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Abstract— Let B be any finite commutative ring with identity.
· · · ⊂ B[X; 1

ak Z0] · · · ⊂ B[X; 1
a2 Z0] ⊂ B[X; 1

a
Z0], where a ∈

{2, 3, 5, 7, · · ·}, k ≥ 1, is the descending chain of commutative
semigroup rings. All these semigroup rings are containing the
polynomial ring B[X; Z0]. In this paper initially we introduced
the construction technique of cyclic codes through a semigroup
ring B[X; 1

ak Z0] instead of a polynomial ring. After this we
separately considered BCH, alternant, Goppa, Srivastava codes
and by this new constructions we improve the several results of
[1] by adopting the same lines as in [1].

Index Terms— Semigroup ring, BCH code, alternant code,
Goppa code, Srivastava code.

I. INTRODUCTION

In [1] A. A. Andrade and R. Palazzo Jr. discussed the
cyclic, BCH, alternant, Goppa and Srivastava codes through
polynomial ring B[X; Z0], where B is any finite commutative
ring with identity. In this paper we introduce the construction
techniques of these codes through semigroup ring B[X; 1

ak Z0],
where a ∈ {2, 3, 5, 7, · · ·}, k ≥ 1, instead of a polynomial
ring B[X; Z0], where we improve the results of [1]. In fact
· · · ⊂ B[X; 1

ak Z0] ⊂ B[X; 1
ak Z0], where a ∈ {2, 3, 5, 7 · · ·},

k ≥ 1, the descending chain of commutative semigroup ring
in which all these semigroups of the chain are containing
the polynomial ring B[X; Z0], motivated to address the study
of [2], [3], [4], [5] in a unified way and obtain very useful
findings by comparaction.

This paper is organized as follows. In Section 2, we give
some basic results of semigroups and semigroup rings nec-
essary for the construction of the linear codes. In Section
3, we present the construction of cyclic codes through the
semigroup ring B[X; 1

ak Z0], where a ∈ {2, 3, 5, 7, · · ·}, k ≥ 1,
of generalized nature. In Section 4, we made the constructions
of BCH and alternant codes through B[X; 1

ak Z0] instead
of polynomial ring B[X; Z0]. In Section 5, we describe a
construction of Goppa and Srivastava codes through semigroup
ring B[X; 1

ak Z0]. Finally, in Section 6, the concluding remarks
are drawn.

II. PRELIMINARIES

In this section we review basic facts from commutative
semigroup rings [6]. Assume that (S, ∗) is a semigroup
and (B,+, ·) is an associative (commutative) ring. The set
SGR of all finitely nonzero functions f from S into B
forms a ring with respect to binary operations addition and
multiplication defined as (f + g)(s) = f(s) + g(s) and

(fg)(s) =
∑

t∗u=s
f(t)g(u), where the symbol

∑
t∗u=s

indicates

that the sum is taken over all pairs (t, u) of elements of S
such that t ∗ u = s and it is understood that in the situation
where s is not expressible in the form t ∗ u for any t, u ∈ S,
then (fg)(s) = 0. The set SGR is known as semigroup ring
of S over B. If S is a monoid, then SGR is called monoid
ring. This ring SGR is represented as B[S] whenever S is
a multiplicative semigroup and elements of SGR are written

either as
∑
s∈S

f(s)s or as
n∑

i=1

f(si)si. The representation of

SGR will be B[X;S] whenever S is an additive semigroup.
As there is an isomorphism between additive semigroup S and
multiplicative semigroup {Xs : s ∈ S}, so a nonzero element
f of B[X;S] is uniquely represented in the canonical form
n∑

i=1

f(si)Xsi =
n∑

i=1

fiX
si , where fi 6= 0, si 6= sj for i 6= j.

