r(Xa%k) # 0 it
follows that deg(r(Xﬁ)) = deg(f(Xﬁ ) ereg(q(Xﬁ)) >
deg(f(X aik)), which is a co?tradiction since we had al-
ready assumed that deg(r(X %)) < deg(f(X4F)). Hence

F(XaF) #0. n
B[—’Qﬁzo]
(X"fl) »

where a € {2,3,5,7,---}, k > 1 and g(Xr%k) be a pseudo

a-""

Lemma 3: Let I be an ideal in the ring R =



VII INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2010), SEPTEMBER 6-9, 2010, MANAUS - AM, BRAZIL 3

polynomial in B[X; ﬁZO] with leading coefficient unit in B
such that deg(g(Xﬁ)) < deg(f()lfﬁ)). If y(Xﬁl) € I and
has lowest degree in I, then g(X %) divides f(X oF).

Proof: By Euclidean algorithm for commutative rings
there are unique polynomlals q(X a%) and 7(X «#) such
that 0 = g(Xl1 )g(X e k) + ?(Xik), where F(X?k) =
0 or deg( (X T)) < deg( (X k)) Thus 7(XaF) =
—g(Xa k) (X k), F(Xa k) is in 1. ”ll"herefore by the
choice of G(X« k) it follows that 7(X<F) = 0. Also,
by Euclidean algorithm for cornlmutative ringls, there are
unique pseudo polynomials g1 (X a% ) and 71 (X <% ) such that
FX7F) = g(XF)qu (X3F) + 7y (X 7)., where 7y (X ) =
0 or deg(rl(lXﬁ)) < deg(g (XL’;)) Therefore 0 =
GXT )X ) + TT(XF) = g )(XF) + o)
Thusﬁ(Xﬁ):q(XTk)andlrl )—r(X k):O By
Lemma 2 it follows that 7 (X <% ) = 0 and therefore g(X «F)
divides f(XoF).

Theorem 3: Let I be an ideal in the ring ¥ =
where a € {2,3,5,7,---} and k >
f(Xa%) and g(Xﬁ) € I, then g(
n (g(X7)). ]

Proof: Suppose that there is b(X ) n (g
such that deg(b(XaF)) < deg(g(X L’*)) Slnce b(X

|
B[X ;4 Zo)
RS
1. If g(XoF) divides
1
aF ) has lowest degree

(X))

1

*) €

/\
?r""

(g (X k)), therefore B(X k) §1 )h ( ) for ste
R(XF) € R. Thus B(XTF) — g(XoF)R(XTT) € (X))
e, B(XT) — g(XFR(XF) = JXF)a(XE) for

some a(X=F) in B[X ;Q%Z] This gives b(X aF

g(XTF)(XF) + f(X )a(X ). Since g(XF) di-
vides f(Xa ), $0 g(X k) divides g(Xﬁ)h(Xﬁ)l+
f(XaF)a(X oF o ), which implies that g(X % ) divides b(X o ),
a contradiction, since we had already assumed that
deg(b(Xﬁ)) < deg(g(Xi)) Hence g(X«F ¥ ) has lowest

degree in (g(X <F)). [ |

~—

)

zr""

IV. BCH AND ALTERNANT CODES THROUGH A
SEMIGROUP RING

We construct BCH and alternant codes through a semigroup
ring instead of a polynomial ring. First we address the basic
properties of Galois extension rings, which are used in the
construction of these codes. In this section we assume that
(B,N) denotes a finite local commutative ring with unity
and residue field K = £ ~ GF(p™), where p is a prime
integer, m a positive integer. The natural projection 7 :
B[X; X7y — K[X;Zo] is defined by w(a(Xa%)) =
aAXa) (e m(Xl ;i XaF) = YT @XaF', where
a; = a; + N). Let f(Xc%k) be a monic pseudo polynomial
of degree ¢ in B[X;:Zg] such that w(f(Xc%k)) is irre-
ducible in K[X; Q%ZO]. Since [6, Theorem 7.2] accommodate
B[X; Jx 7] as B[Zo), therefore f(X a%) also is irreducible in

Z
B[X; Z: 7], by [9, Theorem XIIL7]. Take R = M

(F(XaF))
Then R is a finite commutative local factor semigroup ring

with unity and again [6, Theorem 7.2] accommodate our

notions to say that it is a Galois ring extension of B with
extension degree t. Its residue field is Ky = Ni ~ GF(p™),
1

where N; is the maximal ideal of 8, and K7 is the multiplica-
tive group of K; whose order is p™ — 1.

