
XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

Hybrid Local Search Polynomial-Expanded Linear
Multiuser Detector for SIMO DS/CDMA Systems

Reinaldo Götz and Taufik Abrão

Abstract— In this work, low-complexity suboptimum detectors
have been analyzed for a single-input multiple-output (SIMO)
direct-sequence code division multiple access (DS/CDMA) system.
As a contribution, a hybrid multiuser detector based on poly-
nomial expansion (PE-MuD) with alpha-estimation determined
by Gerschgorin circles Theorem (GCT), and followed by a low-
complexity local search procedure is proposed for synchronous
SIMO DS/CDMA systems. The computational complexity of
the PE-MuD and the LS-MuDs are expressed in terms of the
total number of floating point operations in order to converge.
Herein, the spatial diversity is exploited in order to improve the
performance of the low-complexity multiuser detectors.

Keywords— Near-optimum search algorithms, polynomial-
expanded multiuser detection, Gerschgorin circles, SIMO
DS/CDMA.

I. INTRODUCTION

In a multipath channel communication environment, spatial

diversity can be obtained by employment of multiple antennas

at the receiver, provided that the antennas are sufficiently far

apart that the channel gains between different antenna pairs

can be assumed to be independent [1]. This work considers

the antenna-diversity-aided detection in synchronous SIMO

systems and investigates the trade-off between performance

gain and the complexity increasing provided by the spatial

diversity scheme.

Multiuser detection algorithms usually have very high com-

putational complexity, which greatly limits their adoption. The

Decorrelator and the MMSE detectors utilize the inverse cross-

correlation matrix of signature waveforms of the active users

in the system (R−1) to decouple the desired user’s signal and

have computational complexity of O(K3). However a multiple

stage detection, presented in [2], approximately implements

the inverse cross-correlation matrix through polynomial ex-

pansion in R. This scheme is namely polynomial-expanded

multiuser detector (PE-MuD) and can be viewed as an iterative

approach in order to approximate the linear multiuser detectors

with low complexity quadratic order dependence regarding the

number of users, O(K2).
Other concept widely adopted in this current study is the

local search (LS) based on neighborhood with signal detection

application. The LS detection method constitutes an optimiza-

tion mechanism which implement low-complexity local search

solutions into a previously established neighborhood [3], [4].

The main advantage of this method lies on its inexpensive

reduced complexity.

A structure formed by the PE-based detector as the first

stage followed by a local search algorithm has been presented

in [5]. This structure is able to offer performance improve-

ments under DSP implementable low-complexity perspective.
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In a same perspective, [6] and [7] investigate a new hybrid PE-

based local search algorithm applicable to single-input single-

output (SISO) DS/CDMA systems, which maintains the same

convergence shape but with a smaller quantity of operations

at the expense of a marginal and acceptable increasing in the

bit error rate (BER). The present work considers the hybrid

PE-LS-MuD in the multiple antennas environment.

II. SYSTEM MODEL

Herein, a discrete-time baseband system model is adopted,

with transmission through a synchronous uplink single-input

multiple-output channel, i.e., a single antenna at the mobile

terminal (MT) transmitters and N antennas at the base-station

(BS) receiver side, subjected to additive white Gaussian noise

(AWGN) and flat Rayleigh fading. The same channel is

simultaneously shared by K users, which operate under a

synchronous DS/CDMA system with binary phase shift keying

(BPSK) modulation. This is equivalent to a K × N MIMO

system. In the transmission, the ith information bit generated

by the kth user, at a ratio of Rb = 1/Tb bits per second is

denoted by bk [i] ∈ {±1} , i = 1, 2, . . .. At each i bit interval,

bk [i] is modulated by a spreading sequence with pseudo-noise

(PN) distribution and length L. The spreading code can be

represented by the vector:

sk [i] = [sk,1 [i] , sk,2 [i] , . . . , sk,L [i]]
T
, (1)

where sk,� [i] ∈
{
± 1√

L

}
and herein L denoting the system’s

processing gain, i.e., the ratio between the bit information

period and the chip period, L = Tb

Tc
= Rc

Rb
, with Rb and Rc

been the bit and chip rate, respectively. (·)T denotes the matrix

transposing operator.
Take into account a scheme of detection that explores the

diversity gain, which is given by the utilization of N multiple

antennas at the base station, the L× 1 received signal vector

at the ith bit interval and the nth receive antenna is:

rn [i] =
K∑

k=1

sk [i] cn,k [i]Akbk [i] +wn [i] , (2)

where Ak is the amplitude of the signal transmitted by the

kth user, admitted constant across the entire message; wn [i]
is the complex AWGN vector of the nth antenna, with mean

zero, variance σ2
w = N0 and bilateral power spectral density

given by N0/2 W/Hz.
The term cn,k [i] denotes the complex coefficient of the

channel inherent to the kth user, at the ith bit interval, which

corresponds to received signal at the nth antenna and is

perfectly known by the receiver, but not at the transmitter side.