The degree and order of an element a semigroup ring
B[X;S] are not generally defined but if we consider S to
be a totally ordered semigroup, we can define the degree and
order of an element of B[X;S] in the following manner; if

f =
n∑

i=1

fiX
si is the canonical form of the nonzero element

f ∈ R[X;S], where s1 < s2 < · · · < sn, then sn is called the
degree of f and we write deg(f) = sn and similarly the order
of f is written as ord(f) = s1. Now, if R is an integral domain,
then for f, g ∈ B[X;S], we have deg(fg) =deg(f)+deg(g)
and ord(fg) =ord(f)+ord(g).

If S is Z0 and B is an associative ring, the semigroup
ring SGR is simply the polynomial ring B[X]. Obviously
B[X] = B[X; Z0] ⊂ B[X; 1

ak Z0]. Furthermore as 1
ak Z0 is an

ordered monoid, so we can define the degree of an element (a
generalized polynomial) in B[X; 1

ak Z0].
In this paper initially we replaced the the construction tech-

nique of cyclic codes over a polynomial ring by a semigroup
ring B[X; 1

ak Z0], where a ∈ {2, 3, 5, 7, · · ·}, k ≥ 1. Further
we separately considered BCH, alternant, Goppa, Srivastava
codes and by this new way of construction with utilizing the
same lines as in [1] we improve the several results of [1]. That
is, in this work we take B as a finite commutative ring with
unity and in the same spirit of [1], we fixed a cyclic subgroup
of group of units of the factor ring B[X; 1

ak Z0]/(Xn − 1).
The factorization of Xaks − 1 over the group of units of
B[X; 1

ak Z0]/(Xn − 1) is the main problem.
Under consideration processes of constructing linear codes

through the semigroup rings B[X; 1
ak Z0] are very similar to

linear codes over finite rings and this work needs Galois
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extension rings, because here some of properties of Galois
extension fields are failed.

The coding for error control has vital role in the design
of modern communication systems and high speed digital
computers. In this study we also mention that the codes
through a semigroup ring are more appropriate for computer-
to-computer communication.

III. CYCLIC CODES THROUGH THE SEMIGROUP RINGS

In [7], if the ideal I for the commutative ring < with
identity, is generated by the element a of <, then in any
quotient ring < of <, the corresponding ideal I is generated
by the residue class a of a. Hence, every quotient ring of a
principal ideal ring is a principal ideal ring (PIR) as well.

Consequently the ring < = Fq [X;Z0]
(Xn−1) , where q is a power of

a prime p, is a PIR as Fq[X; Z0] is a Euclidean domain ([8,
Theorem 8.4]). Further by the same [1] if q is a power of a
prime p, then < = Zq [X;Z0]

(Xn−1) is a PIR.
For a finite commutative ring B with identity and for a ∈

{2, 3, 5, · · ·}, k ≥ 1, the following

· · · ⊂ B[X; 1
ak Z0] · · · ⊂ B[X; 1

a2 Z0] ⊂ B[X; 1
a
Z0]

∪ ∪ ∪
· · · = B[X; Z0] · · · = B[X; Z0] = B[X; Z0]

is strict descending chains of commutative semigroup rings.
By the same argument [1], the quotient ring of Euclidean

monoid domain < =
Fq [X; 1

ak Z0]

(Xn−1) , where q is a power of a
prime p and a ∈ {2, 3, 5, · · ·}, k ≥ 1, is a PIR and < =
Zq [X; 1

ak Z0]

(Xn−1) is the PIR. The homomorphic image of a PIR is
again a PIR [10, Proposition (38.4)].

By [1] if B be a commutative ring with identity, then
< = B[X;Z0]

(Xn−1) is a finite ring. And the linear code C of
length n over B is a B-module in the space of all n-tuples
of Bn, and a linear code C over B is cyclic, if whenever
v = (v0, v1, v2, · · · , vn−1) ∈ C, every cyclic shift v(1) =
(vn−1, v0, v1, · · · , vn−2) ∈ C, with vi ∈ B, for 0 ≤ i ≤ n−1.

