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Resumo— Este artigo discute o projeto de sistemas de múltiplas
entradas e múltiplas saı́das (MIMO) de antenas e prop̃oe um
algoritmo genético para obter a posiç̃ao e orientaç̃ao de cada
antena do arranjo MIMO que maximiza a capacidade erǵodica
para um dado ceńario de propagaç̃ao. Nossos resultados mostram
que o efeito do acoplamento eletromagńetico pode ser explorado
pelo otimizador para diminuir a correlaç ão do sinal aumentando
a capacidade. Tamb́em é feita uma comparaç̃ao entre arranjos
lineares uniformes (ULA), arranjos circulares uniformes (UCA)
e o arranjo otimizado pelo algoritmo geńetico.

Palavras-Chave— MIMO, otimizaç ão de arranjo, algoritmo
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Abstract— This paper discusses the design of multiple input
multiple output (MIMO) antenna systems and proposes a genetic
algorithm to obtain the position and orientation of each MIMO
array antenna that maximizes the ergodic capacity for a given
propagation scenario. Our results show that the electromagnetic
coupling effect can be exploited by the optimizer in order to
decrease signal correlation and increase MIMO capacity. A
comparison among uniform linear array (ULA), uniform circu lar
array (UCA) and the GA-optimized array is also carried out.

Keywords— MIMO, array optimization, genetic algorithm, ca-
pacity.

I. I NTRODUCTION

MIMO systems have been an important research topic due
to their capability of providing a significant increase in channel
capacity proportional to the number of transmit and/or receive
antennas. This is generally achieved by exploiting spatial
diversity at the transmit and receive branches [1], [2]. When
considering realistic antenna models, the channel capacity
will depend on three main variables: The transmit antenna
array configuration, the receive antenna array configuration
and the environment configuration, namely, the distribution of
the channel scatterers [3].

Multiplexing and diversity gains in MIMO systems can be
obtained, for instance, by resorting to not only spatial divesity
but also to polarization diversity. While spatial diversity can be
achieved by ensuring enough antenna separation, polarization
diversity can be achieved by exploiting different antenna
orientations in the array configuration [4]. In cellular systems,
a reasonable degree of spatial diversity can be obtained at the
base-station. However, at the mobile terminal, this situation is
completely different, since a good separation of the antennas
ensuring spatial diversity is not always possible. Moreover,
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electromagnetic coupling between terminal antennas is a prac-
tical problem that affects system performance. Therefore,
under these constraints, optimizing the antenna placementat
the mobile terminal to yield a satisfactory performance is a
challenging problem [5], [6].

Genetic algorithm (GA) based optimization has been used
with success in various engineering problems. In [7], a genetic
algorithm is used to optimize antenna arrays used for channel
characterization, i.e. determination of multipaths directions of
arrival (DOA). In [8], the authors resort to GA-based optimi-
zation to find the channel parameters such as multipath atte-
nuations and delays. Recently, GA has been used to find good
antenna element positions in sparse MIMO radar arrays [9] by
minimizing the side-lobes of the radar pattern. Another recent
work [10] uses GA to find the optimal distribution of a 3
× 3 MIMO system for an indoor propagation channel. An
interesting aspect of that work is the inclusion of electromag-
netic coupling in the model. However, the work does not show
either which distributions were found or how the distributions
change according to different multipath channel parameters.

The work of [11] defends the idea of using nature inspired
methods for MIMO antenna design, but the works mentioned
in there deal with the problem of antenna geometry definition
and not antenna array topology for different propagation
environments. In [12] a method of moments is proposed
to optimize MIMO antenna position and orientation. The
optimization is done by minimizing the antenna cross corre-
lation, by considering an i.i.d propagation scenario. Although
antenna cross correlation degrades capacity, we cannot say
that the configuration that minimizes antenna correlation is the
same that maximizes MIMO capacity in non i.i.d. propagation
scenarios.

In this work, we address the antenna array capacity opti-
mization problem by resorting to a genetic algorithm method.
The goal is to find an optimal or suboptimal configuration for
antenna position and orientation that maximizes the ergodic
channel capacity. Assuming array of dipoles and a channel
model that interfaces the propagation environment with the
antenna array response pattern, the genetic algorithm manages
to find, for each antenna, the best position and orientation
subject to a space constraint. Due to the nature of genetic
algorithms, the proposed method is very general. It can incor-
porate different types of antenna models, and it can also be
used in different propagation channel models. Our simulations
take into account different sets of antennas and constraints in
terms of available space, and also consider electromagnetic
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coupling effects. We also compare the capacity provided by
the optimized MIMO array with that of standard linear and
circular arrays.