Let 1* denotes the multiplicative group of units of . It
follows that ®* is an abelian group, and therefore it can
be expressed as a direct product of cyclic groups. We are
interested in the maximal cyclic group of R* hereafter denoted
by G, whose elements are the roots of X a*s _ 1 for some
positive integer s. There is only one maximal cyclic subgroup
of F having order a*s = a*(p™ — 1).

Deﬁnmon 1: A shortened BCH code C(a*n,n) of length
a*n < a”s is a code over B that has parity check matrix

o Qo Qgkp
2 2 2

H al a2 PR aakn

aa r aa r aakr

1 2 akn

for some r = a¥(n—c) > 1, where n = (g, 2, - -+, Qi) =
(a*r ok ... aFarn) is the locator vector, consisting of dis-
tinct elements of Gyx,. The code C(a*n,n), with a¥n = a*s,
will be called a BCH code.

1
Lemma 4: Let aoF be an element of G, of order a”s.

L . . .
Then the differences o/aF ' — 2k 2 are units in R if 0 <l #
ly < afs—1.
Proof: As ok arh —Qab rl can be written as —qa* 12(1 —

aak (1= l"’)), where [; > [y and 1 denotes the unity of 3.
The factor —a 2% * in the product is a unit. The second factor
can be written as 1 — a=%” for some 1nteger J in the interval
[1,a*s—1]. Now if the element 1— aar forl < j<aFs—1,
were rllot a unit in %, then 1 — aak I e M, and consequently,
(m(aaF))? = (1) for j < a¥s, which is a contradiction. Thus
1 - e R, for1<j<abs—1. n

Theorem 4: The minimum Hamming distance of a BCH
code C(akn,n) satisfies d > a*r + 1.

Proof: Suppose ¢ is a nonzero codeword in C(a*n,n)
such that wg(c) < a¥t. Then cHT = 0. Deleting a¥n —
a®t columns of the matrix H corresponding to zeros of the
codeword, it follows that the new matrix H is Vandermonde.
By Lemma 4, it follows that the determinant is a unit in R.
Thus the only possibility for c is the all zero codeword. ®

Definition 2: A shortened alternant code C(a*n,n,w) of

length a*n < a*s is a code over B that has parity check
matrix
w1 %5} Wakn
w10y waCr2 WaknQgkn
2 2 2
H— wia wa s WaknQgy, |
wlatlz r—1 WZOlg r—1 wanaa "r—1
where r is a positive integer, 7 = (q1,Q2, ", Qukpy) =

(a*r ok ... aFarn) is the locator vector, consisting of dis-
tinct elements of Garg, and w = (w1,wa, -, Wyery) 1S an
arbitrary vector consisting of elements of G x .

Theorem 5: The alternant code C(a*n,n,w) has minimum
Hamming distance d > a*r + 1.
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Proof: Suppose c is a nonzero codeword in C(a*n,n,w)
such that the weight wg (c) < a*r. Then, cH? = ¢(LM)T =
0. Setting b = ¢cMT, we obtain wy(b) = wg(c) since M
is diagonal and invertible. Thus, bL” = 0. Deleting a*n —
a®r columns of the matrix L that correspond to zeros of the
codeword, then the new matrix L is Vandermonde. By Lemma
4, it follows that the determinant is a unit in 3. Thus, the
unique possibility for c is the all zero codeword. [ |

V. GOPPA AND SRIVASTAVA CODES THROUGH A
SEMIGROUP RING

In this section we construct a subclass of alternant codes
through a semigroup ring instead of a polynomial ring, which
is similar to one initiated by Andrade and Palazzo [1] through
polynomial rings. Goppa codes are described in terms of
Goppa polynomial. In contrast to cyclic codes, where it is
difficult to estimate the minimum Hamming distance d from
the generator polynomial, Goppa codes have the property that
d > deg(h(X)) + 1. )

Let B, i and G« as defined in previous section. Let oo
be a primitive element of the cyclic group G« ,, where a*s =
ak(p™ —1). Let h(X) = ho+hi X +ho X%+ +hge, X0
be a polynomial with coefficients in  and h,x,. # 0. Let
T = {1,092, +, a4k, } be a subset of distinct elements of
G yr s such that h(a;) are units from R, for i = 1,2,---,a*n.