Now suppose again that B is a commutative ring with

identity, then < =
B[X; 1

ak Z0]

(Xn−1) , where a ∈ {2, 3, 5, 7, · · ·},
k ≥ 1, is a finite ring, by [6, Theorem 7.2]. By a linear code C
of length akn over B we mean a B-module in the space of all
akn-tuples of Bakn, and a linear code C over B is cyclic, if
whenever v = (v0, v 1

a

, v 2
a
, v1, · · · , v akn−1

ak

) ∈ C, every cyclic

shift v(1) = (v
akn−1

ak

, v0, v 1
a

, · · · , v
akn−2

ak

) ∈ C, with v
i
∈ B,

for 0 ≤ i ≤ akn−1
ak .

Theorem 1: A subset C of < =
B[X; 1

ak Z0]

(Xn−1) , where a ∈
{2, 3, 5, 7, · · ·}, k ≥ 1, is a cyclic code if and only if C is an
ideal of <.

Proof: Suppose that the subset C is a cyclic code. Then
C is closed under addition and under multiplication by X

1
ak .

But then it is closed under multiplication by powers of X
1

ak

and linear combinations of powers of X
1

ak . That is, C is
closed under multiplication by an arbitrary pseudo polynomial.
Hence C is an ideal. Now suppose that the subset C is an
ideal in <. Then C is closed under addition and closed under
scalar multiplication. Hence C is a B-module. It is also closed

under multiplication by any ring element, in particular under
multiplication by X

1
ak . Hence C is a cyclic code.

Let f(X
1

ak ) ∈ B[X; 1
ak Z0] be a monic pseudo polynomial

of degree n, then < =
B[X; 1

ak Z0]

(f(X
1

ak ))
be the set of residue

classes of pseudo polynomials in B[X; 1
ak Z0] modulo the

ideal (f(X)) and a class can be represented as a(X
1

ak ) =

a0 + a 1
ak

X
1

ak + · · ·+ a akn−1
ak

X
akn−1

ak . A simple kind of ideal

is a principal ideal, which consists of all multiples of a fixed
pseudo polynomial g(X

1
ak ) by elements of <, called generator

pseudo polynomial of the ideal. Now we shall prove some
results which show a method of obtaining the generator pseudo
polynomial of principal ideal. This method will serve as basis
for the construction of a principal ideal in the ring <.

Lemma 1: Let I be an ideal in the ring < =
B[X; 1

ak Z0]

(Xn−1) ,
where a ∈ {2, 3, 5, 7, · · ·} and k ≥ 1. If the leading coefficient
of some pseudo polynomial of lowest degree in I is a unit in
B, then there exists a unique monic pseudo polynomial of
minimal degree in I .

Proof: Let g(X
1

ak ) be a pseudo polynomial of lowest
degree m in I . If the leading coefficient am of g(X

1
ak ) is

a unit in B, it is always possible to obtain a monic pseudo
polynomial g1(X

1
ak ) = amg(X

1
ak ) with the same degree in I .

Now, if g(X
1

ak ) and h(X
1

ak ) are monic pseudo polynomials
of minimal degree m in I, then the pseudo polynomial
k(X

1
ak ) = g(X

1
ak )−h(X

1
ak ) is a pseudo polynomial in I and

has degree fewer than m. Therefore, by the choice of g(X
1

ak )
follows that k(X

1
ak ) = 0, and thus g(X

1
ak ) = h(X

1
ak ).

Theorem 2: Let I be an ideal in the ring < =
B[X; 1

ak Z0]

(Xn−1) ,
where a ∈ {2, 3, 5, 7, · · ·}, and k ≥ 1. If the leading coefficient
of some pseudo polynomial g(X

1
ak ) of lowest degree in I is a

unit in B, then I is the principal ideal generated by g(X
1

ak ).
Proof: Let a(X

1
ak ) be a pseudo polynomial in I . By

Euclidean algorithm there are unique pseudo polynomials
q(X

1
ak ) and r(X

1
ak ) such that a(X

1
ak ) = q(X

1
ak )g(X

1
ak ) +

r(X
1

ak ), where r(X
1

ak ) = 0 or deg(r(X
1

ak )) <

deg(g(X
1

ak )). By the definition of an ideal, r(X
1

ak ) ∈ I .
Thus by the choice of g(X

1
ak ), we have that r(X

1
ak ) = 0 and

therefore, a(X
1

ak ) = q(X
1

ak )g(X
1

ak ). Thus every polynomial
in I is multiple of g(X

1
ak ), that is, I is generated by g(X

1
ak )