In Section II, we present the channel model that is exploited
by the proposed algorithm. In Section III, we present the
genetic algorithm used for the optimizations and also detail
how the population is represented, how reproduction occurs,
and how we used the ergodic channel capacity as the fitness
function of the genetic algorithm. Section IV presents the
simulation results and results discussion. Finally, in Section
V we draw the conclusions.

II. CHANNEL MODEL

In Figure 1 the channel geometric model used to generate
the plane waves and to interface it to the antenna arrays
is illustrated. We assume that the distance between antenna
arrays and the scattering clusters is much higher than the
distance between the array elements. In this case we can
assume that the DOA and direction of departure (DOD) of
a given plane wave are the same for all the antenna elements
of the array. Each cluster is modeled by a finite set of plane
waves, and has a main direction of arrival/departure, both in
azimuth and elevation. Angle spread and polarization spread
within a cluster follow a gaussian distribution.

Fig. 1. Geometric Channel model used in simulations.

The channel double-directional impulse response, associated
with the DOA pair (φRx, θRx) and DOD pair (φTx, θTx)
is given by the contribution of a finite number of dominant
multipaths components [13]:

A(φRx, θRx, φTx, θTx) =

L
∑

l=1

Al(φRx,l, θRx,l, φTx,l, θTx,l),

(1)
whereL is the number of arriving paths, andφ andθ denote,
respectively, azimuth and elevation angles. The contribution of
each pathAl can be expanded as fallows:

Al(φRx, θRx, φTx, θTx) = Wle
jφl

×δ(φRx − φRx,l)δ(θRx − θRx,l)

×δ(φTx − φTx,l)δ(θTx − θTx,l), (2)

whereφl = j2πfc, andWl is the polarimetric transmission
matrix defined as:

Wl =

[

γHH γVH

γHV γV V

]

(3)

The (m,n)th entry hm,n of the MIMO channel matrixH
(M ×N ) can be expressed in terms of the directional channel
impulse response according to the following expression [13]:

hmn =
L
∑

l=1

gT
Tx(φTx,n,l, θTx,n,l, rTx,n)

×Al(φRx,l, θRx,l, φTx,l, θTx,l)

×gRx(φRx,m,l, θRx,m,l, rRx,m)

×exp(j[k(φRx,l, θRx,l) · xRx,m])

×exp(j[k(φTx,l, θTx,l) · xTx,n]), (4)

where gRx is the antenna pattern response to the direction
(φRx,m,l, θRx,m,l) while gTx is the antenna pattern response
to the direction (φTx,m,l, θTx,m,l) at the transmitter. The
response of the antenna considers the impact of mutual elec-
tromagnetic coupling of nearby antennas. We calculate this
effect integrating the numerical electromagnetics code (NEC)
in our simulation. The(2 × 1) vector gRx is the product
of the complex scalar gaingRx (phase am amplitude) of the
receiver antenna, and the unitary(2 × 1) polarization vector
pRx composed by the vertical and horizontal responses:

gRx(φRx,n,l, θRx,n,l, rRx,n) = gRx(φRx,n,l, θRx,n,l, rRx,n)pRx (5)

Similarly, for the transmitter antenna pattern responsegTx

we have:

gTx(φTx,n,l, θTx,n,l, rTx,n) = gTx(φTx,n,l, θTx,n,l, rTx,n)pTx (6)

The vectorrRx,m defines the antenna orientation,k is the
wave vector,xRx is the relative position of themth receiver
antenna andxTx is the relative position of thenth transmitting
antenna. The inner product of the vector wavek (arriving
or departuring wave) with an antenna position (transmitteror
receiver), is defined by:

k(φ, θ) · x =
2π

λ
(xcosθcosφ + ycosθsinφ+ zsinθsinφ) (7)

The electromagnetic coupling has a strong effect when
the antennas are separated by small distances (typically less
the λ/2). With hand-held telecommunication devices this is
often, if not always, the case. Instead of implementing an
electromagnetic code from ground-up, we chose in this work
to use an available and well established code, integrated toour
channel model. We use the NEC, which is a public domain
software. The version we chose to work with is NEC2C, a C
language implementation of the NEC2 Fortran original code.
The NEC code uses the method of moments (MOM) to solve
the electromagnetic field problem. One of its main qualitiesis
the low computational cost of the solutions, since MOM codes
are much faster than e.g. finite element method based codes.

