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Towards Using DFT to Characterize Complex
Networks

Danilo R. B. de Araújo, Carmelo J. A. Bastos-Filho and Joaquim F. Martins-Filho

Abstract— There are some Network Metrics that are very
useful to analyze and model Complex Networks. These metrics,
including the spectral-based ones, can be used to retrieve infor-
mation from the network. As an example, the eigenvalues of the
Laplacian matrix can present interesting information about the
network topology. We observed that if one applies the Discrete
Fourier Transform (DFT) over the eigenvalues of the Laplacian
Matrix, it is possible to observe different patterns in the DFT
depending on some properties of the analyzed networks. In this
paper, we propose two novel metrics based on the DFT samples,
named FZC and HVC, that can be used to identify the type of
network. We tested these metrics in networks generated by three
different models (Random, Small-World and Scale-free) and in
real network benchmarks. The results indicate that one can use
the proposed metrics to identify the generational model of the
network.

Keywords— Complex Networks, Graph Theory, Network As-
sessment, Discrete Fourier Transform.

I. INTRODUCTION

Graph theory has been applied to practical problems since
its proposition in 1736, when the swiss mathematician Leon-
hard Euler created the principles of this theory aiming to
determine how one should circumnavigate the Bridges of
Königsberg. Some of the modern concepts regarding the
evolution on graphs were proposed in the 1950s, when Paul
Erdos proposed some novel concepts focusing on random
graphs [1]. The Erdos-Renyi (ER) random graphs had a huge
impact on the development of this area. On the other hand,
some remarkable models, such as Power Law networks (Scale-
Free networks) [2] and Small World networks [3], were just
proposed in the 1990s and have been deeply studied since then.
These models allow one to analyze and to model complex and
dynamic systems in several areas, such as physics, mathemat-
ics, computer science, biology, economics, etc. Because of this
multi-disciplinary aspect, this theory and its applications has
been called as “Network Science” [4]. When the number of
nodes is high and some network behaviors arise, this theory
is known as Complex Networks.

Complex Networks have become popular mainly due to
their capability to represent virtually any network structure of
real-world phenomena. Because of this, several investigations
have been proposed to represent the network structure and to
analyze the topological features of the networks in terms of
Network Metrics (NM), including the analysis of dynamical
changes on the topology over the time. Recently, there are
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some studies focusing on the relationship between the structure
and the dynamics of Complex Networks [5]. NM are quite
important to obtain a comprehensive understanding about
this relationship. Besides, the quantitative description of the
networks properties also provides fundamental subsidies for
classifying Complex Networks.

This paper aims to provide some novel ideas on how to use
Discrete Fourier Transform (DFT) over the eigenvalues of the
Laplacian Matrix in order to characterize Complex Networks.
The remainder of this paper is organized as follows: Section
II provides a brief review on previously proposed metrics to
characterize Complex Networks, i.e. we show the definition of
the most used NM; Section III presents two novel NM, named
FZC and HVC, to retrieve information of Complex Networks
based on DFT spectra and some preliminary results; Section
IV presents the conclusions.

II. A BRIEF REVIEW ON COMPLEX NETWORK
CHARACTERIZATION

The analysis of relevant topological properties is one of
the major objectives that drives the research on Complex
Networks. A topological property of a network is inherently
related to the graph that represent this network. This means
that all networks with the same topological properties define
a family of graphs. Some NM have been proposed to quantify
relevant topological properties of Complex Networks [4]. This
section presents a brief review of the most used NM. Several
surveys [6], [7] are available and can be used for further studies
on the concepts briefly presented in this section.

We consider a Complex Network as a graph G = (N ,L), in
which N and L denote the set of vertices and the set of edges,
respectively. In this paper we just considered unweighted and
undirected graphs. Besides, a graph cannot contain self-loops
(connections beginning and ending at the same node). We can
also define the amount of nodes and links in a network as
N = |N | and l = |L|, respectively.

A. Structural-based CNM

The link density (q) of a network is defined as the ratio
between the number of links that actually exists and the
maximum number of links that could exist in the network (i.e.
if all nodes are connected to all others by a direct link). The
node degree (D) describes the number of links or neighbor
nodes of a given node. The node degree distribution defines
the probability, Pr(D), of a randomly selected node to have
a certain degree D. The average number of links that are
connected to a node is called the average node degree. Another
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metric that quantifies the correlation between pairs of nodes is
the assortativity coefficient (r), in which r lies in the interval
−1 ≤ r ≤ 1. When r > 0, the network tends to have nodes
that are connected to other nodes that present a similar D [8].