Definition 3: A shortened Goppa code C(T, h) of length
a*n < a*s is a code over B that has parity-check matrix of
the form

h(on) ™! h(egrn) ™!
alh(al)il a’“nh(a k )
= : Y
" h(ay) ! at’= U(argen)
where r is a positive integer, 7 = (Q1,Q2, ", Qukpy) =
(act,af, -+ afk*n) is the locator vector, consisting of dis-
tinct elements of Gy, and w = (h(a1) ™, h(agrn)™Y)

is a vector consisting of elements of G .

Definition 4: Let C(T', h) be a Goppa code.

1) If A(X) is irreducible then C(T,h) is called an irre-
ducible Goppa code.

) If ¢ = (c1,¢2,5,Cqrp) € C(T,h) and ¢ =
(Cakns -+ yc2,c1) € C(T,h), then C(T,h) is called a
reversible Goppa code.

3) If h(X) = (X — a)® "1, then C(T,h) is called a
comulative Goppa code.

4) If h(X) has no multiple zeros, then C(T, h) is called a
separable Goppa codes.

Remark 1: Let C(T, h) be a Goppa code.

1) We have that C(T, h) is a linear code.

2) For a code with h;(X) = (X — 3,)*"™ being a Goppa
polynomial, where [ € G &4, we have the matrix H;

given by
(a1 — B)~ akr (a, gl) akr
Oél(Ol1 ﬂl) atry Apkp ( ﬁl) atry
‘lkrl—l ak “r . ‘lk'rl—l _ 7(1}“7‘1
Qg ( /gl) aakn (aukn ﬂl)

which is row equivalent to

(en x%)eak” o (g = )
( ﬁl) (aFri—1) . (a ko —/Bl)i(a e
(or — )" (O = 1)
a*k
Consequently, if h(X) = (X — ﬁl)“k"'l = th(X
i=1

then the Goppa code is the intersection of the codes

with by (X) = (X — B)*'™, for 1 = 1,2, -, a*k, and
its parity check matrix is given by
= Hi H, H gy, ]T,

where 7' indicates the transposition.

3) BCH codes are a special case of Goppa codes. For this,
choose h(X) = X" and T = {a, e, agrn},
where a; € Gyrg, for all i = 1,2, ---,a*n. Then from
equation (c)

k k K

—a T —a’'r —a T

Qy X Ay X A3y, X

al—ar Oé; ar . alkar
H — a™~n
—1 -1 -1

al a2 DY Oéakn

which becomes the parity check matrix of a BCH code
when a;l is replaced by 3;, for i = 1,2, ---,a*n.

Theorem 6: The Goppa code C(T', h) has minimum Ham-
ming distance d > a¥r + 1.

Proof: We have that C(T,h) is an alternant code
C(a*n,n,w) with n = (1,2, ,0u,) and w =
(h(a1)~Y, -+, h(agr,)~t). Therefore, by Theorem 5, we have
that C (T, h) has minimum distance d > a*r + 1. ]

Also we define Srivastava code over semigroup ring, which
is the interesting subclass of alternant codes which is similar to
unpublished work [11], which is proposed by J. N. Srivastava
in 1967, a class of linear codes which are not cyclic that are
defined in form the parity-check matrices
o

1— o’

o, are distinct elements from GF(q™)

H={ 1<i<r1<j<n},

where oy, g, -

and [q, 02, -+, 0, are all the elements in GF(¢™), except
0,a7 a5, and 1 > 0.
Definition 5: A shortened Srivastava code of length a*n <
a*s is a code over B that has parity check matrix
o aj A
ar—p az—p gk, —P1
o) ap A
H = a1 —0B2 a1 —0B2 Ak, —B2
- )
l l al
(o3 [P} .. akn
a1—Buk, 1Lk, a k =Bk,
where rl are positive integers and
1, Qgins 31, B2y, Bary  are  afn 4+ aFr  distinct

elements of G .
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Theorem 7: The Srivastava code has minimum Hamming
distance d > aFr + 1.