and hence principal.
Lemma 2: Let r(X

1
ak ) be a pseudo polynomial in

B[X; 1
ak Z0]. If r(X

1
ak ) 6= 0 and deg(r(X

1
ak )) <

deg(f(X
1

ak )), then r(X
1

ak ) 6= 0 in <.
Proof: Suppose that r(X

1
ak ) = 0. Therefore there

is q(X
1

ak ) 6= 0 in B[ 1
ak Z0] such that r(X

1
ak ) =

f(X
1

ak )q(X
1

ak ). Since f(X
1

ak ) is regular and r(X
1

ak ) 6= 0 it
follows that deg(r(X

1
ak )) = deg(f(X

1
ak ))+deg(q(X

1
ak )) ≥

deg(f(X
1

ak )), which is a contradiction since we had al-
ready assumed that deg(r(X

1
ak )) < deg(f(X

1
ak )). Hence

r(X
1

ak ) 6= 0.

Lemma 3: Let I be an ideal in the ring < =
B[X; 1

ak Z0]

(Xn−1) ,

where a ∈ {2, 3, 5, 7, · · ·}, k ≥ 1 and g(X
1

ak ) be a pseudo
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polynomial in B[X; 1
ak Z0] with leading coefficient unit in B

such that deg(g(X
1

ak )) < deg(f(X
1

ak )). If g(X
1

ak ) ∈ I and
has lowest degree in I, then g(X

1
ak ) divides f(X

1
ak ).

Proof: By Euclidean algorithm for commutative rings
there are unique polynomials q(X

1
ak ) and r(X

1
ak ) such

that 0 = g(X
1

ak )q(X
1

ak ) + r(X
1

ak ), where r(X
1

ak ) =
0 or deg(r(X

1
ak )) < deg(g(X

1
ak )). Thus r(X

1
ak ) =

−g(X
1

ak )q(X
1

ak ), i.e., r(X
1

ak ) is in I . Therefore by the
choice of g(X

1
ak ) it follows that r(X

1
ak ) = 0. Also,

by Euclidean algorithm for commutative rings, there are
unique pseudo polynomials q1(X

1
ak ) and r1(X

1
ak ) such that

f(X
1

ak ) = g(X
1

ak )q1(X
1

ak ) + r1(X
1

ak ), where r1(X
1

ak ) =
0 or deg(r1(X

1
ak )) < deg(g(X

1
ak )). Therefore 0 =

g(X
1

ak )q1(X
1

ak ) + r1(X
1

ak ) = g(X
1

ak )q(X
1

ak ) + r(X
1

ak ).
Thus q1(X

1
ak ) = q(X

1
ak ) and r1(X

1
ak ) = r(X

1
ak ) = 0. By

Lemma 2 it follows that r1(X
1

ak ) = 0 and therefore g(X
1

ak )
divides f(X

1
ak ).

Theorem 3: Let I be an ideal in the ring < =
B[X; 1

ak Z0]

(Xn−1) ,

where a ∈ {2, 3, 5, 7, · · ·} and k ≥ 1. If g(X
1

ak ) divides
f(X

1
ak ) and g(X

1
ak ) ∈ I, then g(X

1
ak ) has lowest degree

in (g(X
1

ak )).
Proof: Suppose that there is b(X

1
ak ) in (g(X

1
ak ))

