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Energy Efficiency Optimization in MPG DS/CDMA
Mateus de Paula Marques, Lucas D. H. Sampaio, Fernando Ciriaco, Fábio R. Durand & Taufik Abrão

Abstract— In this contribution, the heuristic continuous ant
colony optimization (ACO) algorithm is deployed to solve the
energy-efficiency (EE) optimization problem in multirate multi-
processing gain (MPG) DS/CDMA network. The EE design deal
with quasi-concave energy efficiency function, allowing the system
to operate in the maximal energy efficiency point. Numerical
results considering realistic wireless mobile channels and system
operation conditions have been shown the applicability of the
ACO heuristic approach in order to solve hard problems (in many
cases non-convex optimization problems) with practical interest
in obtaining energy-efficient design, which is of great interest to
establish the next wireless generation green communication net-
works. The performance and complexity of the proposed ACO-
heuristic approach are compared with other two procedures, a
heuristic approach based on particle swarm optimization (PSO)
and the disciplined convex optimization approach (CvX) tools.

Keywords— Resource allocation; energy-efficient design; ant
colony optimization; CDMA; particle swarm optimization.

I. INTRODUCTION

Answer: The problem solved in this paper is the overall
Energy Efficiency Optimization in a DS/CDMA network. The
network allows multirate users through Multiple Processing
Gains (MPG), and the optimization algorithm is based on
the Ant Colony Optimization (ACO) metaheuristic. On the
other hand, reference [9] deals with three problems via ACO:
The Power Control aiming to maximize the battery lifetime
and the Weighted Throughput Maximization, both on MPG-
DS/CDMA networks; The third problem solved is the anomaly
detection in computer networks. Hence, the paper 1569767843
discuss a new application of the ACO algorithm, which is
considerably different from reference [9]. Besides, all the
sentences of the work where rewritten. The similarity can be
due to the fact that the same algorithm was deployed in both
works.

Resource optimization (RO) techniques, primarily
power/energy consumption minimization, are becoming
increasingly important in wireless systems and networks
design, since battery technology evolution has not followed
the explosive demand of mobile devices. RO in wireless
networks aim to maximize the sum of utilities of link rates for
best-effort traffic. The usual approach consists in considering
the problem jointly, i.e., optimizing the joint power control
and link scheduling, which is known to be notoriously
difficult to solve, even in a centralized manner.

One of the most interesting ways of dealing with the power
allocation problem is the energy-efficiency (EE) approach [1],
[2], which aims to maximize the transmitted data per energy
unit. The energy-efficient approach on CDMA system-based
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networks can include the joint strategies of spreading-code
and receiver optimization [3], as well as the balancing of two
important conflicting metrics, energy efficiency versus spectral
efficiency [4]. Hence, from a wider approach, the power
control problem in a multiple access system-based networks
could be formulated aiming to optimize the deployment of two
main resources scarcely available, i.e., spectrum and energy.

Game theory, which has its roots in the economy field,
has been broadly applied in wireless communications for
random access and power control optimization problems. From
the analysis of two conflicting metrics, namely throughput
maximization and power consumption minimization, the dis-
tributed energy efficiency cost function can be formulated as a
(non)-cooperative game [4], [5]. As a consequence, although
the sum-rate increases with the number of active users, the
generated level of interference induced by the new users
sharing the same bandwidth increases too. Hence, by one
side the total network power consumption enlarges in order to
achieve the optimum SINR, while, on the other hand, the EE
is reduced. As a solution, the best achievable EE-SE trade-off
when each node allocates exactly the power necessary to attain
the best SINR value, which guarantees the maximal EE while
SE is determined by the attainable rate in each node given
by Shannon capacity equation. Besides, the energy efficiency
is normally reduced by the efficiency function, coding factor
and by the circuit power consumption as well. In this work,
we deal with heuristic optimization methods applied to EE
maximization of CDMA systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let consider a downlink (DL) multirate MPG-DS/CDMA
network, in which the bit error rate (BER) is used as a QoS
metric, since it is directly related to the signal to noise plus
interference ratio (SNIR). Thus, the SNIR is associated to the
carrier to interference ratio as follows:

