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Lattice Reduction-Aided MIMO Detectors under
Correlated Channels

Raul Ambrozio Valente Neto, José Carlos Marinello, Taufik Abrão

Abstract—In this contribution, lattice reduction (LR) tech-
nique is applied to improve the MIMO detector performance
under correlated channel constrains. Zero-forcing, minimum
mean squared error (MMSE), ordered successive interference
cancellation (OSIC) and sphere decoding (SD) detectors are
analysed taking into consideration a) different correlated fading
channel indexes, and b) increasing spectral efficiency, by com-
bining number of transmit antennas and modulation formats.
Analyses of correlated channel effects over the performance of
MIMO systems equipped with different LR-aided detectors are
carried out, indicating the robustness of those detectors, as well
as the SD-MIMO detector deficiency to deal with such large
number of strongly correlated MIMO channel condition. Besides,
computational complexities are compared aiming to determine
the best LR-MIMO detection scheme under the perspective of
performance-complexity tradeoff.

Keywords—Lattice reduction; correlated channels; Large
MIMO detectors; zero-forcing; MMSE; sphere decoding.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems provide a
significant spectral efficiency and/or performance improve-
ment on wireless communication systems by the use of
multiple antennas at both transmitter and receiver side [1].
Here, parallel data streams are transmitted using multiple
antennas to increase the spectral efficiency at the cost of
increased complexity for data detection at the receiver [2].
MIMO systems achieve this goal by dividing the total transmit
power over the antennas, taking advantage of the multipath
diversity in order to achieve significant array gain (more bits
per second per hertz of bandwidth), or alternatively to achieve
a reliability (diversity gain mode) on the received information,
being suitable to reduced channel fading effects.

Under large (or dense) MIMO regime, the communication
systems use antenna arrays with an order of magnitude, in
terms of the number of elements, bigger than in systems
being built today, say tens (a hundred) antennas or more. Very
large MIMO arrays is a new research field both in commu-
nication theory, propagation, and electronics and represents a
paradigm shift in the way of thinking both with regards to
theory, systems and implementation. A recent survey on the
theoretical research on signal processing, coding and network
design for very large MIMO systems is presented in [3].
The authors discuss several aspects of dense-MIMO systems,
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such as information-theoretic performance limits, practical
algorithms, influence of channel properties on the very large
MIMO system performance, as well as practical constraints
on the antenna arrangements.

Linear detection techniques such as linear zero forcing (ZF),
minimum mean squared error (MMSE), successive interfer-
ence cancellation (SIC), and ordered SIC (OSIC) presents a
performance clearly inferior to the maximum likelihood (ML)
detector. The sphere decoding (SD) [4] can be considered
when looking for a near-optimum performance. However SD
approach results in a prohibitive complexity for implemen-
tation under low or low-medium signal-to-noise ratio (SNR)
region on real communication systems, becoming of the same
order of ML complexity for low SNR region [5].

The LR is a mathematical concept used to solve many prob-
lems involving lattice points. In the MIMO signal detection
problem, the LR can be used to improve the conditioning of
the channel matrix [2], [6], thus allowing to use simpler de-
tectors [2], and consequently less computational complexity is
necessary to maintain acceptable performance [6]. A powerful
and well-known algorithm for reduction is the LLL, proposed
by Lenstra, Lenstra & Lovasz in 1982 [7]. The LLL algorithm
is a polynomial time algorithm that finds short vectors within
an exponential approximation factor.

The contribution of this work is twofold: i) quantify the
impact on the MIMO system performance improvement when
lattice reduction technique is deployed to mitigate the effects
of channel correlation; ii) determine the best MIMO detector
choice among the popular SD and ZF, MMSE, MMSE-
OSIC LR-aided MIMO detectors in terms of complexity-
peformance tradeoff. More precisely, in this contribution,
lattice reduction technique is applied to improve the MIMO
detector performance under correlated channels constrains.
The MIMO detectors are analysed taking into consideration
a) correlated fading channels, and b) increasing number of
transmit and receive antennas. Analysis of correlated channel
effects over the MIMO system performance equipped with
different LR-aided detectors are carried out. Besides, compu-
tational complexities are compared aiming to determine the
best LR-MIMO detection scheme under the perspective of
performance-complexity tradeoff.

This work is organised as follows: system model is devel-
oped in section II, as well as a discussion related to correlated
channel, and the various available MIMO detectors. Section
III shows how the LR technique can be employed in order
to improve the performance of these schemes. Simulation
results, including complexity and performance analyses for
those MIMO detectors are carried out in section IV. Final
remarks and conclusions are offered in section V.
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Notation: boldface lower case letters are used to denote
vectors and boldface upper case letters to denote matrices.
The superscripts (·)−1, (·)H , (·)T and (·)+ denote the inverse,
conjugate transpose, transpose and Moore-Penrose pseudo-
inverse, respectively, while Im, represents the identity matrix
of order m. The notation C

a×b refers to the space of com-
plex matrices with a rows and b columns, ||x|| denotes the
Euclidean norm and ||x||2 the spectral matrix norm. Boldface
lower case letters with tilde denotes received signal vectors,
and boldface lower case with hat denotes estimated signal
vectors, i.e., received signal after filter decision.

