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Resumo— Este artigo discute o projeto de sistemas de mltiplas electromagnetic coupling between terminal antennas ise pr
entradas e mdltiplas saidas (MIMO) de antenas e prope um tical problem that affects system performance. Therefore,
algoritmo genético para obter a posi@o e orientagio de cada ;hqer these constraints, optimizing the antenna placeatent

antena do arranjo MIMO que maximiza a capacidade ergdica . . . h -
para um dado cerério de propagago. Nossos resultados mostram the mobile terminal to yield a satisfactory performance is a

que o efeito do acoplamento eletromagtico pode ser explorado challenging problem  [5], [6].
pelo otimizador para diminuir a correlago do sinal aumentando ~ Genetic algorithm (GA) based optimization has been used
a capacidade. Tamiém & feita uma comparag@o entre arranjos  with success in various engineering problems. In [7], a ene
lineares uniformes (ULA), arranjos circulares uniformes (UCA)  gigorithm is used to optimize antenna arrays used for channe
e o arranjo otimizado pelo algoritmo geretico. o . S ; .
characterization, i.e. determination of multipaths dits of
Palavras-Chave—MIMO, otimizag &0 de arranjo, algoritmo  grrival (DOA). In [8], the authors resort to GA-based optimi
geretico, capacidade . o zation to find the channel parameters such as multipath atte-
Abstract—This paper discusses the design of multiple input 1y 5tions and delays. Recently, GA has been used to find good
multiple output (MIMO) antenna systems and proposes a genét S .
algorithm to obtain the position and orientation of each MIMO ar_lte_nr_la! eIemenF positions in sparse MIMO radar arrays [9] by
array antenna that maximizes the ergodic capacity for a giva Minimizing the side-lobes of the radar pattern. Anotheergc
propagation scenario. Our results show that the electromagetic work [10] uses GA to find the optimal distribution of a 3
coupling effect can be exploited by the optimizer in order to x 3 MIMO system for an indoor propagation channel. An
decrease signal correlation and increase MIMO capacity. A jntaresting aspect of that work is the inclusion of electagm
comparison among uniform linear array (ULA), uniform circu lar . S
array (UCA) and the GA-optimized array is also carried out. n_etlc COUP“”Q n t_he model. However, the work doe_s OOt S_hOW
either which distributions were found or how the distrilouis
change according to different multipath channel pararseter
The work of [11] defends the idea of using nature inspired
methods for MIMO antenna design, but the works mentioned
in there deal with the problem of antenna geometry definition
MIMO systems have been an important research topic dard not antenna array topology for different propagation
to their capability of providing a significantincrease irecinel environments. In  [12] a method of moments is proposed
capacity proportional to the number of transmit and/or inece to optimize MIMO antenna position and orientation. The
antennas. This is generally achieved by exploiting spatiaptimization is done by minimizing the antenna cross corre-
diversity at the transmit and receive branches [1], [2]. Whdation, by considering an i.i.d propagation scenario. aithh
considering realistic antenna models, the channel capacihtenna cross correlation degrades capacity, we cannot say
will depend on three main variables: The transmit antenti@at the configuration that minimizes antenna correlatcthé
array configuration, the receive antenna array configuratisame that maximizes MIMO capacity in non i.i.d. propagation
and the environment configuration, namely, the distributd scenarios.
the channel scatterers [3]. In this work, we address the antenna array capacity opti-
Multiplexing and diversity gains in MIMO systems can benization problem by resorting to a genetic algorithm method
obtained, for instance, by resorting to not only spatiakdity The goal is to find an optimal or suboptimal configuration for
but also to polarization diversity. While spatial diveysiin be antenna position and orientation that maximizes the ecgodi
achieved by ensuring enough antenna separation, polarizathannel capacity. Assuming array of dipoles and a channel
diversity can be achieved by exploiting different antennaodel that interfaces the propagation environment with the
orientations in the array configuration [4]. In cellular®ms, antenna array response pattern, the genetic algorithmgeana
a reasonable degree of spatial diversity can be obtaindteatto find, for each antenna, the best position and orientation
base-station. However, at the mobile terminal, this situiais subject to a space constraint. Due to the nature of genetic
completely different, since a good separation of the arsenralgorithms, the proposed method is very general. It canrinco
ensuring spatial diversity is not always possible. Morepveporate different types of antenna models, and it can also be
. used in different propagation channel models. Our simuati
This work was supported by the Research and DeVeIolo-mentré;emtake into account different sets of antennas and consiraint
Ericsson Telecomunicagdes S.A., Brazil, under EDB/@BClechnical Coo-
peration Contract. terms of available space, and also consider electromagneti