γi = Fi × Γi, i = 1, . . . , U (1)

where i ∈ U is the user’s indexer, γi is the SNIR, Fi =
rc

ri,min

is the processing gain, rc is the chip rate, ri,min is the base
information rate, and Γi is the CIR, defined as [6], [7]:

Γi =
pi|gii|2

∑U
j=1,i!=j pj |gii|2 + σ2

, i = 1, ..., U (2)

where pi is the transmit power bounded by pmax, |gii| the
amplitude channel gain (considering the effects of path loss,
shadowing and multipath fading) and σ2

i the additive white
Gaussian noise (AWGN) at the i-th receiver’s input.

The achievable information rate for spread spectrum sys-
tems in AWGN channel considering the gap between theoret-
ical bound and the real information rate is defined based on
Shannon channel capacity [8] as:

ri =
w

miFi
log2(1 + θiγi)

[

bits

sec

]

(3)



XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

where ri is the achievable information rate, mi = log2 Mi

with Mi being the modulation order, θi is the inverse of the
gap between the theoretical bound and the real information
rate, w

Fi
the user’s non spread signal bandwidth and w ≈ rc is

the total system bandwidth. Usually, θi can be defined as [9]:

θi = −
1.5

ln(5BERmax
i )

(4)

where BERmax
i is the maximum tolerable bit error rate.

In order to enable the users to have minimum QoS war-
ranty, the minimum information rate can be mapped into
SNIR through the Shannon’s capacity model using the gap
introduced in (4). Note that for minimum SNIR γ∗

i , eq. (3)
uses the minimum information rate (ri,min) established to the
ith user belonging to service or user class SERV. This way, it
is possible to obtain the condition needed for the minimum
SNIR to be satisfied given a minimum information rate:

γ∗
i = −

2

3
ln (5 · BERmax

serv) (2
mi − 1) (5)

A. Energy-Efficient Design (EED)

The energy-efficient MPG-DS/CDMA design can be formu-
lated as an optimization problem that aims to maximize the
ratio between the overall information rate (or equivalently the
system throughput) S and the total power consumption PT,
including the fixed circuitry power PC:

maximize
p∈℘

ηE =
S
PT

=

∑U
i=1

w

miFi
· log2 (1 + θiγi)

ι ·
∑U

i pi + PC

s.t. (C.1) 0 ≤ pi ≤ pmax

(C.2) γi ≥ γ∗
i , ∀i

(6)

where the parameter ι > 1 is related to the drain inefficiency
of the RF power amplifier.

The EE optimization problem consists in finding the appro-
priate transmitted power for each user belonging to different
user’s multimedia classes, with different QoS requirements
mapped into SNIR, in such a way that the overall system
energy efficiency is maximized. Moreover, the objective func-
tion in (6) is a special case of nonlinear fractional program
[10], [11]. Since that the numerator of ηE is concave regarding
p = [p1, . . . , pU ], ∀i (a non-negative sum of multiple concave
functions), and the denominator is affine, i.e., convex as well
as concave, the objective function (6) is quasi-concave [12].

1) Dinkelbach’s Method: Deploying the iterative Dinkel-

bach’s method [10], [11] it is possible to solve the quasi-
concave EED problem in a parameterized concave form.

The original fractional program in (6) can be associated with
the following parametric concave program [10], [12]:

maximize
x∈X

f(x)− λ z(x),

where λ ∈ R is treated as a parameter. For the sake of
notational simplicity, we define X ⊃ {℘} as the set of feasible
solutions of the optimization problem in (6), and ℘ is a
compact and connected set. The optimal objective function
in the parametric problem, denoted by F(λ), is a convex
and continuous function that is strictly decreasing. Besides,

without loss of generality, we define the maximum energy

efficiency λ∗ of the considered system as:

λ∗ =
C(p∗)

U(p∗)
= maximize

p∈℘

C(p)
U(p)

(7)

which is equivalent to find the root of the nonlinear equation
F(λ) = 0. Dinkelbach’s method is in fact the application
of Newton’s method to a nonlinear fractional program [13].
As a result, the sequence converges to the optimal point with
a superlinear convergence rate [11]. In summary, Dinkelbach
[10] proposes an iterative method to find increasing values of
feasible λ by solving the parameterized problem:

F(λn) = max
p∈℘

{C(p)− λn U(p)} @nth iteration. (8)

The iterative process continues until the absolute difference
value |F(λn)| becomes as small as a pre-specified ε.