such that deg(b(X
1

ak )) < deg(g(X
1

ak )). Since b(X
1

ak ) ∈
(g(X

1
ak )), therefore b(X

1
ak ) = g(X

1
ak )h(X

1
ak ) for some

h(X
1

ak ) ∈ R. Thus b(X
1

ak )− g(X
1

ak )h(X
1

ak ) ∈ (f(X
1

ak )),
i.e., b(X

1
ak ) − g(X

1
ak )h(X

1
ak ) = f(X

1
ak )a(X

1
ak ) for

some a(X
1

ak ) in B[X; 1
ak Z0]. This gives b(X

1
ak ) =

g(X
1

ak )h(X
1

ak ) + f(X
1

ak )a(X
1

ak ). Since g(X
1

ak ) di-
vides f(X

1
ak ), so g(X

1
ak ) divides g(X

1
ak )h(X

1
ak ) +

f(X
1

ak )a(X
1

ak ), which implies that g(X
1

ak ) divides b(X
1

ak ),
a contradiction, since we had already assumed that
deg(b(X

1
ak )) < deg(g(X

1
ak )). Hence g(X

1
ak ) has lowest

degree in (g(X
1

ak )).

IV. BCH AND ALTERNANT CODES THROUGH A
SEMIGROUP RING

We construct BCH and alternant codes through a semigroup
ring instead of a polynomial ring. First we address the basic
properties of Galois extension rings, which are used in the
construction of these codes. In this section we assume that
(B,N) denotes a finite local commutative ring with unity
and residue field K = B

N ' GF (pm), where p is a prime
integer, m a positive integer. The natural projection π :
B[X; 1

ak Z0] → K[X; 1
ak Z0] is defined by π(a(X

1
ak )) =

a(X
1

ak ) (i.e. π(
∑n

i=0 aiX
1

ak i) =
∑n

i=0 aiX
1

ak i, where
ai = ai + N). Let f(X

1
ak ) be a monic pseudo polynomial

of degree t in B[X; 1
ak Z0] such that π(f(X

1
ak )) is irre-

ducible in K[X; 1
ak Z0]. Since [6, Theorem 7.2] accommodate

B[X; 1
ak Z0] as B[Z0], therefore f(X

1
ak ) also is irreducible in

B[X; 1
ak Z0], by [9, Theorem XIII.7]. Take < =

B[X; 1
ak Z0]

(f(X
1

ak ))
.

Then < is a finite commutative local factor semigroup ring
with unity and again [6, Theorem 7.2] accommodate our

notions to say that it is a Galois ring extension of B with
extension degree t. Its residue field is K1 = <

N1
' GF (pmt),

where N1 is the maximal ideal of <, and K∗
1 is the multiplica-

tive group of K1 whose order is pmt − 1.
Let <∗ denotes the multiplicative group of units of <. It

follows that <∗ is an abelian group, and therefore it can
be expressed as a direct product of cyclic groups. We are
interested in the maximal cyclic group of <∗ hereafter denoted
by Gaks, whose elements are the roots of Xaks − 1 for some
positive integer s. There is only one maximal cyclic subgroup
of F having order aks = ak(pmt − 1).

Definition 1: A shortened BCH code C(akn, η) of length
akn ≤ aks is a code over B that has parity check matrix

H =


α1 α2 · · · αakn

α2
1 α2

2 · · · α2
akn

...
...

. . .
...

αakr
1 αakr

2 · · · αakr
akn


for some r = ak(n−c) ≥ 1, where η = (α1, α2, · · · , αakn) =
(αk1 , αk2 , · · · , αk

akn) is the locator vector, consisting of dis-
tinct elements of Gaks. The code C(akn, η), with akn = aks,
will be called a BCH code.

Lemma 4: Let α
1

ak be an element of Gaks of order aks.
Then the differences α

1
ak l1 −α

1
ak l2 are units in < if 0 ≤ l1 6=

l2 ≤ aks− 1.
Proof: As α

1
ak l1 −α

1
ak l2 can be written as −α

1
ak l2(1−

α
1

ak (l1−l2)), where l1 > l2 and 1 denotes the unity of <.
The factor −α

1
ak l2 in the product is a unit. The second factor

can be written as 1− α
1

ak j for some integer j in the interval
[1, aks−1]. Now if the element 1−α

1
ak j , for 1 ≤ j ≤ aks−1,

were not a unit in <, then 1−α
1

ak j ∈ M1, and consequently,
(π(α

1
ak ))j = π(1) for j < aks, which is a contradiction. Thus

1− α
1

ak j ∈ <, for 1 ≤ j ≤ aks− 1.
Theorem 4: The minimum Hamming distance of a BCH

code C(akn, η) satisfies d ≥ akr + 1.
Proof: Suppose c is a nonzero codeword in C(akn, η)

such that wH(c) ≤ akt. Then cHT = 0. Deleting akn −
akt columns of the matrix H corresponding to zeros of the
codeword, it follows that the new matrix H is Vandermonde.
By Lemma 4, it follows that the determinant is a unit in <.
Thus the only possibility for c is the all zero codeword.