In statistical terms, cn,k [i] may be represented by a circularly

symmetric complex Gaussian random variable, with mean zero

and variance σ2
c , in the form CN (

0, σ2
c

)
. In the polar form,

the channel’s complex coefficient is described by:

cn,k [i] = |cn,k [i]| ejθn,k[i], (3)
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where phase θn,k [i] is uniform over the range [0, 2π), i.e.,

omnidirectional BS receive antenna, and independent of the

magnitude |cn,k [i]|, whose probability density function is

given by Rayleigh, f (r) = r
σ2
c
e(−r2/2σ2

c), r ≥ 0.

In the notation of matrices, with bold capital letters re-

presenting matrices and bold lower case letters representing

vectors, and suppressing the bit interval index i for the sake

of convenience, Eq. (2) could be rewritten as follows:

rn = SCnAb+wn, (4)

with A = diag (A1, A2, . . . , AK) being the diagonal ma-

trix of the amplitudes of the transmitted signals, S =
[s1, s2, . . . , sK ] being the L×K spreading code matrix, and

b = [b1, b2, . . . , bK ]
T

the bit information vector transmitted

by the K users. Cn = diag (cn) is the channel complex coef-

ficients matrix, where cn =
[
cn,1, cn,2, . . . , cn,K

]T
in which

cn,k = |cn,k| · ejθn,k . Vector wn =
[
wn,1, wn,2, . . . , wn,L

]T
represents the complex noise with distribution N (

0, σ2
w

)
.

Conventional matched filters bank (MFB), also called the

Correlator filter, is defined by the signature waveform at the

first stage of the receiver:

yMFB

n = STrn

= STSCnAb+ STwn

= RCnAb+ w̃n, (5)

where yMFB
n =

[
yMFB
n,1 , y

MFB
n,2 , . . . , y

MFB
n,K

]T
is the K × 1 MFB

output information vector; the cross-correlation matrix of the

signature waveforms is obtained via R = STS; vector w̃n =
STwn corresponds to the filtered noise with variance σ2

wR.

Let pn =
[
ejθn,1 , ejθn,2 , . . . , ejθn,K

]T
be the vector of

phases and Mn = diag (|cn,1|, |cn,2|, . . . , |cn,K |) be the

diagonal matrix of magnitudes of the complex channel, so

that cn = Mnpn. The channel phase effect can be mitigated

by applying the conjugate of the channel phases’ vector after

the Correlator filter:

zMFB

n = RCnAb� p∗
n + w̃n � p∗

n, (6)

with � denoting the component-wise vector multiplication in

a same way as Hadamard matrix product and (·)∗ denoting the

conjugate operator. Considering the maximum rate combining

(MRC) rule applied to the received signals from the N
antennas, the decision variable utilized in the estimation of

the information bit transmitted by the kth user is given by:

ξMFB

n,k =
N∑

n=1

zMFB

n,k · |cn,k|, (7)

and, finally, the kth user’s information bit is given by:

b̂MFB

k = sgn
(�{

ξMFB

n,k

})
, (8)

where sgn (·) represents the signum function and �{·} is the

real part operator. As a result, the estimated information bits

vector is obtained as b̂MFB =
[
b̂MFB
1 , b̂MFB

2 , . . . , b̂MFB
K

]T
.

However, as well known, the performance of the MFB

becomes remarkably poor when the system loading L = K/L
increases, i.e., due to the MAI level increasing as a function

of the number of active users.

