# Estimação de Parâmetros de Canais Gilbert-Elliott

Igor Moreira e Cecilio Pimentel

*Resumo*— Este trabalho compara três métodos para estimação dos parâmetros de um modelo de canal de estados finitos Markovianos, mais especificamente o canal Gilbert-Elliot (GEC), de modo a aproximar um canal discreto com desvanecimento. Para isso, o método proposto por Wilhelmsson e Milstein e o algoritmo Baum-Welch, já utilizados na literatura, foram comparados com o método de minimização da divergência de Kullback-Leibler entre duas medidas de probabilidade geradas pelo GEC e pelo canal com desvanecimento. A precisão dos modelos obtidos com cada técnica será avaliada comparandose curvas da função autocorrelação, da vazão do protocolo GBN e da probabilidade de uma decodificação sem sucesso de um código de bloco.

Palavras-Chave— Canais de estados finitos Markovianos, desvanecimento, estimação de parâmetros, probabilidade de erro.

*Abstract*— This paper compares three methods for estimating the parameters of class of finite state Markov channels, specifically the Gilbert Elliot channel (GEC), so as to approximate a discrete fading channel. For this, the method proposed by Wilhelmsson and Milstein and the Baum-Welch algorithm, already used in the literature, are compared with the minimization of the Kullback-Leibler divergence between two probability measures. The accuracy of the GEC obtained with each estimation technique is measured in terms of the autocorrelation function, the throughput of the Go-Back-N protocol and the probability of an unsuccessfully decoding of a block code.

*Keywords*— Finite-state Markovian channels, fading, parameters estimation, error probability.

#### I. INTRODUÇÃO

Canais de comunicação sem fio são caracterizados por sofrer desvanecimento multi-percurso. Esse fenômeno caracteriza um canal de comunicação em que os erros são correlacionados temporalmente, ou seja, um erro em um certo instante aumenta a probabilidade de erro no futuro próximo. Essa dependência estatística é denominada memória do canal.

Este trabalho emprega uma classe de canais de estados finitos Markovianos (FSMC, *Finite State Markov Channels*) conhecida como canais Gilbert-Elliott para modelar a sequência de erro produzida por um canal discreto com desvanecimento (DFC, *Discrete Fading Channel*). O DFC considerado neste trabalho consiste em um modulador de deslocamento de fase binário (BPSK, *Binary Phase-Shift Keying*), um canal com desvanecimento Rayleigh com função autocorrelação conhecida e um demodulador coerente com decisão abrupta.

Um problema fundamental na área de modelamento de canais é encontrar um método eficiente para achar os parâmetros de um modelo FSMC de tal forma que este tenha um comportamento estatístico semelhante ao canal que se deseja modelar. O objetivo deste trabalho consiste em comparar a precisão de três métodos de estimação dos parâmetros de um GEC que aproxima um DFC. O primeiro método considerado é o proposto por Wilhelmsson e Milstein [1]. Esse é largamente utilizado na literatura [2]-[6] para modelar canais com desvanecimento usando modelos GEC. O segundo método é o algoritmo Baum-Welch, que é um procedimento iterativo que maximiza uma função de verossimilhança e pode ser usado em qualquer FSMC. A precisão deste método depende das condições iniciais dos parâmetros do FSMC e uma convergência para um máximo global não é assegurada. Propõe-se um método para estimar os parâmetros do GEC que minimiza a divergência de Kullback-Leibler [7] entre duas medidas de probabilidade produzidas pelo DFC e pelo GEC. A precisão dos modelos GEC obtidos com cada método para aproximar um DFC é discutida a partir da comparação de estatísticas geradas pelo DFC e pelo modelo GEC.

### II. CANAIS DE COMUNICAÇÕES DISCRETOS

# A. O Canal Gilbert-Elliott

Um FSMC é um canal discreto que possui um conjunto finito de estados cuja transição entre esses é descrita por uma cadeia de Markov, a qual tem probabilidades de transição atribuídas de forma independente do tempo. A cada estado é associada uma determinada probabilidade de geração de erros.