Keywords— MIMO, array optimization, genetic algorithm, ca-
pacity.
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coupling effects. We also compare the capacity provided byThe (m,n)t" entry h,, ,, of the MIMO channel matrixt
the optimized MIMO array with that of standard linear andM x N) can be expressed in terms of the directional channel

circular arrays. impulse response according to the following expressiof: [13
In Section II, we present the channel model that is exploited I

by thg propqsed algorithm. In Se_ct|_0n .III, we present the_ By = ZgTTz(d)Tm,n,la9Tm,n.,larTm,n)

genetic algorithm used for the optimizations and also tetai =

how the population is represented, how reproduction ogcurs X AY(GRo 1y ORots Tty OT2)

and how we used the ergodic channel capacity as the fitness

function of the genetic algorithm. Section IV presents the X8Re (ORam 1> OFam. 1> T Ram)

simulation results and results discussion. Finally, intiec xexp(jlKk(¢Rrai, ORs,1) - XRa,m])
V we draw the conclusions. xexp(jK(Pre,is O1a,1)  XTw.0]), (4)
Il. CHANNEL MODEL where g, is the antenna pattern response to the direction

EbeRI,mJ,eRm,mJ) while g7, is the antenna pattern response

In Figure 1 the channel geometric model used to enerfg . ! .
9 9 9 the direction (¢7g,m i, 01z,m,1) at the transmitter. The

the plane waves and to interface it to the antenna arra’é(és

is illustrated. We assume that the distance between ante m(;niit(i)cf g:)eu al?r:en(r)l:\ ;ggrsb'de;t?r?ngpiﬁeO;ar:::ﬁl;?é ?lrﬁg'
arrays and the scattering clusters is much higher than { 9 piing y '

distance between the array elements. In this case we & ct mt_egr:laltltr_]g th_(la_hnu;nerlcl:al elef[:tromag_nettlﬁs COdint
assume that the DOA and direction of departure (DOD) gi our simuiation. &(2 x 1) vector gg, is the produc

a given plane wave are the same for all the antenna eleme%égi(\e/ecro;%i):w ;Czlr?; %ﬁ?ﬁ% it(phasel amog:}gggi)dnez,gétﬁe

of the array. Each cluster is modeled by a finite set of plaﬁ% composed b’ the vertical Z(n@/dxho)ri;ontal eSDONSES:
waves, and has a main direction of arrival/departure, both PRz P y P :
azimuth and elevation. Angle spread and polarization sprea

within a cluster follow a gaussian distribution. gre(PRzmts ORenls TR2n) = GR2(PRem1y ORzm 1y TRem ) PR (5)

' RX TX ™\ Similarly, for the transmitter antenna pattern respogsg

P we have:

ng(¢Tm,n,l7 GTz,n,lv rTz,n) =397z ((sz.,n,la eTm,n,lv rTz,n)pTz (6)

The vectorrg, ,,, defines the antenna orientatidn,is the
wave vectorxgy is the relative position of thent” receiver
antenna anetr,, is the relative position of the” transmitting
antenna. The inner product of the vector wdvearriving
or departuring wave) with an antenna position (transmiter
receiver), is defined by:

Fig. 1. Geometric Channel model used in simulations. k(¢,0) -x = 277((;130059@05@5 + ycoslsing + zsinfsing) (7)

The channel double-directional impulse response, agsocia The electromagnetic coupling has a strong effect when
with the DOA pair (¢r.,fr.) and DOD pair(¢7,,07,) the antennas are separated by small distances (typicaby le
is given by the contribution of a finite number of dominanthe \/2). With hand-held telecommunication devices this is
multipaths components [13]: often, if not always, the case. Instead of implementing an

I electromagnetic code from ground-up, we chose in this work

A(dre, ORe, O72, 072) = Z Ai(DRats ORe1, dTw i, 072y), TOUSEEN available and well established code, integratedrto
= channel model. We use the NEC, which is a public domain
(1) software. The version we chose to work with is NEC2C, a C
where L is the number of arriving paths, amdand® denote, |anguage implementation of the NEC2 Fortran original code.
respectively, azimuth and elevation angles. The conidbuwdf The NEC code uses the method of moments (MOM) to solve

each path4; can be expanded as fallows: the electromagnetic field problem. One of its main qualies
A(Ore, One, bra, 07s) = Wit the low computational cost _of_the solutions, since MOM codes

are much faster than e.g. finite element method based codes.
X0(Pre — PR2,1)0(ORs — ORa )