A. Linear Methods of Multiuser Detection

The linear Decorrelator detector operates from multipli-

cation of the discrete signals at the matched filters output

by the inverse cross-correlation matrix R−1. Considering the

coherent reception model, the information bits vector at the

nth antenna, which is estimated after the application of the

Decorrelator filter, can be conveniently described as:

zDEC

n = TDEC

n yMFB

n � p∗
n

= R−1RCnAb� p∗
n +R−1w̃n � p∗

n

= CnAb� p∗
n + w̆n � p∗

n, (9)

where TDEC
n = R−1, ∀n is the transformation matrix for the

MuD Decorrelator filter, and zDEC
n = [zDEC

n,1 , z
DEC
n,2 , . . . , z

DEC
n,K ]T

is the Decorrelator output information vector. Note that the

cross-correlation inverse matrix R−1 is the common filter for

all antennas’ received signals. The kth user’s information bit

is estimated through the MRC of the received signals in phase

at all N antennas:

ξDEC

n,k =
N∑

n=1

zDEC

n,k · |cn,k|, (10)

and the result obtained at Decorrelator detector output is given

by:
b̂DEC

k = sgn
(�{

ξDEC

n,k

})
. (11)

The Decorrelator detector presents a gain in the performance

regarding the matched filters bank, although the power as-

sociated to the noise term w̆n = R−1w̃n, obtained at the

Decorrelator output, is always higher or equal to the noise

term obtained at the MFB output [8], [9].

Another classical linear detection method known in litera-

ture is the MMSE detector, proposed for CDMA systems in

[10]. This method is based on the appropriate choice of a linear

transformation vector, tn,k =
[
tn,k,1, tn,k,2, . . . , tn,k,K

]T
,

that minimizes the mean square error (MSE) between the kth

user’s information bit and the kth linear transformation output,

(tn,k)
T
yMFB
n , resulting in:

tMMSE

n,k = min
tn,k

E

{[
bk − (tn,k)

T
yMFB

n

]2}
. (12)

The vector that minimizes (12) involves the covariance of

colored noise w̃n and the estimated amplitudes of the received

users’ signals at the nth BS receive antenna, expressed by the

K ×K diagonal matrix:

Gn = MnA. (13)

By applying this MMSE solution to the joint detection

of the K users, the transformation matrix TMMSE
n =[

tMMSE
n,1 , tMMSE

n,2 , . . . , tMMSE
n,K

]
with dimensions K × K is given

by:
TMMSE

n =
(
R+ σ2

wG
−2
n

)−1
. (14)

Hence, the decision information vector at the nth antenna,

which is obtained after the application of the MMSE multiuser

filter, is described by zMMSE
n = TMMSE

n yMFB
n � p∗

n, where

zMMSE
n,k = (tMMSE

n,k )TyMFB
n · e−jθn,k .

And applying the MRC to the received signals in phase at

all N antennas:

ξMMSE

n,k =
N∑

n=1

zMMSE

n,k · |cn,k|. (15)
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Therefore, the estimated information bit for the kth user at

the output of the linear SIMO BPSK MMSE detector is given

by:
b̂MMSE

k = sgn
(�{

ξMMSE

n,k

})
. (16)

III. POLYNOMIAL-EXPANDED MULTIUSER DETECTORS

The computational complexity of the linear MuDs, which

originates in the operations associated to the cross-correlation

matrix inversion, grows with the third order of the matrix

size, i.e., O (
(mPK)3

)
, where P is the transmitted message

length and m is the modulation order. However, any linear

transformation matrix, represented by Tn in the SIMO model

context, can be approximated through the iterative polynomial

expansion method with complexity of O (
(mPK)2

)
. In gene-

ral, PE methods approach approximates the cross-correlation

matrix inversion via Neumann iterative series expansion.

A. General Result for PE Matrix Approximation

The general result for the K×K PE-transformation matrix

TPE, which is able to implement a PE multiuser detector (by

approximating a matrix inversion), is given by [8]:

TPE =

Nt∑
i=0

wiQ
i, (17)

where Nt denotes the number of terms of the polynomial

expansion. The matrix Q and the weights wi, interpreted

as the coefficients for the series convergence rate, have to

be chosen such that they suitably approximate the desired

multiuser detector.

As a result, the polynomial expansion transformation matrix

TPE → Q−1 when the number of expansion terms Nt → ∞.

B. Polynomial Expansion via Neumann Series

By using the Neumann series expansion method [11], the

inverse cross-correlation matrix R−1, for the case of Decor-

relator filter, may be approximated as:

R−1 ≈ TDEC

PE = α

Nt∑
i=0

(IK − αR)
i
, ‖IK − αR‖ < 1 (18)

where IK is an identity matrix of size K, and the associated

residual error matrix is given by:

εεεDEC

PE = α
∞∑

i=Nt+1

(IK − αR)
i
, (19)

such that the equality R−1 = TDEC
PE + εεεDEC

PE holds.