Considera-se canais discretos binários (sobre o alfabeto  $\{0, 1\}$ ) sendo  $\{X_k\}$  e  $\{Y_k\}$  os processos binários de entrada e de saída do canal, respectivamente. Os processos de entrada e saída podem ser expressos como uma função explícita de um processo de erro  $\{Z_k\}$  da forma  $Y_k = X_k \oplus Z_k$ , em que  $\oplus$  denota soma módulo 2. O processo de erro gerado por um GEC será descrito a seguir.

O GEC [8], [9] consiste de uma cadeia de Markov estacionária, homogênea, com dois estados. Quando a cadeia se encontra no estado 0,  $Z_k$  é igual a 1 (erro) com probabilidade  $P_G$ , ou 0 (sem erro) com probabilidade  $1 - P_G$ . Quando a cadeia se encontra no estado 1,  $Z_k$  é igual a 1 com probabilidade  $P_B$ , ou 0 com probabilidade  $1 - P_B$ . Por definição,  $P_G < P_B$  e, por isso, os estados 0 e 1 são chamados de estados "bom" e "ruim", respectivamente. As probabilidades de transição da cadeia de Markov são  $p_{0,1} = Q$  e  $p_{1,0} = q$ . A matriz de transição de probabilidade é denotada por P. Define-se a matriz  $\mathbf{P}(0)$  com o (i, j)-ésimo elemento igual a probabilidade do canal transicionar do estado i para o estado j e gerar o símbolo  $Z_k$  igual a zero. Uma definição similar é válida para a matriz  $\mathbf{P}(1)$  para  $Z_k$  igual a 1. O vetor de estados estacionários é representado por  $\Pi$ . As matrizes para o modelo GEC são dadas por:

$$\mathbf{P} = \begin{bmatrix} 1 - Q & Q\\ q & 1 - q \end{bmatrix}$$
(1)

Igor Moreira, Agência Nacional de Telecomunicações, Brasília-DF, email: igormoura@anatel.gov.br. Cecilio Pimentel, CODEC/DES/UFPE, Recife-PE, email: cecilio@ufpe.br.

Este trabalho recebeu suporte do CNPq e FACEPE.

$$\mathbf{P}(0) = \begin{bmatrix} (1-Q)(1-P_G) & Q(1-P_B) \\ q(1-P_G) & (1-q)(1-P_B) \end{bmatrix}$$
(2)

$$\mathbf{P}(1) = \begin{bmatrix} (1-Q)P_G & QP_B\\ qP_G & (1-q)P_B \end{bmatrix}$$
(3)

$$\mathbf{\Pi} = \begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix}^T = \begin{bmatrix} \frac{q}{Q+q} & \frac{Q}{Q+q} \end{bmatrix}^T \tag{4}$$

em que o superscrito  $[\cdot]^T$  indica a transposta de uma matriz. É possível calcular a probabilidade de qualquer sequência de erro  $\mathbf{z}_n = (z_1, \ldots, z_n)$  usando a seguinte relação matricial:

$$P(\mathbf{z}_n) = \mathbf{\Pi}^T \left( \prod_{k=1}^n \mathbf{P}(z_k) \right) \mathbf{1}$$
 (5)

em que 1 é um vetor coluna com todos os elementos iguais a 1. Por exemplo, a probabilidade do GEC produzir um erro no instante k é igual a

$$P(1) \triangleq P(Z_k = 1) = \pi_0 P_G + \pi_1 P_B.$$

As matrizes (1)-(4) são usadas para derivar expressões para estatísticas do canal GEC, bem como para avaliar o desempenho de protocolos e de códigos corretores de erro operando em canais GEC. Por exemplo, a função autocorrelação, denominada de R[m], para o GEC é expressa da seguinte forma:

$$R[m] = (P(1))^2 + \frac{Qq(P_B - P_G)^2}{(q+Q)^2}(1 - q - Q)^m$$
(6)

para m > 1 e o coeficiente de correlação é dado por:

$$\operatorname{Cor}_{\operatorname{GEC}} = \frac{(1 - q - Q) (P_B - P_G)^2 \pi_0 (1 - \pi_0)}{p(1)(1 - p(1))}.$$