X0(¢1e — ¢12,)0 (010 — O12,1), (@) I1l. GENETIC ALGORITHM OPTIMIZATION
where¢, = j2nf., andW; is the polarimetric transmission  GA works by analogy to genetic inheritance and differenti-
matrix defined as: ation that occurs in biology that permits a specie to fit ftsel

W, — { YHH YVH } 3) the environment in an adaptation process. The genetic eode i

YHV YWV a digital code that represents the individual charactesishat
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can be inherited from previous generations and be passed bgambining portions of DNA from two parents. A new array
the next generations. Our individual is the antenna array, ds derived by choosing antennas from two ancestor arrays.
genetic code is the channel array model stored in the compute pseudo-random function is used to choose from which
memory. A population, or generation, is a collection of an® parent each antenna will be copied for the new individual
arrays. The genes that define an array are the antenna typethe population. After the reproduction, a small pseudo-
antenna position and antenna orientation. We start withrandom change is made in each antenna parameter. Such a
random generation, where each antenna has a position ahdnge defines the mutation procedure. It is worth noting tha
orientation assigned to it by a random variable with uniforihe amount and extent of the mutation have a strong impact
distribution, within the limits of the desired volume spdoe on the algorithm performance. Small changes can make the
the antennas. The number of individuals in the generationakyorithm converge faster but it is more prone to get stuck in
increased by crossing and mutation. The crossing operatmtocal maximum, while stronger changes make it leave local
is the reproduction of new individuals that inherit part bét maximum for better maxima but makes the system less stable.
characteristics from one individual and other part fromeoth Therefore, a tradeoff between convergence speed anditstabil
individual, the parents. Which characteristic will comerfr exists, as usual in numerical optimization methods.

each parent is decided by an aleatory factor. The mutationAnother parameter to take into account is the size of the

operation is an aleatory small change in the genes. offspring in each generation. A small offspring providestéa
computation and less memory usage, at the expense of more
4 7\ iterations necessary to solve the problem.

enerate first antenna simulate the channel to for select a set of arrays with
array generation each array obtaining channel higher capacities for
matrix and capacity next generation B Fitness Function

In order to select the individuals for the next generatiois, i
(increase population Hfhange new individuaﬂ necessary to use a fitness function, which is always problem-
using crossing operation using mutation

,.,-r;., NO [
elect best solution "

capacity stop criteria
or maximum generation?

related. The interface between the fitness function and the
genetic algorithm makes it possible to choose any kind of
fitness function, as long as the function respects the iatput
and outputs of the interface. The input for the fithess fuomcti
has to be the current generation of individuals, in our case,
the various array configurations obtained by the crossimf an
mutation operations. The output of the function has to beesom
value attached to each individual making it possible tosifgs
The next step is to select the individuals better suited ¢o t. In our case, that value corresponds to the ergodic channe
environment, using the fitness function, and then repeat t@pacity, in bits per channel use, which is given by [14]:

reproduction step with this selected group. The reproducti

S

Fig. 2. Fluxogram of the employed genetic algorithm.

N,
and selection steps are repeated until an optimizatioariit C— 1 iloggdet [INT n SNRH | (®)
is met, or a certain number of generations is met. Our fitness Ng o Nt e

function is defined by the channel ergodic capacity as will be

detailed later. Figure 2 shows a general diagram of the gendere NV is the number of realizatiori to compute the expec-
algorithm optimization method, applied to our problem. tation statistics ar!qu represents the!" channel realization.
Note that, according to (4), each entky,, of H, (M x N)

depends on relative antenna positiang, ;..,s and antenna
Th . 4 in th by th far field patterns according to their orientatiang, 1. at a
e antenna is represented In the system by the tu%?ﬁen channel realization. Recall that only the receiveanas

(kind, position, orientation). The Kind is an integer token ,.q e object of the present investigation. The antennéreat

that identifies the antenna far-field pattern. In this work we itter (i.e. the b tation for the d link d
consider ideal half-wave dipoles, although more than ond ki ansmitter (i.e. the base station for the downlink) arepese

f Id b d Th " to have less placement constraints and are not optimized her
of antenna could be used. The position veotor [, y, | Therefore, the objective function of the genetic algoritlam

A. Population and Reproduction

i . - T ,
and orientation vector — [cr, B,7] _(yaw, pitch, roll). A "<oive the following problem:

collection of antennal;, as, ...a| defines an array. An array

is one individual in the population. The genetic algorithm argmax  C(XRrg1.M,TRz1.M) (9)
needs a finite set to search into, so position and orientation XRe,1. .M TRe,1.. M

need to be both limited an quantized. The degrees of freedom
of the position are limited by a limited volume defined prior
to simulation. The available volume is generally a practica In this section, a set of computer simulation results are
constraint of the antenna array design in small termindie Tpresented. We aim at investigating the link between the GA-
guantization is naturally imposed by the computer quatiima optimized antennas’ positions and orientations to the ggap
of the floating point numbers. tion environment in question. We also evaluate the themakti
The genetic code of each individual in the collection ishannel capacity obtained by optimizing the antenna array
formed by the antennas’ tuples. The reproduction is done bgnfigurations using the proposed GA algorithm.