Definition 2: A shortened alternant code C(akn, η, ω) of
length akn ≤ aks is a code over B that has parity check
matrix

H =


ω1 ω2 · · · ωakn

ω1α1 ω2α2 · · · ωaknαakn

ω1α
2
1 ω2α

2
2 · · · ωaknα2

akn
...

...
. . .

...
ω1α

akr−1
1 ω2α

akr−1
2 · · · ωanαakr−1

akn

 ,

where r is a positive integer, η = (α1, α2, · · · , αakn) =
(αk1 , αk2 , · · · , αk

akn) is the locator vector, consisting of dis-
tinct elements of Gaks, and ω = (ω1, ω2, · · · , ωakn) is an
arbitrary vector consisting of elements of Gaks.

Theorem 5: The alternant code C(akn, η, ω) has minimum
Hamming distance d ≥ akr + 1.
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Proof: Suppose c is a nonzero codeword in C(akn, η, ω)
such that the weight wH(c) ≤ akr. Then, cHT = c(LM)T =
0. Setting b = cMT , we obtain wH(b) = wH(c) since M
is diagonal and invertible. Thus, bLT = 0. Deleting akn −
akr columns of the matrix L that correspond to zeros of the
codeword, then the new matrix L is Vandermonde. By Lemma
4, it follows that the determinant is a unit in <. Thus, the
unique possibility for c is the all zero codeword.

V. GOPPA AND SRIVASTAVA CODES THROUGH A
SEMIGROUP RING

In this section we construct a subclass of alternant codes
through a semigroup ring instead of a polynomial ring, which
is similar to one initiated by Andrade and Palazzo [1] through
polynomial rings. Goppa codes are described in terms of
Goppa polynomial. In contrast to cyclic codes, where it is
difficult to estimate the minimum Hamming distance d from
the generator polynomial, Goppa codes have the property that
d ≥ deg(h(X)) + 1.

Let B, < and Gaks as defined in previous section. Let α
1

ak

be a primitive element of the cyclic group Gaks, where aks =
ak(pmt−1). Let h(X) = h0 +h1X +h2X

2 + · · ·+hakrX
akr

be a polynomial with coefficients in < and hakr 6= 0. Let
T = {α1, α2, · · · , αakn} be a subset of distinct elements of
Gaks such that h(αi) are units from <, for i = 1, 2, · · · , akn.

Definition 3: A shortened Goppa code C(T, h) of length
akn ≤ aks is a code over B that has parity-check matrix of
the form

H =


h(α1)−1 · · · h(αakn)−1

α1h(α1)−1 · · · αaknh(αakn)
...

. . .
...

αakr−1
1 h(α1)−1 · · · αakr−1

akn
h(αakn)

 , (1)

where r is a positive integer, η = (α1, α2, · · · , αakn) =
(αc1 , αc2 , · · · , αc

akn) is the locator vector, consisting of dis-
tinct elements of Gaks, and ω = (h(α1)−1, · · · , h(αakn)−1)
is a vector consisting of elements of Gaks.

Definition 4: Let C(T, h) be a Goppa code.
1) If h(X) is irreducible then C(T, h) is called an irre-

ducible Goppa code.
2) If c = (c1, c2, · · · , cakn) ∈ C(T, h) and c =

(cakn, · · · , c2, c1) ∈ C(T, h), then C(T, h) is called a
reversible Goppa code.

3) If h(X) = (X − α)akr−1, then C(T, h) is called a
comulative Goppa code.