A análise do protocolo de retransmissão ARQ Go-Back-N (GBN) em canais GEC foi realizada em [10]. Nesse trabalho, foi desenvolvida uma fórmula para a vazão deste protocolo, denotada por  $\eta$ , para um esquema ARQ puro que usa um código de detecção de erros de comprimento n:

$$\eta = \frac{\mathbf{\Pi}^T \mathbf{P}(A) \mathbf{1}}{\mathbf{\Pi}^T \mathbf{P}(A) \mathbf{X} \left[ N \mathbf{P}(\bar{A}) (\mathbf{P}^n)^{N-1} \mathbf{X} + \mathbf{I} \right] \mathbf{P}(A) \mathbf{1}}$$
(7)

em que  $\mathbf{X} = \left(\mathbf{I} - \mathbf{P}(\bar{A})(\mathbf{P}^n)^{N-1}\right)^{-1}$ ,  $\mathbf{I}$  é a matriz identidade e  $\mathbf{P}(A)$  é a matriz que especifica o evento transmissão com sucesso de um pacote. Desprezando a probabilidade de uma decodificação sem sucesso, as matrizes  $\mathbf{P}(A)$  e  $\mathbf{P}(\bar{A})$  são:

$$\mathbf{P}(A) = \mathbf{P}^n(0) \tag{8}$$

$$\mathbf{P}(\bar{A}) = \mathbf{P}^n - \mathbf{P}^n(0) \tag{9}$$

Considera-se a transmissão de palavras código de um código de bloco binário e linear, de comprimento n e capacidade de correção t. A probabilidade de uma decodificação sem sucesso, denominada de PCE, é dada por:

$$PCE = 1 - \sum_{m=0}^{t} P(m, n)$$
 (10)

em que P(m, n) é a probabilidade de ocorrerem m erros em uma sequência de comprimento n. Para o GEC, uma fórmula recursiva para P(m, n) é [11]:

$$P(m,n) = -c_1 P(m,n-1) - c_2 P(m-1,n-1)$$
  
-c\_3 P(m,n-2) - c\_4 P(m-1,n-1)  
-c\_5 P(m-2,n-2), (11)

em que

$$c_{1} = Q(1-g) + q(1-b) - (2-b-g);$$
  

$$c_{2} = -[b(1-q) + g(1-Q)];$$
  

$$c_{3} = (1-b)(1-g)(1-q-Q);$$
  

$$c_{4} = (g+b+2gb)(1-q-Q);$$
  

$$c_{5} = bg(1-q-Q).$$
(12)

Neste trabalho, utiliza-se o GEC para modelar um sistema de comunicações com desvanecimento que será descrito na próxima subseção. A precisão dos modelos obtidos com as três técnicas de estimação de parâmetros consideradas será avaliada via comparação das estatísticas e métricas de desempenho descritas nesta seção com as obtidas pelo canal de comunicações.

## B. Canal Discreto com Desvanecimento

Este trabalho considera um DFC composto por um modulador BPSK, um canal com desvanecimento Rayleigh correlacionado no tempo, não seletivo em frequência e com ruído aditivo Gaussiano branco, e um demodulador coerente com quatização abrupta. A envoltória complexa do desvanecimento  $\widetilde{G}(t) = \widetilde{G}_I(t) + j\widetilde{G}_Q(t)$  é um processo Gaussiano complexo, estacionário no sentido amplo, com média zero,  $\mathbf{E}[\widetilde{G}(t)] = 0$ e segundo momento normalizado,  $\mathbf{E}[|\widetilde{G}(t)|^2] = 1$ . Os componentes em quadratura  $\widetilde{G}_I(t)$  e  $\widetilde{G}_Q(t)$  são processos Gaussianos mutuamente independentes que possuem a mesma função covariância que, adotando-se o modelo de desvanecimento de Clarke, pode ser expressa como [12], [13]