The shortest path describes the number of hops between a
given pair of nodes. The distance distribution is the probability,
Pr(H), that a randomly selected pair of nodes presents a
shortest path with value equal to H . The longest shortest path
(Hmax) between any pair of nodes is referred as the diameter
of a graph, which is defined as diam(G).

The clustering coefficient (ci) is the ratio between the
number of triangles that contain node i and the number of
triangles that could possibly exist if all neighbors of i were
interconnected [3]. The clustering coefficient for the entire
graph cG is the average of the clustering coefficients of all
the network nodes. Several NM based on centrality were also
defined. As an example, Betweenness measures the centrality
of a node or link within a graph. Nodes (links) that appear
frequently on shortest paths between node pairs present higher
betweenness than the ones that rarely appear [9]. Average node
(link) Betweenness is the average value of the node (link)
betweenness over all nodes (links).

A graph is said to be connected if there exists a path between
each pair of nodes. When there is no path between at least
one pair of nodes, a network is defined as disconnected. If
there is a link between every pair of nodes in a graph, the
graph is defined as complete (KN ). The link connectivity kl is
the minimum number of links to be removed in order to turn
a graph disconnected. The node connectivity kN is defined
analogously [10].

B. Spectral-based CNM

This section summarizes the main metrics related to spectral
measurements on graphs. In this case, the metrics are closely
related to the eigenvalues of the matrices that represent the
network. A survey on graph spectra can be found in [6].

In the graph theory, a network can be represented by
its Adjacency matrix (A), the Node Degree matrix (D) or
the Laplacian matrix (L). The Adjacency matrix (A) of an
undirected graph with N nodes is a N x N matrix, in
which the non-diagonal entries (i, j) are equal to “1” if the
nodes i and j are adjacent (connected), or “0” otherwise. In
A, the entries (i, i) are always equal to “0”, since we are
considering that a node can not be connected to itself. Since
we are considering undirected graphs, the adjacency matrix
is a symmetric matrix. A diagonal matrix, which contains
information about the degrees of the nodes, is named Node
Degree matrix (D). D is used together with the Adjacency
matrix to build the Laplacian matrix (L) of a graph. L is
defined as L = D −A, in which the non-diagonal entries (i, j)
are either “−1” or “0”, depending on whether nodes i and j
are adjacent or not, respectively, and the diagonal entries (i, i)
are equal to the degree of the nodes Di.

The study on the relationship between a graph and its
eigenvalues (and eigenvectors) is referred in the literature
as spectral graph theory. All eigenvalues are real for the
Adjacency matrix [11], whereas all eigenvalues are real and

nonnegative for the Laplacian matrix [12]. The ordered set of
N eigenvalues of A or L is called the spectrum of the matrix.
If there are two graphs with similar sets of eigenvalues, this
means that they probably present similar graph structures or
graph isomorphism [13]. Based on this, one can suggest to
use the eigenvalues of a characteristic matrix of a graph to
retrieve information or to classify Complex Networks.

The largest eigenvalue of A is denoted as the spectral radius
(ρ). It could be used for many applications, such as modeling
virus propagation in networks [14]. The second smallest eigen-
value of L is denoted as the algebraic connectivity (λN−1). A
graph is disconnected if λN−1 = 0. Moreover, if λN−i+1 = 0
and λN−i 6= 0, then a graph has exactly i components. This
also means that the multiplicity of zeros in the eigenvalues of
the Laplacian matrix corresponds to the number of indepen-
dent components of the graph. The algebraic connectivity also
measures the connectivity of a graph, i.e. a higher value for
λN−1 implies in a higher difficulty to cut a graph in two inde-
pendent components [15]. Besides, there are many real-world
problems in which λN−1 has an important meaning [12], [16].
Another important spectral metric, called natural connectivity
NC, aims to characterize the redundancy of alternative routes
in a network. NC is calculated by quantifying the number of
closed chains of all lengths in the network [17]. Both λN−1

and NC are commonly used to measure the robustness of real-
world networks.

Previous works have also investigated the density function of
the eigenvalues fλ(t), which is more suitable to analyze the
eigenvalues {λm}1≤m≤N in large graphs [18]. The density
function is defined by fλ(t) = 1

N

∑N
m=1 δ(t− λm), where

δ(t) is the Dirac function [6]. It is possible to recognize
specific families of complex networks by analyzing the density
function of A.