Algorithm 1 Dinkelbach’s Method
Input: λ0 satisfying F(λ0) ≥ 0; tolerance ε
Initialize: n← 0,
repeat

Solve problem (8) with λ = λn to obtain p
∗
n

λn+1 ←
C(p∗

n)
U(p∗

n) ;
n← n+ 1

until |F(λn)| ≤ ε;
Output: λn; p∗

n

In order to demonstrate the DM effectiveness, illustrative
EE optimization results are discussed with the inner-loop of
Algorithm 1 firstly performed by CVX optimization tool, a
package for specifying and solving convex programs [14];
secondly by deploying ACOR metaheuristic method, which
is reviewed in the following.

III. ACOR METAHEURISTIC

The ACOR is a metaheuristic based on the ants behavior
when looking for food. Firstly proposed for combinatorial
optimization problems, the ants walk through the points of
the input set, and deposit pheromone on its edges. Given a set
of points next to an ant, the probability of each point to be
chosen forms a probability mass function (PMF). The main
idea of ACOR is the change of this PMF to a probability

density function (PDF); hence, ants sample continuous PDFs
instead of choosing a point next to it, since the continuous
domain has infinite points to be chosen. The ACOR uses a
Gaussian kernel PDFs (weighted sum of Gaussians) method
to sample each dimension of the problem [15]:

Gi(x) =
Fs
∑

l=1

ωlg
i
l(x) =

Fs
∑

l=1

ωl
1

σi
l

√
2π

e
−

(x−µi
l
)2

2σi2
l , (9)

where i = 1, . . . , U is the indexer, with U being the number
of dimensions of the problem; ω = [ω1,ω2, . . . ,ωFs ] is
the weight vector associated to each Gaussian in the kernel;
µi = [µi

1, µ
i
2, . . . , µ

i
Fs
] is the vector of means and σi =

[σi
1,σ

i
2, . . . ,σ

i
Fs
] is the vector of standard deviations. Hence,

the cardinality of both vectors is equal to the number of
Gaussians in the set, |ω| = |µi| = |σi| = Fs.

The pheromone information is kept in a solutions file, where
the l-th solution sl, ∀l = 1, 2, . . . , Fs, in the i-th dimension,
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∀i = 1, . . . , U , is kept at the n-th iteration, as well as the
respective cost function values J(sl). Thus, the file stores
Fs solutions, which are used to generate PDFs dynamically
through (9). Note that the size of the file is equal to the
number of Gaussian PDFs in the kernel (Gi); hence, the
kernel is sampling the solutions file indeed. Besides, for each
Gi, the values of the i-th variable of all solutions becomes
the elements of the mean vector, µ

i = [µi
1, . . . , µ

i
Fs
] =

[si1, . . . , s
i
Fs
], that is, the l-th value of dimension i is the mean

of the l-th gaussian of Gi.
The number of ants m is another input parameter to be

adjusted. The ants are responsible for the sampling of Gi, and
thus, for the algorithm evolution as well. In each iteration,
each ant chooses one solution of the file with probabilities
given by:
ωl =

1

qFs

√
2π

exp

[

−
(

l − 1√
2qFs

)2
]

, l = 1, . . . , Fs (10)

where q is the diversification parameter of the ACO algorithm.
Here, the weight of the l-th solution can be seen as the
probability of a solution to be chosen and sampled by an ant.
Hence, l which is the solution’s rank in the file, is also the input
parameter in Eq. (10), which is a Gaussian PDF with mean
1 and standard deviation q · Fs. So, eq. (10) gives rise to an
important equilibrium between q and Fs parameters, making
their individual calibration sensitive to each one, in order to
achieve a good trade-off among robustness and convergence
velocity for each specific optimization problem.