$$C(\tau) = \mathbf{E}\{[\widetilde{G}^*(t)][\widetilde{G}(t+\tau)]\} = J_0(2\pi f_D \tau)$$
(13)

em que  $J_0(x)$  é a função de Bessel de primeira espécie e ordem zero e  $f_D$  é a máxima frequência Doppler. Para um instante de tempo fixo, t = kT, a envoltória do desvanecimento  $A_k \triangleq \sqrt{\widetilde{G}_I^2(kT) + \widetilde{G}_Q^2(kT)}$  (onde 1/T é a taxa de sinalização) tem função densidade de probabilidade Rayleigh. A k-ésima amostra do sinal recebido é dada por:

$$R_k = \sqrt{E_s} A_k S_k + N_k, \qquad k = 1, 2, \dots$$
 (14)

em que  $S_k \in \{2X_k - 1\}$ ,  $E_s$  é a energia do sinal transmitido,  $\{N_k\}$  é uma variável aleatória Gaussiana com média zero e variância  $N_0/2$ . Define-se a relação sinal-ruído média do sinal recebido por SNR =  $E_s/N_0$ . A função de autocorrelação para o DFC é dada pela equação (15) no topo da próxima página, em que  $\rho = J_0(2\pi m f_D T)$ . A vazão e a PCE para o DFC são calculadas via simulação. XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT'13, 01 A 04 DE SETEMBRO DE 2013, Fortaleza, CE

$$R[m] = \frac{1}{\pi^2} \int_0^{\pi/2} \int_0^{\pi/2} \frac{\sin^2 \theta_1 \sin^2 \theta_2}{\sin^2 \theta_1 \sin^2 \theta_2 + \frac{E_s}{N_0} (\sin^2 \theta_1 + \sin^2 \theta_2) + \left(\frac{E_s}{N_0}\right)^2 (1 - \rho^2)} d\theta_1 d\theta_2.$$
(15)

## III. ESTIMAÇÃO DE PARÂMETROS DO MODELO GEC

Esta seção descreve dois métodos largamente utilizados para estimar os parâmetros de modelos GEC. O primeiro foi proposto por Wilhelmsson e Milstein [1] e é aqui denominado por WM, enquanto o segundo é conhecido como algoritmo Baum-Welch (BW) [14]. Um método alternativo proposto neste trabalho consiste na estimação de parâmetros baseada na minimização da divergência de Kullback-Leibler [7],denominado de método KL.

# A. O Método WM

O método WM para estimação de parâmetros de um GEC [1], considera  $\alpha_t e \gamma_t$  como limiares dos níveis de amplitude e da relação sinal-ruído, respectivamente, para os quais o canal muda de estado. A relação sinal ruído instantânea ( $\gamma$ ) é uma variável aleatória exponencial com função densidade de probabilidade  $p(\gamma)$  dada por:

$$p(\gamma) = \frac{1}{\bar{\gamma}} e^{\frac{-\gamma}{\bar{\gamma}}} \quad \gamma \ge 0 \tag{16}$$

em que  $\bar{\gamma}$  é a SNR. As probabilidades de estado estacionárias do GEC são calculadas como a fração de tempo em que  $\gamma$  encontra-se acima ou abaixo de  $\gamma_t$ , isto é [1]:

$$\pi_1 = \int_0^{\gamma_t} \frac{-\gamma}{\bar{\gamma}} e^{\frac{-\gamma}{\bar{\gamma}}} d\gamma = 1 - e^{\frac{-\gamma}{\bar{\gamma}}} = 1 - e^{-\rho^2}$$
(17)

em que  $\rho^2 = \frac{\gamma_t}{\bar{\gamma}}$ . Analogamente

e

$$\pi_0 = \int_{\gamma_t}^{\infty} \frac{-\gamma}{\bar{\gamma}} e^{\frac{-\gamma}{\bar{\gamma}}} d\gamma = e^{\frac{-\gamma}{\bar{\gamma}}} = e^{-\rho^2}.$$
 (18)