In the same way, the PE matrix transformation for the

SIMO linear MMSE detector at the nth receive antenna can

be approximated in:

TMMSE
PE,n ≈ (

R+ σ2
wG

−2
n

)−1
= αn

Nt∑
i=0

[
IK − αn

(
R+ σ2

wG
−2
n

)]i
.

(20)
The decision variable utilized by the polynomial-expanded

multiuser detector in the estimation of the information bit

transmitted by the kth user is given by using the MRC:

ξPE

n,k =

N∑
n=1

zPE

n,k · |cn,k|, (21)

with zPE
n =

[
zPE
n,1, z

PE
n,2, . . . , z

PE
n,K

]T
= TDEC

PE,n y
MFB
n �p∗

n for the

Decorrelator approximation or zPE
n = TMMSE

PE,n yMFB
n �p∗

n for the

MMSE approximation.

Finally, the hard decisions for the PE-MuD SIMO

DS/CDMA with BPSK modulation are obtained as:

b̂PE

k = sgn
(�{

ξPE

n,k

})
. (22)

C. Optimum Value of the Parameter α

Since the convergence factor of an iterative method can

be associated with the radius of the matricial operator, the

convergence ratio is related to the dimension of this radius.

The optimum parameter for linear Decorrelator detector in the

PE approximation is given by:

αDEC

opt = 2(λmin + λmax)
−1. (23)

In turn, for the linear MMSE detector approximation, the

optimum value of α is given by:

αMMSE

opt = 2(λmin + λmax + 2σ2
w)

−1. (24)

Important to point out that the deterministic choice of

αopt through cross-correlation matrix eigenvalues calcula-

tion is prohibitively complex for the implementation of the

polynomial expansion method using practical digital signal

processing hardware platforms. As a result, the complexity of

only one eigenvalue computation, as well as of all eigenvalues

calculation from a K squared-dimension matrix results in

O (
K3

)
. Thus, it is necessary to estimate the optimum value

of the parameter α. Next, the estimation of αopt is suggested

by using the Gerschgorin circles Theorem [11].

D. Gerschgorin Circles Theorem (GCT)

According to Gerschgorin Theorem, any eigenvalue λi of a

matrix R, which has elements ri,j , ∀i, j, is situated in one of

the circles of the complex plane that are centered in ri,i:

|λi − ri,i| ≤
∑
i,j �=i

|ri,j | . (25)

Thus, through a simple calculation, by using the elements of

R, the approximated values of λmin and λmax, which are

denoted by λ̂min and λ̂max, respectively, can be achieved by:

λ̂min ≈ min
{
ri,i +

∑
i,j �=i |ri,j |

}
, ∀i, (26)

λ̂max ≈ max
{
ri,i +

∑
i,j �=i |ri,j |

}
, ∀i. (27)

The GCT guarantees a considerable reduction in the com-

plexity of the calculation of the minimum and maximum

eigenvalues; therefore, the GCT results are applied directly

to Eq. (23) and (24) in order to estimate the parameter α.

IV. LOCAL SEARCH METHODS APPLIED TO MUD

The well known local search methods propitiate the at-

tainment of near-optimum solutions from searches guided in

subspaces of the dimension of the optimization problem. The

1opt-LS-MuD algorithm performs guided searches for the b
vector that maximizes the linearly combining cost function:

f (b) =
1

N

N∑
n=1

Ωn (b) , (28)

where Ωn is the Euclidean distance function between the

received signal at nth antenna and the reconstructed signal

at the receiver from the information candidate-vector, b:

Ωn (b) = 2�
{
bTCH

nAyMFB

n

}
− bTCnARACH

nb. (29)
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The 1opt-LS-MuD algorithm selects candidate-vectors with

unitary Hamming distance1 from the MFB output vector.

Details related to this LS algorithm can be found in [4], [12].

Herein, the users’ power profile is considered for classifica-

tion purpose at the beginning of the guided search process.

From the estimated users’ received amplitudes diagonal matrix

Gn = MnA = diag (gn,1, gn,2, . . . , gn,K), the average

received amplitude of the kth user can be estimated as a linear

combination of the corresponding N antenna branches:

gk =
1

N

N∑
n=1

gn,k, (30)

where vector g =
[
g1, g2, . . . , gK

]T
is formed to assist the

users’ power classification. In the following, an adaptation for

the 1-opt LS algorithm is proposed and a new algorithm is

formed.