III. G ENETIC ALGORITHM OPTIMIZATION

GA works by analogy to genetic inheritance and differenti-
ation that occurs in biology that permits a specie to fit itself to
the environment in an adaptation process. The genetic code is
a digital code that represents the individual characteristics that
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can be inherited from previous generations and be passed by to
the next generations. Our individual is the antenna array, our
genetic code is the channel array model stored in the computer
memory. A population, or generation, is a collection of antenna
arrays. The genes that define an array are the antenna type,
antenna position and antenna orientation. We start with a
random generation, where each antenna has a position and
orientation assigned to it by a random variable with uniform
distribution, within the limits of the desired volume spacefor
the antennas. The number of individuals in the generation is
increased by crossing and mutation. The crossing operation
is the reproduction of new individuals that inherit part of the
characteristics from one individual and other part from other
individual, the parents. Which characteristic will come from
each parent is decided by an aleatory factor. The mutation
operation is an aleatory small change in the genes.

Fig. 2. Fluxogram of the employed genetic algorithm.

The next step is to select the individuals better suited to the
environment, using the fitness function, and then repeat the
reproduction step with this selected group. The reproduction
and selection steps are repeated until an optimization criteria
is met, or a certain number of generations is met. Our fitness
function is defined by the channel ergodic capacity as will be
detailed later. Figure 2 shows a general diagram of the genetic
algorithm optimization method, applied to our problem.

A. Population and Reproduction

The antenna is represented in the system by the tuple
(kind, position, orientation). The kind is an integer token
that identifies the antenna far-field pattern. In this work we
consider ideal half-wave dipoles, although more than one kind
of antenna could be used. The position vectorx = [x, y, z]T

and orientation vectorr = [α, β, γ]T (yaw, pitch, roll). A
collection of antennas[a1, a2, ...aM ] defines an array. An array
is one individual in the population. The genetic algorithm
needs a finite set to search into, so position and orientation
need to be both limited an quantized. The degrees of freedom
of the position are limited by a limited volume defined prior
to simulation. The available volume is generally a practical
constraint of the antenna array design in small terminals. The
quantization is naturally imposed by the computer quantization
of the floating point numbers.

The genetic code of each individual in the collection is
formed by the antennas’ tuples. The reproduction is done by

combining portions of DNA from two parents. A new array
is derived by choosing antennas from two ancestor arrays.
A pseudo-random function is used to choose from which
parent each antenna will be copied for the new individual
in the population. After the reproduction, a small pseudo-
random change is made in each antenna parameter. Such a
change defines the mutation procedure. It is worth noting that
the amount and extent of the mutation have a strong impact
on the algorithm performance. Small changes can make the
algorithm converge faster but it is more prone to get stuck in
a local maximum, while stronger changes make it leave local
maximum for better maxima but makes the system less stable.
Therefore, a tradeoff between convergence speed and stability
exists, as usual in numerical optimization methods.

Another parameter to take into account is the size of the
offspring in each generation. A small offspring provides faster
computation and less memory usage, at the expense of more
iterations necessary to solve the problem.

B. Fitness Function

In order to select the individuals for the next generation, it is
necessary to use a fitness function, which is always problem-
related. The interface between the fitness function and the
genetic algorithm makes it possible to choose any kind of
fitness function, as long as the function respects the intputs
and outputs of the interface. The input for the fitness function
has to be the current generation of individuals, in our case,
the various array configurations obtained by the crossing and
mutation operations. The output of the function has to be some
value attached to each individual making it possible to classify
it. In our case, that value corresponds to the ergodic channel
capacity, in bits per channel use, which is given by [14]:

C =
1

Nq

Nq
∑

q=1

log2det

[

INr +
SNR

Nt
HqH

H
q

]