4) If h(X) has no multiple zeros, then C(T, h) is called a
separable Goppa codes.

Remark 1: Let C(T, h) be a Goppa code.
1) We have that C(T, h) is a linear code.
2) For a code with hl(X) = (X − βl)akrl being a Goppa

polynomial, where l ∈ Gaks, we have the matrix Hl
given by

(α1 − βl)
−akrl · · · (αakn − βl)

−akrl

α1(α1 − βl)
−akrl · · · αakn(αakn − βl)

−akrl

...
. . .

...

α
akrl−1
1 (α1 − βl)

−akrl · · · α
akrl−1

akn
(αakn − βl)

−akrl



which is row equivalent to
(α1 − βl)−akrl · · · (αakn − βl)−akrl

(α1 − βl)−(akrl−1) · · · (αakn − βl)
−(akrl−1)

...
. . .

...
(α1 − βl)−1 · · · (αakn − βl)−1


Consequently, if h(X) = (X − βl)akrl =

akk∏
i=1

hl(X),

then the Goppa code is the intersection of the codes
with hl(X) = (X − βl)akrl , for l = 1, 2, · · · , akk, and
its parity check matrix is given by

H =
[

H1 H2 · · · Hakk

]T
,

where T indicates the transposition.
3) BCH codes are a special case of Goppa codes. For this,

choose h(X) = Xakr and T = {α1, α2, · · · , αakn},
where αi ∈ Gaks, for all i = 1, 2, · · · , akn. Then from
equation (c)

H =


α−akr

1 α−akr
2 · · · α−akr

3n

α1−akr α1−akr
2 · · · α1−akr

akn
...

...
. . .

...
α−1

1 α−1
2 · · · α−1

akn


which becomes the parity check matrix of a BCH code
when α−1

i is replaced by βi, for i = 1, 2, · · · , akn.
Theorem 6: The Goppa code C(T, h) has minimum Ham-

ming distance d ≥ akr + 1.
Proof: We have that C(T, h) is an alternant code

C(akn, η, ω) with η = (α1, α2, · · · , αakn) and ω =
(h(α1)−1, · · · , h(αakn)−1). Therefore, by Theorem 5, we have
that C(T, h) has minimum distance d ≥ akr + 1.

Also we define Srivastava code over semigroup ring, which
is the interesting subclass of alternant codes which is similar to
unpublished work [11], which is proposed by J. N. Srivastava
in 1967, a class of linear codes which are not cyclic that are
defined in form the parity-check matrices

H = {
αl

j

1− αiβj
, 1 ≤ i ≤ r, 1 ≤ j ≤ n},

where α1, α2, · · ·αr are distinct elements from GF (qm)
and β1, β2, · · · , βn are all the elements in GF (qm), except
0, α−1

1 , α−1
2 , · · ·α−1

r and l ≥ 0.
Definition 5: A shortened Srivastava code of length akn ≤

aks is a code over B that has parity check matrix

H =



αl
1

α1−β1

αl
2

α2−β1
· · · αl

akn

α
akn

−β1

αl
1

α1−β2

αl
2

α1−β2
· · · αl

akn

α
akn

−β2

...
...

. . .
...

αl
1

α1−β
akr

αl
2

α1−β
akr

· · · αl

akn

α
ak−β

akr

 ,

where r, l are positive integers and
α1, · · · , αakn, β1, β2, · · · , βakr are akn + akr distinct
elements of Gaks.
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Theorem 7: The Srivastava code has minimum Hamming
distance d ≥ akr + 1.

Proof: We have that the minimum Hamming distance of
Srivastava code is at least akr +1 if and only if every combi-
nation of akr or fewer columns of H is linearly independent
over <, or equivalently that the submatrix

H1 =



αl
i1

αi1−β1

αl
i2

αi2−β1
· · ·

αl
i
akr

αi3r−β1

αl
i1

αi1−β2

αl
2

αi2−β2
· · ·

αl
i
akr

αi
akr

−β2

...
...

. . .
...