A. Local Search Algorithm 1-adapt LS

The quantity of calculations of the cost functions during

the search for the best candidate vector can be limited by

using a given threshold. Chase establishes a threshold criterion

based on channel measurement informations, by selecting a

fixed number of the lowest confidence bits to be changed

[13]. Differently of Chase search stop criterion, herein for

the proposed 1-opt LS algorithm, a dynamic threshold is

used in order to create adaptation and reduce complexity.

The algorithm one-adaptive local search (1-adapt LS) clas-

sifies the received signals in order of increasing amplitude;

then, candidate vectors with unitary Hamming distance are

generated, following the ordering of the signals (from the

weakest to the strongest), and their respective cost functions

are evaluated; in case of the linearly combining cost function

value does not increase inside of a pre-established quantity of

consecutive evaluations, denoted here by the parameter κ, the

search process is interrupted and a new search is initiated. In

general, κ is taken as a fraction of the number of active users

in the system. The pseudo-code for the algorithm 1-adapt LS

is described in the Algorithm 1.

B. Hybrid PE-MMSE 1opt-LS-MuD and 1adapt-LS-MuD

A detection structure formed by a suboptimal local search

algorithm in conjunction with a primary stage of polynomial-

expanded linear multiuser detector was presented in [5]. This

structure has been reproduced herein, by deploying in the first

stage, the SIMO polynomial-expanded MMSE detector with

α estimated via Gerschgorin circles method, and in the second

stage, the 1-opt LS algorithm. In this work, the low-complexity

1-adapt LS algorithm is deployed in the second stage of the

hybrid detection structure to form the hybrid 1adapt-LS-MuD

with spatial diversity exploration. In Section VI, a performance

comparison including both hybrid PE-LS-based suboptimal

MuDs have been carried out.

V. COMPUTATIONAL COMPLEXITY

The metric of computational complexity is defined by the

total number of floating points operations (FLOP) needed

for each detector to achieve convergence. The considered

1Hamming distance between b1 and b2 vectors is defined by ‖b1 − b2‖,
which corresponds to the amount of elements that differ between the vectors.

operations are: multiplication, comparison, random number

generation and selections. The complexity is expressed as a

function of the number of users (K), antennas (N ), iterations

needed for convergence (nit ≤ Nit) and the average quantity

of cost function calculations by iteration, which is denoted by

ζavg. The cost function calculation in (29) is the most sig-

nificant factor in determining the complexity of the detectors.

The terms 2CH
nAyMFB

n and CnARACH
n are evaluated outside

the iterations loop and adopted constant during the detector

search. The resulting number of operations needed for these

two terms is 4K3 + 6K2 + 2K, and this calculation is done

N times (one for each antenna). Inside the iterations loop,

the number of operations needed for each candidate vector

evaluation through cost function becomes N(K2 + 3K). The

Table I shows the complexity for the PE-MMSE-MuD with

Nt terms and estimated α, the linear MMSE-MuD and the

local search algorithms 1-opt LS and 1-adapt LS.

Algorithm 1 One-adaptive LS

Input: b̂MFB; Nit; g; κ; Output: b̂;
begin
t = 0;
1. Classify signals: g (increasing amplitude order), given gk [t],
k = 1, 2, . . . , K, with gk [t] ≤ gk+1 [t];
2. Initialize the local search: t = 1; � = 0;

a. Let bbest [1] = b̂MFB;
b. Calculate the cost function fbest [1] = f (bbest [1]);

3. for t = 1, 2, . . . , Nit,
while � < κ,

a. Generate candidate vectors with unitary Hamming
distance denoted by bi [t], i = 1, 2, . . . , K;
b. Calculate the cost function fi [t] = f (bi [t]);
if fi [t] > fbest [t],

fbest [t+ 1] ← fi [t];
bbest [t+ 1] ← bi [t];
� = 0;

else
� = �+ 1;

end if
end while
if fbest [t+ 1] = fbest [t],

go to 4;
end if

end for
4. b̂ = bbest;
end

TABLE I: Computational Complexity in [FLOPs]

MuD Operations
Linear MMSE N

[
2K3/3 + 3K + 2 (K − 1)

]

PE-MMSE N
[
3K2 + 3K (Nt(Nt − 1)) +K

]

