
XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT’11, 02-05 DE OUTUBRO DE 2011, CURITIBA, PR

Performance of Different Utility Functions in
Pricing Algorithms for Interference Alignment

Carlos I. R. Bandeira, Darlan C. Moreira, Walter C. Freitas Jr. and Yuri C. B. Silva
Wireless Telecommunications Research Group - GTEL
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Resumo— A ideia básica do alinhamento de interferência
consiste em pré-codificar os sinais transmitidos de tal maneira
que eles estejam alinhados nos receptores em que constituem
interferência, e ao mesmo tempo desalinhados do sinal desejado.
Dessa forma o sinal desejado e a interferência são facilmente
separados em cada receptor. Este artigo fornece uma análise da
abordagem baseada no interference price através do uso de duas
diferentes funções utilidade no algoritmo de Pricing distribuı́do
proposto na literatura. Resultados numéricos são apresentados,
os quais exibem uma comparação das métricas Sum Rate e CDF
para as funções utilidade mencionadas.

Palavras-Chave— Alinhamento de Interferência, Algoritmos de
Pricing, Funções Utilidade, Canais Interferentes MIMO.

Abstract— The basic idea of interference alignment consists in
precoding the transmitted signals such that they are aligned at
the receiver where they constitute interference, while at the same
time disjointed from the desired signal. Thus, the desired signal
and the interference are easily separated at each receiver. This
paper provides an analysis of an interference align technique
based on the pricing approach through the use of two different
utility functions in the distributed pricing algorithm proposed in
the literature. Numerical results are presented, which depict a
comparison of the Sum Rate and CDF metrics for both utility
functions.

Keywords— Interference Alignment, Pricing Algorithms,
Utility Functions, MIMO Interfering Broadcast Channels.

I. INTRODUCTION

It is well known that the capacity of the single
user point-to-point Multiple-Input Multiple-Output (MIMO)
channel with M transmit antennas and N receive antennas
increases linearly with min(M,N) [1], [2] in the high
Signal-to-Noise Ratio (SNR) regime. This linear growth,
addressed as Degrees of Freedom (DoF) or capacity pre-log
factor, commonly known in the single user case literature as
multiplexing gain, is defined as [3]–[5]

η , lim
SNR→∞

C(SNR)
log(SNR)

, (1)

where C is the sum rate capacity.
Similarly, in the multi-user case it is useful to characterize

the DoF of the network (related to the sum rate capacity of
the network). To give it a simple intuition, it is worth to note
that:
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1) The degrees of freedom of a network may be interpreted
as the number of resolvable (interference-free) signal
space dimensions and its determination can be considered
as a preliminary characterization of the capacity for a
network;

2) It provides a good indicative of capacity behavior in the
high SNR regime.

The interference alignment in signal vector space was
initially introduced by Maddah-ali et al. (2006) [6], where
iterative schemes were formulated for optimizing transmitters
and receivers in conjunction with dirty paper coding and
successive decoding schemes. Initially, research focused on
the determination [7] of the achievable degrees of freedom
for different scenarios [4], [5], [8]–[10] and finding techniques
to obtain them, i.e., the maximization of the number of
interference-free dimensions in the system was the main
objective.

On the other hand, for low to moderate SNR values the
complete alignment does not generally maximize the sum
utility and there is interest in finding precoders that relax
the perfect alignment constraint, where now the objective
is maximizing the sum rate performance [7]. Specifically,
each transmitter will face a trade-off between finding a
precoder that minimizes the interference that its own receiver
sees (“egoistic” or “help yourself” approach) and minimizing
the interference that it causes at the non-intended receivers
(“altruistic” or “do no harm” approach).

In [11]–[15], the idea of interference price was proposed
where each transmitter’s beams were treated separately and
associated with an interference price, which corresponds to
a metric of how much the utility of a user will decrease
per marginal increase of the interference caused by the other
users after the appropriate receive filter. The algorithm was
introduced initially to Single-Input Single-Output (SISO) links
by Huang et al. in [16]. Then, it was extended to Multi-Input
Single-Output (MISO) and MIMO channels, respectively
in [11] and [12].