III. TWO NOVEL SPECTRAL METRICS FOR ASSESSING
COMPLEX NETWORKS

Although the eigenvalues of the characteristics matrices
present a lot of useful information, the most simple and used
metrics do not involve all of them. In order to better understand
the complete set of eigenvalues of the Laplacian matrix of a
Complex Network, we propose here to analyze the spectral
behavior of the eigenvalues by applying the Discrete Fourier
Transform (DFT) [19] over the entire set of eigenvalues.
Figures 1 and 2 show the Even and Odd components for the
DFT of the eigenvalues of the Laplacian matrix for a scale-free
network generated by the generative procedure of Barabási
(Scale-Free) [2]. First of all, one can observe that the Even
and Odd components for the DFT present different behaviors
and must be observed in separate. This indicate that there must
be a phase coherence in the eigenvalues. We have observed
that the DFT present different behaviors for other Complex
Network models, such as Erdos-Renyi (Random Graphs) [1]
and Watts-Strogatz (Small-World) [3].

Based on the characteristics observed in Figures 1 and 2, we
propose two simple metrics involving the DFT samples. The
first metric, namely FZC, represents the frequency in which the
first even component of the DFT crosses the zero. The second



XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

-500,00

4.500,00

9.500,00

1 21 41 61 81 101 121 141 161 181 201

D
F
T
(ω

)

ω

FZC = 18

Fig. 1. Even DTF values of the eigenvalues of the Laplacian matrix of a
scale-free network.
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Fig. 2. Odd DTF values of the eigenvalues of the Laplacian matrix of a
scale-free network.

metric, called HVC, represents the frequency in which the odd
component presents the highest DFT value. The procedures to
calculate both metrics are shown in the pseudocode depicted
in Algorithm 1.

Algorithm 1: The algorithm used to calculate FZC and
HVC.

Let AN the adjacency matrix of the network N ;
Let DN the degree matrix of the network N ;
Calculate the Laplacian matrix LN = DN −AN ;
Calculate the real eigenvalues of LN and store it in EN ;
Calculate the DFT of EN and store the values in DFTN ;
Let DFTE be the set of even components of DFT ;
Let DFTO be the set of odd components of DFT ;
Let FZC be the first component of the DFTE that
passes through the zero;
Let HV C be the component associated to the highest
DFTO value;
Let lastV alue = DFTE(0);
for (int c = 0; c < DFTE .length; c++) do

if (abs(signum(DFTE(c)) + signum(lastV alue))
!= 2) then

FZC = c;
break;

end
lastV alue = DFTE(c);

end
Let maxV alue = −∞;
for (int c = 0; c < DFTO.length; c++) do

if (DFTO(c) > maxV alue) then
maxV alue = DFTO(c);
HV C = c;

end
end

In Algorithm 1, the function abs(.) means that
abs(z) = |z| = | − z| = z. The function signum is defined
as follows:

signum(z) =

 1 for z ≥ 1
−1 for z ≤ −1

0 for z = 0
. (1)

We aim to show that the DTF calculated over the eigenval-

ues of the Laplacian matrix present different characteristics for
different types of networks. In order to show this, we generated
45, 000 different networks using the generative procedures
of Erdos-Renyi (Random), Barabási (Scale-Free) and Watts-
Strogatz (Small-World). We varied the density values q from
0.02 to 1.00 with a step value of 0.02. For each pair (generative
procedure, q), we created 100 different networks with different
sizes, i.e. 100, 200 and 400 nodes. Our implementation of
Random Graphs establishes a link between a pair (i, j) if a
uniform random variable assumes a value below a probability
value p. In order to generate Small-World networks we create
a k-regular graph and change existing links (i, j) to a new
one (k, l) considering a rewiring probability p = 0.1. We use
the value of density (q) to calculate a value to k. Finally,
to generate a Scale-Free network we used the preferential
attachment process. The networks starts with n = 3 nodes
and each of the (N − 3) remaining nodes are attached to the
network by adding ∆m links to the existing nodes. We use
the density (q) to determine the value of ∆m.

Figures 3 (top), 4 (top) and 5 (top) show the average value
of the FZC obtained from 100 different networks with 100,
200 and 400 nodes, respectively, as a function of the density
of the network. All networks were generated independently
by its referred model. One can observe clearly that the FZC
occurs for higher frequencies for networks with low density
and diminishes as the density increases for all models. Fur-
thermore, Scale-Free networks exhibits highest values of FZC
when compared to Random and Small-World networks with
the same density.