αl
i1

αi1−β
akr

αl
i2

αi2−β
akr

· · ·
αl

i
akr

αi
akr

−β
akr


is nonsingular. The determinant of this matrix can be expressed
as det(H1) = (αi1 , αi2 , · · · , αiar

)ldet(H2). Whereas the ma-
trix H2 is given by

H2 =


1

αi1−β1

1
αi2−β1

· · · 1
αi

akr
−β1

1
αi1−β2

1
αi2−β2

· · · 1
αi

akr
−β2

...
...

. . .
...

1
αi1−βar

1
αi2−β

akr

· · · 1
αi

akr
−β

akr

 .

Note that det(H2) is a Cauchy determinant of order akr and
therefore we conclude that the determinant of the matrix H1

is given by

det(H1) = (αi1 , · · · , αi
akr

)l(−1)

(
akr
2

)
µ,

where µ = φ(αi1 ,···,α
iakr

)φ(β1,β2,···,β
akr

)

v(αi1 )v(αi2 )···v(αi
akr

) , φ(αi1 , · · · , αi
akr

) =
(αij − αih

) and v(X) = (X − β1)(X − β2) · · · (X − βakr).
Then, by Lemma 4, the det(H1) is a unit in < and thus d ≥
akr + 1.

Definition 6: Suppose r = (akcl and let α1, · · · , αakn,
β1, β2, · · · , βakc be akn + akc distinct elements of Gaks,
ω1, · · · , ωakn be elements of Gaks. A generalized Srivastava
code of length akn ≤ aks is a code over B that has parity
check matrix

H =
[

H1 H2 · · · Hakc

]T
, (2)

where

Hj =


ω1

α1−βj

ω2
α2−βj

· · · ω
akn

α
akn

−βj
ω1

(α1−βj)2
ω2

(α2−βj)2
· · · ω

akn

(α
akn

−βj)2

...
...

. . .
...

ω1
(α1−βj)l

ω2
(α2−βj)l · · · ω

akn

(α
akn

−βj)l


for j = 1, 2, · · · , akc.

Theorem 8: The Srivastava code has minimum Hamming
distance d ≥ (akc)l + 1.

Proof: The proof requires nothing more than the appli-
cation of Remark 1 and Theorem 7, since the matrices (1) and
(2) are equivalents, where g(Z) = (Z − βi)l.

VI. CONCLUSION

A linear code detect d − 1 errors, where d is a minimum
distance of a code and correct

⌊
d−1
2

⌋
errors. In the usual case

of [1] d ≥ r + 1, where r is the number of check symbols
and we have that

⌊
r+1−1

2

⌋
=

⌊
r
2

⌋
but method of this work

we obtained d ≥ akr + 1, which shows that codes detect
and correct at least akr errors

⌊
akr+1−1

2

⌋
=

⌊
akr
2

⌋
errors

respectively. Thus linear codes obtained through the technique
of semigroup rings are better than the linear codes constructed
by polynomial rings. The linear codes obtained through both
the polynomial rings and the semigroup rings have the same
code rate but our way provide the error correcting capability
of a code greater than of [1].

Since n and p are relatively prime and therefore by [1] there
are binary (if we take p = 2) cyclic codes, BCH, alternant,
Goppa and Srivastava codes over finite rings with length n.
Unfortunately by the way as adopted in the techniques of [1]
we can not obtain binary cyclic codes, BCH, alternant, Goppa
and Srivastava codes over finite rings with length akn, where
a ∈ {2, 3, 5, 7, · · ·}, for k ≥ 1, as the nature of the construction
in [1], akn and p are not relatively prime for instance if n
is not even and a 6= 2. Due to constrains in the method of
polynomial rings, used in [1], we provided a more accurate
method of getting binary (if we take p = 2) cyclic codes,
BCH, alternant, Goppa and Srivastava codes over finite rings
with length akn. In this work we used the semigroup ring
B[X; 1

ak Z0] instead of a polynomial ring B[X; Z0], where B
is any finite commutative ring with identity. In this work we
have used the same lines as credit in [1]. A decoding procedure
is an open problem.
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