Em seguida, considera-se o tempo médio em que a amplitude do sinal permanece abaixo de  $\alpha_t$  e iguala-se ao tempo médio que o GEC permanece no estado ruim, uma vez tendo entrado nele. Assim, é possível encontrar [1]

$$q = \frac{\rho f_D T \sqrt{2\pi}}{e^{-\rho^2} - 1}$$
(19)

$$Q = \rho f_D T \sqrt{2\pi}.$$
 (20)

As probabilidades condicionais de erro de cada estado do GEC são calculadas como probabilidades de erro de um canal com desvanecimento Rayleigh condicionadas a probabilidade do canal estar no respectivo estado [1]:

$$P_B = \frac{1}{\pi_1} \int_0^{\gamma_t} p(\gamma) P_e(\gamma) d\gamma \tag{21}$$

(22)

$$P_G = \frac{1}{\pi_0} \int_{\gamma_t}^{\infty} p(\gamma) P_e(\gamma) d\gamma$$

em que  $P_e(\gamma) = Q(\sqrt{2\gamma})$  é a probabilidade de erro do DFC para um dado valor de  $\gamma$ .

## B. O Método BW

O algoritmo BW [14] é um algoritmo interativo que visa estimar a matriz de transição de probabilidade e as probabilidades condicionais de geração de erros de um FSMC, baseado em uma sequência de erros observada. Uma característica importante é que o seu tempo de execução depende de vários fatores como a ordem do modelo e o comprimento da sequência de erros utilizada [15], [16]. Para cada valor dos parâmetros do DFC ( $f_DT$  e SNR), uma sequência de erro do DFC é gerada por simulação (o tamanho da amostra é fixado em  $N = 3 \times 10^7$ ) e os parâmetros do GEC são estimados usando este algoritmo. A Tabela I mostra os parâmetros do GEC obtidos para um DFC com  $f_DT = 10^{-3}$ , um valor típico para um canal com desvanecimento lento, e para quatro valores de SNR.

TABELA I Valores dos parâmetros do GEC estimados pelo algoritmo BW que modelam um DFC com  $f_D T = 10^{-3}$ .

| Parâmetros do DFC | q      | Q      | $P_G$  | $P_B$  |
|-------------------|--------|--------|--------|--------|
| SNR = 5 dB        | 0,0054 | 0,0022 | 0,0111 | 0,199  |
| SNR = 10  dB      | 0,0013 | 0,0084 | 0,1634 | 0,0019 |
| SNR = 15  dB      | 0,0007 | 0,0133 | 0,1464 | 0,0003 |
| SNR = 20  dB      | 0,0241 | 0,0004 | 0,0001 | 0,1499 |

# C. O Método KL

O método proposto neste trabalho usa uma medida de distância entre duas medidas de probabilidade,  $P_{\text{DFC}}$  e  $P_{\text{GEC}}$ , para estimar os parâmetros do DFC. A medida adotada é a divergência de Kullback-Leibler, que é expressa da seguinte forma:

$$D\left(P_{\text{DFC}} \mid\mid P_{\text{GEC}}\right) = \lim_{\ell \to \infty} \frac{1}{\ell} D_{\ell} \left(P_{\text{DFC}}(Z^{\ell}) \mid\mid P_{\text{GEC}}(Z^{\ell})\right)$$

em que  $\frac{1}{\ell}D_{\ell}$   $\left(P_{\text{DFC}}(Z^{\ell}) \mid\mid P_{\text{GEC}}(Z^{\ell})\right)$  é a divergência normalizada de  $\ell$ -ésima ordem entre as distribuições  $P_{\text{DFC}}(Z^{\ell})$  e  $P_{\text{GEC}}(Z^{\ell})$ :

$$D_{\ell} \left( P_{\text{DFC}}(Z^{\ell}) \mid\mid P_{\text{GEC}}(Z^{\ell}) \right) = \sum_{Z^{\ell} \in \{0,1\}^{\ell}} P_{\text{DFC}}(Z^{\ell}) \log_2 \frac{P_{\text{DFC}}(Z^{\ell})}{P_{\text{GEC}}(Z^{\ell})}$$
(22)

em que  $P_{\text{DFC}}(Z^{\ell})$  é obtida via simulação do DFC e  $P_{\text{GEC}}(Z^{\ell})$  é calculada matricialmente usando (5).