The trade-off between the egoistic and altruistic objectives
is clear in the pricing algorithm, where the objective includes
a term corresponding to the egoistic objective and another one
for the altruistic objective, the former weighted by the price.
The trade-off is then controlled by the choice of the utility
function and, consequently, of the pricing.

In this paper we compare the rate utility and the “α-fair”
utility [16] functions in the distributed pricing algorithm
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through analysis of the sum rate for a set of SNR values in
the MIMO interference channel scenario. The intention of this
work is to analyze if the “α-fair” utility function can increase
the sum rate and/or if it improves the fairness in the allocation
of resources between the users by choosing an appropriate
value of α.

In the next section, we present the system model. Section III
illustrates how the interference alignment works, while
Section IV shows the distributed pricing algorithm and
our modification of the utility function. Simulation results
are presented in Section V and conclusions are given in
Section VI.

II. SYSTEM MODEL

We consider a time-invariant interference wireless network
consisting of K transmitter-receiver pairs, as shown in Fig. 1.
Each pair has M transmit/receive antennas, where each
transmitter sends useful information only to its own receiver,
while causing interference at the other receivers. This is the
so called “K-user MIMO Interference Channel” [4], [10], [17]
and we refer to each transmitter-receiver pair as a user.
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Fig. 1
MIMO INTERFERENCE CHANNEL WITH K USERS.

The k-th receiver decodes the signal from the k-th
transmitter while considering the interference from all other
transmitters as noise. The decoded symbol at receiver k in a
given time interval is then

ŝk = gHk Hkkvksk︸ ︷︷ ︸
desired signal

+

K∑
j=1

j 6=k

gHk Hkjvjsj

︸ ︷︷ ︸
interference

+gHk nk︸ ︷︷ ︸
noise

, (2)

where gk is the linear receiver filter of user k, Hkk is the
direct channel matrix, Hkj is the cross-channel matrix between
transmitter j and receiver k, sk is the transmitted symbol from
transmitter k, vk is the precoding vector at transmitter k and

nk is a zero mean additive complex Gaussian noise vector
with covariance matrix E{nknHk } = σ2I.

From (2), assuming the transmit symbol has
unit variance for all users, we can see that the
Signal-to-Interference-plus-Noise Ratio (SINR) at the
k-th receiver is given by

γk =
|gHk Hkkvk|2∑

j 6=k |gHk Hkjvj |2 + ||gk||22σ2
=

Sk
Ik +Nk

. (3)

The overall system objective is a function of the SINR at each
receiver and corresponds to maximizing the sum-utility across
users. That is, the optimization function is given by

max
v1...vk
g1...gk

K∑
k=1

uk (γk) s.t.: ||vk||22 ≤ Pmax
k ∀k ∈ {1, . . . ,K} ,

(4)
where Pmax

k denotes the power constraint of user k.
The properties of this optimization problem depend on

the utility functions employed, since due to interference it
may have multiple locally optimal solutions [15]. However,
for a wide class of utility functions the constraint set is
convex yielding a unique local optimum, which is also the
global optimum and can be solved using standard optimization
techniques.

III. INTERFERENCE ALIGNMENT

The principle of interference alignment consists in the basic
idea of constructing transmit signals in such a way that the
interference they cause at all unintended receivers overlaps
onto the same subspace, while they still remain separable at
the intended receivers [5].