1-opt LS nit

[
KN

(
K2 + 3K

)
+ 2K + 2

]
+

(nit ≤ Nit) N
(
4K3 + 6K2 + 4K

)
+ 1

1-adapt LS nit

[
ζavgN

(
K2 + 3K

)
+ 3K + 3

]
+

(nit ≤ Nit) N
(
4K3 + 6K2 + 4K

)
+ 1

VI. PERFORMANCE-COMPLEXITY ANALYSIS

The suboptimal MuD performances are evaluated by means

of Monte Carlo simulation (MCS) method. The flat Rayleigh

fading channels with magnitude and phase coefficients per-

fectly estimated at the receiver side have been assumed, while

the number of antennas at receiver ranges from N = 2 to
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N = 4 antennas. The average SNR, denoted by SNRavg, is

deployed in the context of the near-far effect, i.e., there are

two interfering group of users with near-far ratio NFR+ =
Pinterf (dB) − Pinterest (dB) = +5 dB (K/3 users), and K/3
users with NFR− = −5 dB, where Pinterf = g2i,interf and

Pinterest = g2j,interest is the received power related to the

linear combination of received amplitudes, Eq. (30), for the

ith interfering signal and jth interest signal, respectively.
The SNRavg considered in simulation ranges from 0 to 18

dB. Random spreading codes with processing gain length of

L = 31 have been adopted in a single-rate DS/CDMA system.

Furthermore, the number of terms in polynomial expansion is

limited to Nt ∈ {1, 3} terms and the number of local search

iterations is limited to Nit =
[
1; 5

]
iterations. Besides, in the

1-adapt LS algorithm, a good performance-complexity trade-

off is attainable with κ = �0.6 ·K
.
For the 1adapt-LS-MuD, Fig. 1 depicts the average quantity

of cost function calculations by iteration and antenna, ζavg, as

a function of the number of users, considering (a) N = 2 and

(b) N = 4 antennas, with SNRavg = 10 dB. The quantity of

active users in the system ranges from K =
[
21; 30

]
users.

As the number of antennas at receiver grows, decreases the

influence that the number of iterations has in the local search

algorithm.

ζ
a
v
g

1opt-LS-MuD

1adapt-LS-MuD 1 Iter.

1adapt-LS-MuD 3 Iter.

1adapt-LS-MuD 5 Iter.

Users

ζavg = 25.0

(a)

2426 28 2830 30

28

26

ζavg = 21.2

ζavg = 18.0

ζavg = 19.3

ζavg = 16.7ζavg = 18.8

ζavg = 25.0

20

22

30

32

18

16
242221 2221

24

26

(b)

Fig. 1: Average quantity of cost function calculations necessary in the 1opt-
LS-MuD and 1adapt-LS-MuD with (a) N = 2 and (b) N = 4 antennas;
SNRavg = 10 dB.

Fig. 2 depicts the BER performance of the MuDs under

SIMO BPSK environment for low system loading L ≈ 29%
(K = 9 users) configuration. In this scenario, the hybrid PE-

MMSE 1opt-LS-MuD with Nt = 3 terms keeps the same

diversity gain achieved by the linear MMSE-MuD but with

a BER performance improvement, i.e., a SNR gap of ≈ 2
dB in high SNR region. On the other hand, the proposed

hybrid PE-MMSE 1adapt-LS-MuD follows the performance

of the PE-MMSE 1opt-LS-MuD in the low and medium SNR

region; however its achieves BER floor at SNRavg > 20
dB. A reduction in BER floor effect can be obtained by

adding more terms (5 or 7 terms), with marginal complexity

increasing. Hence, the proposed hybrid PE-MMSE 1adapt-LS-

MuD represents a suitable solution in terms of performance-

complexity trade-off when compared to the PE-MMSE-MuD.
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Fig. 2: Hybrid 1adapt-LS-MuD performance, in the flat Rayleigh channel
with N = 4 antennas and K = 9 users; Algorithm 1 with Nit = 3 iterations.

VII. CONCLUSIONS

The proposed 1-adapt LS algorithm promotes a remarkable

gain in the SIMO DS/CDMA system performance equipped

with polynomial expansion-based hybrid multiuser detectors.

When associated to low-complexity PE-MuDs, it provides reli-

ability to the detection process, without an excessive increasing

in its implementation cost, been able to offer a promising

performance-complexity trade-off.
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