O método proposto consiste em escolher os quatro parâmetros do GEC que minimizem (23) para um valor de  $\ell$  fixo, com a restrição que o DFC e o GEC tenham o mesmo coeficiente de correlação e a mesma probabilidade de ocorrer um erro, isto é, Cor<sub>DFC</sub> = Cor<sub>GEC</sub> e  $P_{DFC}(1) = P_{GEC}(1)$ , para  $\ell$  fixo. A Tabela II mostra os parâmetros obtidos com a minimização de  $D_{10}(P_{DFC} | P_{GEC})$ .

TABELA II Valores dos parâmetros do GEC estimados pela minimização da divergência de Kullback-Leibler de  $\ell$ -ésima ordem que modelam um DFC com  $f_D T = 10^{-3}, \ell = 10.$ 

| Parâmetros do DFC | q       | Q       | $P_G$  | $P_B$ |
|-------------------|---------|---------|--------|-------|
| SNR = 5 dB        | 0,01048 | 0,00274 | 0,0156 | 0,25  |
| SNR = 10  dB      | 0,01038 | 0,00085 | 0,0055 | 0,24  |
| SNR = 15  dB      | 0,02056 | 0,00057 | 0,0015 | 0,23  |
| SNR = 20 dB       | 0.0019  | 0.00001 | 0.0005 | 0.22  |



Fig. 1. Função de autocorrelação de GEC que aproximam um DFC com  $f_DT=10^{-3}$  e SNR  $=10~\rm dB.$ 

#### **IV. RESULTADOS**

Para mensurar a exatidão de cada método de estimação dos parâmetros de um GEC, será feita uma comparação de algumas estatísticas do DFC e dos GEC estimados por cada uma das três técnicas.

Na Figura 1 são mostradas as curvas da função autocorrelação para um DFC com  $f_D T = 10^{-3}$  e SNR = 10 dB e os respectivos GEC estimados com os três métodos. Para os modelos obtidos com o WM, são mostradas curvas para dois valores de  $\gamma_t$ . Observa-se que os modelos gerados por WM não geram uma boa aproximação para a curva do DFC (para qualquer valor de  $\gamma_t$ ), enquanto o método KL apresenta a melhor aproximação. Para valores elevados de *m* as curvas convergem para a autocorrelação de um canal sem memória.

Para realizar uma comparação entre os métodos usando a vazão de um protocolo GBN, deve-se encontrar, inicialmente, um valor conveniente para o limiar  $\gamma_t$  do método WM para cada valor de SNR considerado. Na Figura 2 é possível verificar que dado um valor de SNR existe um  $\gamma_t$  que melhor aproxima a vazão do DFC. Nesta figura foram utilizados os seguintes valores de  $\gamma_t$ : SNR, SNR + 2 dB, SNR + 3 dB, SNR + 4 dB. Por exemplo, pode-se verificar nesta figura que para SNR = 10 dB, a melhor aproximação é atingida com  $\gamma_t$  = SNR = 10 dB. A Tabela III resume os valores dos parâmetros dos GEC encontrados para o valor de  $\gamma_t$  selecionado.