In order to perform the sampling, the standard deviations
vector σi must be defined for the i-th variable of the file:

σi
l = ξ

Fs
∑

e=1

|sie − sil|
Fs − 1

(11)

where ξ can be thought as the inverse of the pheromone
evaporation rate [15]. Thus, σi

l can be though as the mean
distance between the l-th solution to the others at dimension
i. Once the sample process is done, the solutions file is sorted
based on the value entries in the cost function matrix. After
sorting, a number of solutions equal to the number of sampled
solutions is discarded, so the size of the file is constant
throughout the optimization process. A summary of ACOR

is showed in Algorithm 2.
The algorithm robustness R can be thought as the ratio

between the number of convergence success cS to the total
number of realizations T after N iterations taken in each
realization:

R = 100 · cS/T [%], @N iterations (12)
and the algorithm speed as the average number of iterations
needed to the algorithm achieves convergence in terms of the
maximum tolerable mean square error (MSE) in T trials for
a given problem.

A. The DM-ACOR Adaptation

The ACOR algorithm was adapted in order to fit the Dinkel-
back’s method inner loop. It is well known that the initial
guess leads to the quality of solution for every metaheuristic.
Besides, in the Algorithm 1, a new input p∗

n−1 is supplied for
the inner-loop algorithm on each outer-loop iteration. Since
each input cannot be forgotten, each ACOR instance must

populate its solution’ file in a way that it does not lose the
achievement of the previous outer-loop iterations. Thus, the
volatility coefficient α has been adopted, aiming to control
the generation of new instances for the ACOR solutions. The
random generation of a solution’ file in the n-th outer-loop
iteration is given by:

sl ∼ U
[

p
∗
n−1 −Ψ; p

∗
n−1 +Ψ

]

, l = 1, 2, . . . , Fs (13)
where p

∗
n−1 is the best power vector found in the previous

outer-loop iteration, and Ψ = e−α·n is the sample interval
limit. Therefore, the solutions generation process is always a
perturbation in the previous outer-loop best solution, which
becomes tighter as the DM evolves, since Ψ is a bivariate
negative exponential function.

Algorithm 2 ACOR

Input: q, ξ, Fs, m, U
Initialize Solutions File: F ∼ U(Fs, U)
while The end conditions aren’t met do

Choose each ant’s solution through ω
while The last ant doesn’t finishes its sample do

for Each dimension i of the File F do
Generate σi vector through eq. (11)
Sample the Gaussian Kernel Gi, eq. (9)

end for
end while
Sort F and drop its m worst solutions

end while

IV. NUMERICAL RESULTS

The DS/CDMA resource allocation simulations were carried
out within the MatLab 7.0 platform; the main scenario param-
eters are presented in Table I. We assumed a rectangular cell
with one base station in the center and users uniformly spread
across all the cell extension. We considered that all mobile
terminals experience slow fading channels, i.e. Tslot < (∆t)c,
where Tslot = R−1

slot
is the time slot duration, Rslot is the

updating rate for the RA parameters, such as transmitted power
vector and user symbol information. (∆t)c is the channel
coherence time. As part of the SNIR estimation process, the
channel is assumed constant in each optimization window,
herein admitted Tslot = 667µs. Thus, the EE maximization
(EEM) algorithms must converge to the solution within Tslot

interval. Numerical results are obtained by Monte-Carlo sim-
ulation (MCS) procedure over T = 1000 realizations.

For comparison purpose, particle swarm optimization (PSO)
results have been included. Both meta-heuristics’ input param-
eters where obtained in a non-exhaustive fashion. Numerical
results in this subsection include: a) comparison using Dinkel-
bach’s method (DM) in the outer-loop, with inner-loop in the
Algorithm 1 performed by ACO algorithm (DM-ACO), CvX
(DM-CVX) and PSO algorithm (DM-PSO), considering power,
rate and energy efficiency figures of merit; b) convergence
analysis of these three approaches for different number of
multirate users in the range U ∈ [2; 30], including the
associated evolution of EE ×NDM iterations, as well as the
EE-ACO and EE-PSO robustness analysis; c) computational
complexity of the DM-ACO, DM-CVX and DM-PSO approaches
in solving the EE optimization problem, eq. (6).