Fig. 2 depicts the perfect alignment of the interference
caused by transmitters i and j at the receiver k. Note that the
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Fig. 2
PERFECT ALIGNMENT AT RECEIVER k OF THE INTERFERENCE CAUSED BY

TRANSMITTERS i AND j .

precoders vj and vi align the cross-channels Hkj and Hki,
respectively, in the same subspace, represented by the dotted
line. On the other hand, the precoder vk does not project the
direct channel Hkk in any particular direction1 and, due to the
randomness of the channel, the equivalent channel Hkkvk is
likely to span the whole space. At the receiver k the zero-force
filter gk will simply project the received signal (2) in the

1The precoder vk is intended to only align the interference at receivers j
and i.
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space orthogonal to the interference space, thus eliminating
all the interference. Mathematically, the interference alignment
conditions are given by [18]:

gHk Hkjvj = 0, ∀j 6= k (5)

gHk Hkkvk 6= 0, (6)

resulting in the equivalent channel

Hkk , gHk Hkkvk. (7)

The DoF for the MIMO Interference Channel (MIMO-IC)
with K = 3 users and M transmit/receive antennas is given
by [10]

ηMIMO-IC =
3M

2
. (8)

In pure interference alignment the goal is to completely
align the interference in order to obtain the maximum DoF the
system can provide. However, by doing so each transmitter is
trying to improve the performance of the unintended receivers
while neglecting its own. By relaxing the perfect alignment
constraint one can obtain better results, for instance, in terms
of the sum rate capacity.

IV. DISTRIBUTED PRICING ALGORITHM

In the distributed interference pricing algorithm [11]–[15],
the optimization problem in (4) is broken down into optimizing
the precoders vk and optimizing the receive filters gk.
Therefore, the optimization of the precoders is formulated in
a distributed approach as

max
vk

uk (γk)−
∑
j 6=k

πj |gHj Hjkvk|2 s.t. ||vk||22 ≤ Pmax
k ,

(9)
where the utility function uk is a function of the SNR γk and
measures the quality of service of the user k. The second term
in (9) corresponds to the cost for the transmitter k to cause
interference at the unintended receivers and it depends on the
values πj (j 6= k) announced by them. The interference price
for a user j is calculated by

πj = −
∂uj (γj)

∂Ij
. (10)

The utility function uk is assumed to be a monotonically
increasing, concave and twice differentiable function of γk.

Traditionally the rate utility, uk = log(1 + γk), is utilized
because it corresponds to the user’s maximum achievable rate
assuming Gaussian codebooks [19]. It is also employed in the
original interference pricing algorithm. Thus, the interference
price πk results in

πkrate =
Ik +Nk

Ik +Nk + Sk
· Sk
(Ik +Nk)2

. (11)

There are several utility functions which can be used to
replace the rate utility and it is interesting to note that
the prices πj yields a balance between maximizing the
utility function uk(γk) (egoistic objective) and minimizing
the interference caused at the unintended receivers (altruistic
objective). Furthermore, other aspects such as the fairness in
the distributed resources can be analysed, but no comparison

has been made so far between different utility functions (and
therefore their corresponding interference prices) in the pricing
algorithm regarding the obtained system performance. In this
paper we analyse the impact of using the “α-fair” utility
function shown below [16]

u(γk) =
γαk
α
, 0 < α < 1, (12)

for which the corresponding interference price can then be
derived as

πkα-fair =

(
Sk

Ik +Nk

)α−1
Sk

(Ik +Nk)
2 . (13)

In [13] a numerical algorithm for solving the nonlinear
optimization problem in (9) is presented, where the
Karush-Kuhn-Tucker (KKT) conditions for user k are given
byak(vk)HH

kkgkg
H
k Hkk −

∑
i 6=k

πiH
H
ikgig

H
i Hik


︸ ︷︷ ︸

Xk

vk = λkvk,

(14)
with

ak(vk) =
u

′

k(γk)

|gHk nk|2 +
∑
i 6=k |gHk Hkivi|

, (15)

where λk is the Lagrange multiplier associated with the power
constraint, and u

′

k is the derivative of the utility function
uk(γk) with respect to γk.

Equation (14) has the form of an eigenvector equation. If all
eigenvalues of Xk are negative, then the updated precoder vk
is the zero vector, otherwise, it is the eigenvector associated
with the largest eigenvalue of Xk with an appropriate scale
factor.