A Figura 3 compara as curvas da vazão do DFC e de



Fig. 2. Comparação da vazão do protocolo GBN do DFC e de GEC estimados pelo método WM para um DFC com  $f_DT=10^{-3},\,n=10$  eN=80

TABELA III Valores dos parâmetros do GEC calculados pelo método WM que aproximam a vazão do DFC com  $f_DT=10^{-3}$ .

| Parâmetros do DFC                                | q      | Q       | $P_G$       | $P_B$  |
|--------------------------------------------------|--------|---------|-------------|--------|
| $SNR = 5 dB (\gamma_t = 7 dB)$                   | 0,0031 | 0,00081 | 0,0056      | 0,1418 |
| $SNR = 10 \text{ dB} (\gamma_t = 10 \text{ dB})$ | 0,0025 | 0,0014  | 0,00018     | 0,0730 |
| $SNR = 15 \text{ dB} (\gamma_t = 17 \text{ dB})$ | 0,0031 | 0,00081 | $1,7e^{-9}$ | 0,0202 |
| $SNR = 20 \text{ dB} (\gamma_t = 23 \text{ dB})$ | 0,0035 | 0,0005  | $1e^{-12}$  | 0,0061 |

modelos GEC com parâmetros que foram estimados por cada um dos três métodos. Para valores de SNR até 10 dB, o método WM se mostra mais vantajoso, até mesmo pela sua baixa complexidade computacional em relação aos demais. O método BW é o mais adequado para valores de SNR maiores de 15 dB.

Para realizar uma comparação da PCE entre os métodos, fez-se necessário estudar um valor conveniente para o limiar  $\gamma_t$ do método WM para cada valor de SNR considerado, de forma que, dado um valor de SNR, existe um  $\gamma_t$  que melhor aproxima a PCE do DFC. A Tabela IV resume os valores dos parâmetros dos GEC encontrados para o valor de  $\gamma_t$  selecionado.

TABELA IV Valores dos parâmetros do GEC calculados pelo método WM que aproximam a PCE do DFC com  $f_D T = 10^{-3}$ .

| Parâmetros do DFC                               | q      | Q       | $P_G$   | $P_B$  |
|-------------------------------------------------|--------|---------|---------|--------|
| $SNR = 5 dB (\gamma_t = 5 dB)$                  | 0,0031 | 0,00081 | 0,0056  | 0,1418 |
| $SNR = 10 \text{ dB} (\gamma_t = 8 \text{ dB})$ | 0,0019 | 0,0022  | 0,00012 | 0,0974 |
| $SNR = 15 \text{ dB} (\gamma_t = 9 \text{ dB})$ | 0,0012 | 0,0043  | 0,00018 | 0,0719 |
| $SNR = 20 \text{ dB} (\gamma_t = 9 \text{ dB})$ | 0,0007 | 0,0085  | 0,00006 | 0,0682 |

A Figura 4 mostra o comportamento da PCE versus a SNR, para um DFC com  $f_D T = 10^{-3}$  e para os modelos GEC. Esta probabilidade foi obtida utilizando-se um código de bloco binário, linear, de comprimento n = 255 e capacidade de correção t = 29. É possível observar nesta figura que o GEC



Fig. 3. Comparação da vazão do DFC e de modelos GEC para  $f_DT=10^{-3},\,n=10$  e N=80.

com parâmetros calculados pelo método WM (para os valores de  $\gamma_t$  mostrados na Tabela IV) apresenta um comportamento discrepante da curva do DFC. O GEC obtido com o método BW se mostra mais preciso.

De acordo com as curvas analisadas, o método proposto por WM mostra-se mais vantajoso apenas na análise da vazão. Contudo, esse método é dispendioso, tendo em vista que, para a obtenção desse resultado, há a necessidade de ensaios prévios para a determinação do valor adequado de  $\gamma_t$  para métrica de desempenho considerada (observe que os valores de  $\gamma_t$  nas Tabelas III e IV são diferentes). A análise das curvas da função autocorrelação sugere que tanto o método BW quanto KL são robustos e eficientes para a estimação dos parâmetros do GEC.

## V. CONCLUSÕES

Neste trabalho foram analisadas três técnicas de estimação dos parâmetros do GEC. Foram geradas tabelas dos parâmetros de modelos GEC que aproximam um DFC. Em seguida, foram analisadas a função autocorrelação, a vazão do protocolo GBN e probabilidade de uma decodificação sem sucesso, a fim de estudar a precisão dos métodos de estimação de parâmetros. A precisão do método WM é bastante sensível à escolha de um limiar ótimo para  $\gamma_t$ , que depende dos parâmetros do DFC e da métrica de desempenho que está sendo analisada. As curvas da vazão e da PCE indicam que, na região com SNR de maior interesse, o método BW é o mais preciso.