In all results, the same initial power-vector and static chan-
nel amplitudes configuration based on Rayleigh distribution
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have been adopted for the three EED approaches. Typically,
the static channel power losses in dB for a system with U users
results in a relative power loss matrix of the interfering signals
ranging from [8; 40] dB, representing a high interference
regarding the direct ones, due to the adopted high cross-
correlation among the spreading sequences.

TABLE I

ADOPTED SYSTEM AND QOS PARAMETERS FOR THE EED PROBLEM

CDMA Bandwidth w = 5 MHz
Max. power per user MT pmax = 3 [W]
PA inefficiency MT ι = 2.7
Power circuitry PC = 0.32 · U [W]
Modulation order mi = 2, (QPSK) ∀i
# Users per Class {UVOICE ; UVIDEO ; UDATA}
U = [12, 20, 30]: [{6; 4; 2}, {9; 6; 5}, {16; 9; 5}]

User Rates ( rc
F

)
[

bit
s

]

rservi,min = rc ·
[ 1
256 ;

1
16 ;

1
8

]

BER∗
i,serv [5 · 10−3; 2 · 10−5; 1 · 10−6]

ACOR Input Parameters
Population Size m = U ;
File Size Fs ∈ [4, 6];
Diversity Factor q = 0.3;
Pheromone Evapor. Rate ξ = 1.3;
Volatility Factor α = 0.7;
Average σ tolerance εaco = 1× 10−6 ;
Max. # iterations N = 1000;

PSO Input Parameters
Population Size m = 10 · U ;
Inertia Weight ω = 0.3;
Local acceleration coeff. φ1 = 2;
Global acceleration coeff. φ2 = 2;
Volatility Factor α ∈ [0.1, 0.5];
Max. # iterations N = 1000;

Illustrative EE optimization results are depicted in Figs. 1
and 2. Figs. 1-a and 1-b depicts the total energy efficiency as
a function of the transmission power allocation of the first and
last user, p1 and p30, while the others users hold individually
their best power allocation given by DM computed at the end
of the optimization process, i.e., N aco,cvx

DM = 6, N pso
DM = 40. For

DM-ACO and DM-CVX it is clear that after 3 or 4 iterations,
the all users achieve their individual near-optimum EE; as a
consequence, the maximal

∑

EE holds. On the other hand,
DM-PSO evolves slowly through smaller steps, and is able to
achieve total convergence only after NDM = 40 iterations.

Fig. 2 shows the achieved rates relative to the minimum QoS
given by BER∗

i,serv after the respective NDM iterations for both
analytical CvX and heuristic ACO, PSO approaches. Thus, all
the U = 30 users operate under maximum

∑

EE configuration
satisfying their respective QoS; it is found that the problem is
feasible regarding C.1 and C.2 constraints. Besides, one can
conclude that all algorithms achieve the same individual rates.

The normalized mean square error (NMSE) regarding the
analytical optimization approach (DM-CVX) is evaluated in
order to check the quality of solution achieved by both
metaheuristics, given by:

NMSE[n] =
1

T
·

T
∑

t=1

||pt[n]− p
∗||2

||p∗||2
(14)

where || · ||2 denotes the squared Euclidean distance between
vector pt at the t-th realization and the optimum solution
vector p

∗ given by the DM-CVX solution; T is the number
of realizations, assumed herein T = 300. Fig. 3.a) shows
the NMSE evolution for both metaheuristcs As reference,
the maximal eligible NMSEth = 10−2 has been considered

for both metaheuristics achieve a 99.999% of
∑

EE∗. After
five outer-loop DM iterations, the DM-ACO is able to reach
a NMSE < 10−2 for all considered system loadings, and in
one more iteration, it is able to achieve a NMSE ≈ 10−5.
Moreover, NMSE keeps improving further, showing that the
ACOR algorithm is powerful enough to perform DM inner-
loop optimization. On the other hand, it is clear that DM-PSO

needs almost six times the number of outer-loop iterations
than DM-ACO to achieve a NMSE ≤ NMSEth when U > 12,
which turns the DM-PSO in an expensive approach regarding
DM-ACO in terms of computational complexity.
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(a) (b)