Considering the MMSE criterion, the optimal receive filter
for user k is given by [13]

gMMSE,k =

 K∑
j=1

Hkjvjv
H
j HH

kj + σ2I

−1 Hkkvk. (16)

The iterative algorithm is summarized by Algorithm 1. In
the next section, we show the simulation results obtained.

Algorithm 1 Distributed Interference Pricing
1) Initialize randomly a beamforming vector vk for each

user k respecting the power constraint;
2) Then, optimize the receive filter gk according to (16);
3) Each receiver k calculates the interference price πk and

announces it to other users;
4) Next, one random user is chosen to solve (9) and optimize

his beamforming vector according to (14);
5) The remaining users update their receive filters

using (16);
6) Repeat from step 2 until convergence (proved in [19])
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V. SIMULATION RESULTS

In this section, we show the simulation results for both
utility functions. We consider a three-user system with
two transmit and two receive antennas for each user. The
direct channel and cross channel matrices have i.i.d complex
Gaussian entries with unit variance, that is, the direct and
interference channel matrices have elements with Rayleigh
fading.

In Fig. 3, we show the sum rate performance versus SNR,
averaged over 500 channel realizations, for different values
of α. We observe the impact of α in the trade-off between
the egoistic (first term in (9)) and altruistic objectives (second
term in (9)) yielding different sum rate values.
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Fig. 3
ILLUSTRATION OF THE PERFORMANCE OF RATE UTILITY AND “α-FAIR”

UTILITY FUNCTIONS IN THE DISTRIBUTED PRICING ALGORITHM.
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Fig. 4
ILLUSTRATION OF CDF OF THE WORST RATE.
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Fig. 5
ILLUSTRATION OF CDF OF THE BEST RATE.

In order to draw some insights about the impact of changing
the α parameter in the pricing algorithm, lets consider the
egoistic and altruistic parts in (9). The egoistic part can be
written as

uk(γk) =
γαk
α

=
Sk

α

α(Ik +Nk)α
(17)

and the altruistic part can be written as∑
j 6=k

πj |gHj Hjkvk|2 =
∑
j 6=k

πjCjk =
∑
j 6=k

Sj
α

(Ij +Nj)α+1
Cjk,

(18)
where Cjk is a constant (we are interested in the variation with
alpha). Because both terms vary differently with alpha, then
changing α will change the relation between the egoistic and
altruistic objectives. However, determining the optimal value
of α is a difficult problem. An empirical value of α can be
obtained from Fig. 3 by choosing the value that yields the
highest sum rate. The numerical results show that for low
values of α (0.10 or lower) the α-fair function achieves better
performance than the rate utility function. In order to analyse
how this gain is spread among the users, the Cumulative
Distribution Functions (CDFs) of the worst and best obtained
rates are shown, respectively, in Figures 4 and 5.

In Fig. 4 we see that the worst obtained rate is better
comparing to the obtained rate when using the original rate
utility function. On the other hand, Fig. 5 shows that the best
obtained rate has no gain (or loss), resulting in approximately
the same performance as the original rate utility function. That
is, although not large, the gain when using the α-fair utility
function comparing to the original rate utility goes to the user
who needs it the most.

VI. CONCLUSIONS

Several papers in the literature analyse the distributed
pricing algorithm performance in different scenarios, as well
as its convergence. However, none of them investigates
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the performance impact regarding the choice of the utility
function.

In this work we have presented a comparative analysis of the
rate utility and “α-fair” utility functions with the distributed
pricing algorithm. We have empirically determined an interval
of α values for the “α-fair” utility function that provides a
higher sum rate than the rate utility.

Another interesting investigation aspect is the definition of
the interference price πk. Although equation (10) is intuitive
(the more sensitive the utility of a user is to interference, the
greater its interference price should be), no derivation of an
optimal price is available in the literature. The derivation and
analysis of different interference prices and their impact on
the convergence of the algorithm will be left for future work.
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