. (8)

whereNq is the number of realizations to compute the expec-
tation statistics andHq represents theqth channel realization.
Note that, according to (4), each entryhmn of Hq (M ×N )
depends on relative antenna positionsxRx,1..M and antenna
far field patterns according to their orientationsrRx,1..M at a
given channel realization. Recall that only the receive antennas
are the object of the present investigation. The antennas atthe
transmitter (i.e. the base station for the downlink) are supposed
to have less placement constraints and are not optimized here.
Therefore, the objective function of the genetic algorithmis
to solve the following problem:

argmax
xRx,1..M ,rRx,1..M

C(xRx,1..M , rRx,1..M ) (9)

IV. SIMULATION RESULTS

In this section, a set of computer simulation results are
presented. We aim at investigating the link between the GA-
optimized antennas’ positions and orientations to the propaga-
tion environment in question. We also evaluate the theoretical
channel capacity obtained by optimizing the antenna array
configurations using the proposed GA algorithm.
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(a) (b)

(c) (d)

Fig. 3. Evolved 3x3 MIMO configuration, One cluster. Uniformcluster main
direction distribution. SNR=20dB. Volume=(0.2λ)3 .

A. One cluster, 3x3 MIMO

Figure 3 shows the simulation results for a3 × 3 MIMO
system, with search space limited to(0.2λ)3. It considers
one cluster and its main direction is not fixed, but uniformly
distributed around the space. The cluster has angle spread of
20o. We made20 simulations, and all results show a pattern
similar to that of Figure 3. Since the available space is too
small to achieve signal diversity trough antenna spacing, the
optimizer made use of two strategies, orthogonal polarizations
and orthogonal patterns. According to Figure 3, antenna3 is
orthogonally polarized to antennas1 and 2. Antennas1 and
2 are placed in parallel. The electromagnetic coupling effect
makes antennas1 and 2 to get directional gains in opposite
directions. Figure 5 shows how the optimizer made use of po-
larization and pattern diversity, exploiting the electromagnetic
mutual coupling effect, in order to produce MIMO diversity.
Figure 4 shows the histogram for all20 simulations.

Fig. 4. Histogram for evolved 3x3 MIMO configuration, One cluster. Uniform
cluster main direction distribution. SNR=20dB. Volume=(0.2λ)3 .

Fig. 5. Resulting antenna pattern for evolved 3x3 MIMO configuration, One
cluster. SNR=20dB. Volume=(0.2λ)3 .

B. Array topology comparison

In work [15], an ULA is compared to a UCA. The
work in [16] shows the impact of DOA over correlation
for ULA, and the correlation degrades MIMO capacity. The
capacity is calculated for one cluster for different DOAs using
4 × 4 MIMO system. They have concluded that the ULA
achieves very high capacities for some DOAs but also very
low capacities for other DOAs. The UCA could not achieve
the ULA top capacity but had a much more stable behavior,
showing the same capacity despite the DOA. In our work we
simulate a channel with a cluster having 15o of angle spread
with normal multipath distribution. We also use our genetic
algorithm to evolve a 2D topology solution for the problem.
For this problem the fitness function was the average ergodic
capacity, considering the cluster to be in a different DOA at
each statistical realization. The constraint for the evolved array
was that the distance between elements should not be greater
thanλ/2. The array resulted for the genetic algorithm is shown
in Figure 6. As we can see in Figure 7, we found results
for ULA e UCA similar to [15], with the UCA being more
stable. The ULA had higher peak and average capacity, but
had very strong capacity losses for some DOAs, agreeing with
[16]. The evolved GA solution was better than both. It had the
highest average ergodic capacity while being much more stable
than ULA and with all capacities above the UCA solution.

V. CONCLUSION

The proposed GA based optimization algorithm for antenna
array positioning has proved to be successful in finding good
MIMO antenna schemes for a given propagation scenario.
Some solutions found by the GA optimizer were very subtle,
and a human designer would have difficulties trying to identify
the best location and orientation for the antennas according
to the specified propagation environment. The comparison of
ULA, UCA and the array evolved by our method shows that it
is a much more efficient engineering method than the intuitive
and trial and error approach.

The results so far have shown that pattern and polarization
diversities play an important (if not the most important) role
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Fig. 6. Array topology resulted from G.A. optimization.

Fig. 7. Performance comparison of ULA, UCA, and G.A. array topologies.

in MIMO capacity when there is little space available for
positioning the antennas. One important aspect of the proposed
method is its generality, as it can be adapted to be used with
different antenna and propagation models.

As a perspective of this work, we should consider the use
of different types of antennas, preferably practical mobile
terminal antennas.
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