IV. SIMULATION RESULTS
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. Antenna 1 pattern
Antenna 2 pattern

. Antenna 3 pattern

Fig. 5. Resulting antenna pattern for evolved 3x3 MIMO canfigion, One
cluster. SNR=20dB. Volume®.2))3.
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B. Array topology comparison

Fig. 3. Evolved 3x3 MIMO configuration, One cluster. Unifootuster main .
direction distribution. SNR=20dB. Volum¢g.2))3. In work [15], an ULA is compared to a UCA. The

work in  [16] shows the impact of DOA over correlation
for ULA, and the correlation degrades MIMO capacity. The
A. One cluster, 3x3 MIMO capacity is calculated for one cluster for different DOAfgs

Figure 3 shows the simulation results foBa< 3 MIMO 4 X_4 MIMO sygtem. The_Y have concluded that the ULA
system, with search space limited {6.2))%. It considers achieves very high capacities for some DOAs but also very

one cluster and its main direction is not fixed, but uniformlipW capacities for other DOAs. The UCA could not achieve

distributed around the space. The cluster has angle spfea 18 U_LA tr?p capacity bUt_ ha(\jd a _muchh rgcgi sltable beh?(vior,
20°. We made20 simulations, and all results show a patterfoWing the same capacity despite the - /N our work we

similar to that of Figure 3. Since the available space is to%_mulate a chann_el W'th_a (_:Ius_ter having”1é& angle spread )
small to achieve signal diversity trough antenna spacine, tW|th normal multipath distribution. We also use our genetic
algorithm to evolve a 2D topology solution for the problem.

optimizer made use of two strategies, orthogonal poladmat hi bi he fi ; ) h di
and orthogonal patterns. According to Figure 3, antehiga [ °" thiS problem the fitness function was the average ergodic

orthogonally polarized to antennasand 2. Antennasl and capacity, considering the cluster to be in a different DOA at

2 are placed in parallel. The electromagnetic coupling eﬁe‘éaCh statistical realization. The constraint for the esdlarray
makes antennas and 2 to get directional gains in oppositewas that the distance between elements should not be greater
directions. Figure 5 shows how the optimizer made use of p@_an/\/z The array resulted for the genetic algorithm is shown

larization and pattern diversity, exploiting the electagnetic N Figure 6. As we can see in Figure 7, we found results

mutual coupling effect, in order to produce MIMO diversity.for ULA e UCA similar _to [15], with the UCA being more
Figure 4 shows the histogram for &0 simulations. stable. The ULA had higher peak and average capacity, but

had very strong capacity losses for some DOAs, agreeing with
[16]. The evolved GA solution was better than both. It had the
12 - ‘ ‘ - highest average ergodic capacity while being much moréestab

I izt ergodic capacity than ULA and with all capacities above the UCA solution.
tor [ | Optimized ergodic capacity

V. CONCLUSION

The proposed GA based optimization algorithm for antenna
array positioning has proved to be successful in finding good
MIMO antenna schemes for a given propagation scenario.
Some solutions found by the GA optimizer were very subtle,
and a human designer would have difficulties trying to idgnti
the best location and orientation for the antennas accgrdin
to the specified propagation environment. The comparison of

53 6 6.5 7 78 8 ULA, UCA and the array evolved by our method shows that it
Ergodic capacity bps/iHz . .. . . . .
is a much more efficient engineering method than the inuitiv
Fig. 4. Histogram for evolved 3x3 MIMO configuration, Onestler. Uniform  and trial and error approach.
cluster main direction distribution. SNR=20dB. Volun{e=2X)°. The results so far have shown that pattern and polarization
diversities play an important (if not the most importantjero

Frequency
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Fig. 7. Performance comparison of ULA, UCA, and G.A. arrapdiogies.

in MIMO capacity when there is little space available for
positioning the antennas. One important aspect of the gexpo
method is its generality, as it can be adapted to be used with
different antenna and propagation models.

As a perspective of this work, we should consider the use
of different types of antennas, preferably practical mmbil
terminal antennas.
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