Proof: We have that the minimum Hamming distance of
Srivastava code is at least a*r 4 1 if and only if every combi-
nation of a*r or fewer columns of H is linearly independent
over R, or equivalently that the submatrix

r 1 l ol ]

iy iy ‘akr
aiy; —P1 iy —P1 041:3;—51
ail ab ‘akp
H, = iy —B2 iy —PB2 @y —P2
a'lil a'liz aéak,,
| @iy —Bak,  Qipg—Bak, iy Bk,

is nonsingular. The determinant of this matrix can be expressed
as det(Hy) = (ay,, iy, -, a;,, ) det(Hs). Whereas the ma-
trix Hy is given by

1 1 1
(o251 —b1 Qg —b1 i -5
1 1 i
Qg — Qi — o -
Hy — i1 —B2 i —B2 ik B2
1 1 . 1
@iy =Par  Qig—h 5 @i g =P,

Note that det(Hy) is a Cauchy determinant of order a*r and
therefore we conclude that the determinant of the matrix H;

is given by
akr
2
Hs

Py, b )P(B1,82, .8,k ) _
where o= 'll}(ail)v(kO"ig)”';(oi . ) - > d)(ail7 e 7O‘iak7,) -

(s, — i) and w(X) = (X — B)(X = )+ (X — Boe,).
Then, by Lemma 4, the det(H;) is a unit in f and thus d >
afr 4+ 1. |

Definition 6: Suppose r = (aFcl and let ay,--
B1, B2, Bare be a¥n + aFec distinct elements of G,
w1, ,Weky be elements of G,x,. A generalized Srivastava
code of length a®*n < a*s is a code over B that has parity
check matrix

det(Hy) = (o, - )aiakr)l(_l)(

©y Ok,

T
H= [ Hy Hy -- Hakc } s 2
where
w1 wo wakn
a 1w—15j 0¢2w—25.7‘ a%v;kz By
H, = (al—.ﬁj)Q (a, Tﬁj)z (o‘akniﬁj)z
w1 w2 wu'kn
(a1=B;)t  (a2—6;)! (g, —B)"

for j =1,2,---,d"c.
Theorem 8: The Srivastava code has minimum Hamming
distance d > (a¥c)l + 1.
Proof: The proof requires nothing more than the appli-
cation of Remark 1 and Theorem 7, since the matrices (1) and
(2) are equivalents, where g(Z) = (Z — ;). |

VI. CONCLUSION

A linear code detect d — 1 errors, where d is a minimum
distance of a code and correct [%J errors. In the usual case
of [1] d > r + 1, where r is the number of check symbols
and we have that |Z1=1| = |Z| but method of this work

we obtained d > afr + 1, which shows that codes detect
and correct at least a*r errors ‘Mg# = L“;" errors
respectively. Thus linear codes obtained through the technique
of semigroup rings are better than the linear codes constructed
by polynomial rings. The linear codes obtained through both
the polynomial rings and the semigroup rings have the same
code rate but our way provide the error correcting capability
of a code greater than of [1].

Since n and p are relatively prime and therefore by [1] there
are binary (if we take p = 2) cyclic codes, BCH, alternant,
Goppa and Srivastava codes over finite rings with length n.
Unfortunately by the way as adopted in the techniques of [1]
we can not obtain binary cyclic codes, BCH, alternant, Goppa
and Srivastava codes over finite rings with length a*n, where
a€{2,3,5,7,---}, for k > 1, as the nature of the construction
in [1], a*n and p are not relatively prime for instance if n
is not even and a # 2. Due to constrains in the method of
polynomial rings, used in [1], we provided a more accurate
method of getting binary (if we take p = 2) cyclic codes,
BCH, alternant, Goppa and Srivastava codes over finite rings
with length a*n. In this work we used the semigroup ring
B[X; 4 7] instead of a polynomial ring B[X;Zo|, where B
is any finite commutative ring with identity. In this work we
have used the same lines as credit in [1]. A decoding procedure
is an open problem.
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