Figures 3 (bottom), 4 (bottom) and 5 (bottom) show the av-
erage value of the HVC obtained from 100 different networks
with 100, 200 and 400 nodes, respectively, as a function of
the density of the network. One can observe that Random
and Small-World networks have HV C = 1. For Scale-Free
networks, HV C = 1 only occurs for networks with density
above 0.20, regardless of the number of network nodes. One
can also observe that there is a peak that slightly shifts its
position depending on the number of network nodes.

In order to analyze the variation in the values of the
metrics to a set of 100 generated networks from each type,
we generated some box-plot charts for the density q = 0.02.
According to Figure 6, one can observe that the metrics present
different values according to the type of network, specially
for the FZC. In Figure 6, SF, SW and RND mean Scale-Free,
Small-World and Random, respectively.

We have also analyzed the proposed metrics for two real
networks. The first network is a social network that describes
the face-to-face behavior of people during a conference [20].
This network presents both the Scale-Free and Small-World
effect. The second network is the “Caenorhabditis elegans
metabolic network” [21] (a typical Scale-Free network). To
emphasize the expressivity of using DFT to characterize
complex networks we generated two random networks using
the Erdos-Renyi generative procedure with similar size and
density. The HV C value was equal to “1” for all networks.
The FZC values for these four networks are summarized in
Table I.

Figures 8 and 9 show the eigenvalues and the odd and even
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Fig. 3. Comparison of FZC (top) and HVC (bottom) from networks with
100 nodes as a function of the density.
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Fig. 4. Comparison of FZC (top) and HVC (bottom) from networks with
200 nodes as a function of the density.

components of the DFT for the two real networks described
in Table 1. Figure 7 presents the eigenvalues related with
the 3rd network of the Table I. We show the values for the
metrics as well. First of all, the DFT curves for each network
present different behaviors. From Figures 7(b), 8(b) and 9(b)
one can observe that all networks present HV C = 1. It is
in line with what is shown in Figure 5. Although there is a
mismatch for the Scale-Free network (“Caenorhabditis elegans
metabolic”), it is possible to observe from Figure 9(b) that the
curve presents a similar shape when compared to Figure 2 and
the second peak occurs around frequency value “8”. Besides,
Figures 7(c), 8(c) and 9(c) confirm what it is presented in
Figure 5 (top), i.e. scale-free networks present the highest
FZC, and random networks present a higher FZC value
when compared to small-world networks.
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Fig. 5. Comparison of FZC (top) and HVC (bottom) from networks with
400 nodes as a function of the density.
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Fig. 6. Box-plot charts to the proposed metrics for networks with density
q = 0.02.
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Fig. 7. Eigenvalues of the Laplacian matrix and the DFT of the eigen-
values for a Erdos-Renyi network equivalent to the “Caenorhabditis elegans
metabolic” network.
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TABLE I
COMPARISON OF TWO DIFFERENT REAL NETWORKS AND AN EQUIVALENT

RANDOM NETWORK.

Network Category Size Density Algebraic
Connectivity

FZC

Erdos-Renyi Random 113 0.35 22.66 1
network
Sociopatterns Social 113 0.35 1.00 27
Hypertext 2009
Erdos-Renyi Random 453 0.02 1.24 8
network
C. elegans Interaction 453 0.02 0.26 56
metabolic
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Fig. 8. Eigenvalues of the Laplacian matrix and the DFT of the eigenvalues
for the Sociopatterns-Hypertext 2009 network [20].
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Fig. 9. Eigenvalues of the Laplacian matrix and the DFT of the eigenvalues
for the “Caenorhabditis elegans metabolic” network [21].

IV. CONCLUSIONS

In this paper we presented some preliminary results towards
the use of DFT over the eigenvalues of the Laplacian Matrix
in order to retrieve information or classify different families
of complex networks. The inspection of specific points of
the DFT curve allows one to correctly separate Scale-Free

from Small-World and Random Networks. We also observed
that the Even and Odd DFT components present different
behaviors and, based on this, it is possible to define novel
metrics. We propose two metrics, FZC and HVC, which are
related to the even and odd components of the DFT over
the Laplacian matrix. Both metrics were applied to classify a
large group of networks created by the generative procedures
of Erdos-Renyi, Albert-Barabási and Watts-Strogatz. We also
applied our metrics to real networks in order to assess the
results obtained for the simulated networks. Further analysis
aims to investigate other characteristics of the DFT curves and
to establish proper relations between these novel metrics and
other well known network metrics.
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