#### REFERÊNCIAS

- L. Wilhelmsson and L. B. Milstein, "On the effect of imperfect interleaving for the Gilbert-Elliott channel," *IEEE Trans. Commun.*, vol. 47, pp. 681–688, May 1999.
- [2] M. Papaleo, R. Ferrincieli, G. E. Corazza, and A. Vanelli-Coralli, "Packet coding performance with correlated fading and shadowing," *Proc. IEEE Proc. Global Telecommun. Conf. (GLOBECOM), Honululu,* USA, pp. 1–8, 2009.



Fig. 4. PCE versus SNR para um código de bloco binário, linear, de comprimento n = 255, capacidade de correção t = 29, em canais GEC e no DFC com  $f_D T = 10^{-3}$ .

- [3] C.-M. Lee, Y. T. Su, and L.-D. Jeng, "Performance analysis of block codes in hidden Markov channels," *IEEE Trans. Commun.*, vol. 56, no. 1, 2008.
- [4] C.-M. Lee and Y. T. Su, "Performance of block-coded land mobile satellite systems," *International Journal of Satellite Communications*, vol. 26, pp. 251–267, 2008.
- [5] F. Hamidi-Sepehr, Y. Cai, H. D. Pfister, and J.-F. Chamberland, "Queueing behavior of the Gilbert-Elliott channel: BCH and poisson arrivals," *Proc. International Symposium on Information Theory, Saint Petersburg, Russia*, pp. 1806–1810, 2011.
- [6] A. Seddiki, A. Djebbari, J. M. Rouvaen, and A. Taleb-Ahmed, "BCH coding performance evaluation on a land mobile channel based OFDM system," *Information Technology Journal*, vol. 5, no. 930-936, 2006.
  [7] L. Zhong, F. I. Alajaji, and G. Takahara, "A binary communication
- [7] L. Zhong, F. I. Alajaji, and G. Takahara, "A binary communication channel with memory based on a finite queue," *IEEE Trans. Veh. Technol.*, vol. 53, pp. 2815–2840, Aug. 2007.
- [8] E. N. Gilbert, "Capacity of a burst-noise channel," *Bell Syst. Tech. J.*, vol. 39, pp. 1253–1266, Sept. 1960.
- [9] E. O. Elliot, "Estimates of error rates for codes on burst-noise channels," *Bell Syst. Tech. J.*, vol. 42, pp. 1977–1997, Sept. 1963.
- [10] C. Pimentel and R. L. Siqueira, "Analysis of the Go-Back-N protocol on finite-state Markov Rician fading channels," *IEEE Trans. Veh. Technol.*, vol. 57, no. 4, pp. 2627–2632, July 2008.
- [11] R. P. Ramos and C. Pimentel, "Análise de desempenho de códigos de bloco em canais de estados finitos entrelaçados," *Proc. IX Simpósio Brasileiro de Microondas e Optoeletrônica, João Pessoa, PB*, pp. 405– 499, 2000.
- [12] R. H. Clarke, "A statistical theory of mobile-radio reception," *Bell Syst. Tech. J.*, vol. 47, pp. 957–1000, 1968.
- [13] W. C. Jakes, Microwave Mobile Communications. Wiley, 1974.
- [14] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A maximization technique occuring in the statistical analysis of probabilistic functions of markov chains," *Annals of Mathematical Statistics*, vol. 41, pp. 164–171, Feb. 1970.
- [15] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar, *Principles of Communication Systems Simulation with Wireless Applications*. Prentice Hall, 2003.
- [16] N. M. de Paiva Junior, E. C. Marques, and E. L. Pinto, "Viterbi training for HMM modelling of burst errors," *Proc. of the International Workshop* on Telecommunications (IWT), Rio de Janeiro, pp. 20–26, 2011.