Fig. 1. Sum EE behaviour for the optimal power vector p∗ , except to a)
p1 and b) p30 user. U = 30. Number of iterations in DM: NDM-CVX = 6;
NDM-ACO = 6 achieving ε = 10−5 , and NDM-PSO = 40 achieving ε = 10−3.
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Fig. 2. Minimum and achievable rates after NDM-CVX = NDM-ACO = 6 and
NDM-PSO = 40 iterations.

Figs. 4.a and Fig. 4.b show the
∑

EE and the corresponding
∑

Power evolution through the three EEM algorithms outer-
loop iterations. For both DM-ACO and DM-CVX, one can note
a similar evolution, due to the equal initial power vectors and
the same static channel assumed, aside the powerful converge
feature of the ACOR algorithm.

Once DM-ACO deploys the same number of outer iterations
as DM-CVX, it concludes that ACOR is a powerful heuris-
tic when maximizing the Dinkelbach’s parametric function
method. On the other hand, DM-PSO method suffers from
insufficient diversity strategy to scape from local optima.
Hence, when the dimension of the problem increases (U >
30), the PSO algorithm is not able to achieve full inner-
loop convergence and the

∑

EE evolution is slower. Indeed
to illustrate the slow convergence of PSO, typical inner-loop
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evolution for both heuristic algorithms is depicted in Fig 3.b).
For the CVX [14], we have assumed a linear convergence,
since the instantaneous values of its internal variables are not
available.
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Fig. 3. a) DM-ACO and DM-PSO NMSE evolution for U = [5; 12; 20; 30]
users; b) ACOR, CVX and PSO inner-loop evolutions during the first DM
iteration in the Algorithm 1; U = 30 users.
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Fig. 4. DM-ACO, DM-CVX and DM-PSO
∑

EE and
∑

P evolution for
U = 30 users.
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Fig. 5. Individual energy efficiency (1) and power evolution (2) for: a)
DM-ACO; b) DM-CVX; c) DM-PSO. U = 12 users.

Figs 5 shows the individual EE and power evolution; both
evolutions are not monotonic due to the fact that the aim of
the single-objective optimization posed by the EED problem
is to maximize the total energy efficiency of the system.
Furthermore, the outer-loop similarity among the DM-ACO and
DM-CVX evolutions becomes evident here.

Finally, Table II summarizes the achieved
∑

EE for dif-
ferent system loading through DM-CVX, and the respective
robustness attainable by DM-ACO and DM-PSO algorithms.
The total energy efficiency decreases as the system loading

increases due to the increasing level of the multiple access
interference. Besides, both metaheuristic approaches achieve
100% of robustness, considering convergence success when
NMSE < 10−2, which is clear in Fig. 3.a).

TABLE II

ACHIEVED PERFORMANCE METRICS FOR THE EEM PROBLEM.
Users

∑

EE [b/J] Robustness [%]

U DM-CVX DM-ACO DM-PSO

2 6.51 · 105 100% 100%
12 6.05 · 105 100% 100%
20 5.43 · 105 100% 100%
30 4.72 · 105 100% 100%
40 3.77 · 105 100% 96%

V. CONCLUSIONS

ACOR algorithm has been successfully applied to the EED
optimization problem in a MPG-DS/CDMA network under
realistic wireless mobile channels and system operation con-
ditions. Numerical results demonstrated the superiority of the
ACOR approach regarding PSO. Besides, the heuristic DM-
ACO method has demonstrated be very competitive regarding
the analytical DM-CVX approach in terms of both suitable per-
formance metrics and reduced complexity. More importantly,
the developed optimization design demonstrated to be useful
in order to obtain energy-efficient systems for the next wireless
generation green communication networks.
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