II. WIRELESS MIMO SYSTEM MODEL

We consider nT transmit antennas and nR receiver antennas,
with nR � nT , where data is demultiplexed into nT transmit
antennas. A MIMO system topology is depicted in Fig. 1.
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Fig. 1. MIMO system in a multiplexing gain mode.

A classical problem in MIMO system consists in reliably
detect the transmitted symbol s ∈ C

nT×1, despite the chan-
nel’s distortion and noise [8]. The receive signal is given by:

x = Hs+ n, (1)
where x ∈ C

nR×1 is the received symbol, H ∈ C
nR×nT

is the channel matrix that is known a priori, usually, it is
estimated beforehand, and n ∈ C

nR×1 is the additive Gaussian
noise samples such that n ∼ CN{0; σnI}. Those variables are
complex values. For simplicity, we can rewrite (1) as real and
imaginary part separately:

x = Hs+ n, (2)
where the channel matrix

H =

[�{H} −�{H}
�{H} �{H}

]
∈ R

n×m (3)

and the real-valued vectors

x =

[�{x}
�{x}

]
, s =

[�{s}
�{s}

]
, n =

[�{n}
�{n}

]
. (4)

Note that m = 2nT , n = 2nR, x,n ∈ R
n×1 and s ∈ R

m×1.
In this work we will consider high order M quadrature

amplitude modulation (M-QAM). The complex-valued symbol
(finite) set is given by S =

{A+
√−1 · A}

, where A ={
± 1

2
a; ± 3

2
a; . . . ; ±

√
M−1

2
a
}

is the real-valued finite set. The
parameter a =

√
6/(M − 1) is used for normalizing the

power of the complex valued transmit signals to 1.
Several MIMO detectors are described in the following, and

their performance compared. However, before we deal with
MIMO detectors, one important and realistic aspect related to
the MIMO matrix coefficients is modelled: the MIMO channel
correlation effect.

A. Correlated MIMO Channels
In the last two decades, various MIMO channel correlation

models have been proposed; among them, there is an important
class of MIMO channel models that assume the correlation
among receive antennas (Rx) is independent of the correlation
between transmit antennas (Tx) (and vice versa). Hence,
admitting the independent correlation hypothesis among Rx
and Tx antennas, the MIMO channel model for Rayleigh flat-
fading channels can be modelled as [9]:

H =
√

RH,RXG
√

RH,TX, (5)
where G ∈ C

nR×nT is an independent, identically distributed
(i.i.d.) complex Gaussian with zero-mean and unit variance
elements. The correlation matrices RH,TX ∈ R

nT×nT and
RH,RX ∈ R

nR×nR denote the correlation observed among the
transmitter antennas and receiver antennas, respectively. Note
that matrix G is similar to matrix H.

Without loss of generality, we assume in this work that the
Tx and Rx antennas are equally separated, with equal number
of antennas nT = nR and the correlation matrix RH,RX =
RH,TX = RH. Hence, the matrix RH can be written as:

RH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ
4

. . . ρ
(nT−1)2

ρ 1 ρ . . .

...
ρ
4

ρ 1 . . . ρ
4

...
...

...
. . . ρ

ρ
(nT −1)2

. . . ρ
4

ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where ρ is the normalized correlation index. Note that a
totally uncorrelated scenario means ρ = 0, while a fully
correlated scenario implies ρ = 1. Besides, in the numerical
results we have assumed also three intermediate scenarios:
ρ = 0.2 representing a weakly correlated channel, ρ = 0.5
for a medianly correlated channel and ρ = 0.9 for a strongly
correlated channel.

B. ML MIMO Detector
The optimum maximum-likelihood (ML) detector searches

over the whole set of possible symbols s ∈ Am, and decides
in favour of the symbol that minimises the Euclidean distance
among the reconstructed Hs and received x signal: %vspace-
1mm

ŝML = arg min
s∈Am

||x−Hs||2. (7)

This search complexity is exponential according to the
number of antennas and number of symbols, i.e., it is of
order O(MnT ). This way, it becomes impracticable in dense
MIMO systems (large number of antennas) and/or higher order
modulations formats, or even under high number of symbols
per time-slot jointly detected.

C. ZF MIMO Detector
Looking for suppressing the channel interference, the zero-

forcing (ZF) detector has been conceived to suppress com-
pletely the interference by multiplying the received signal
vector x to the Moore-Penrose pseudo-inverse of the channel
matrix H+ = (HTH)−1HT . The output signal from the
detector is given by:
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s̃ZF = H+x = s+ (HTH)−1HTn (8)

This output signal is mapped to the alphabet symbol over
the decision step, which consists in approximate the received
symbol to the closer alphabet symbol according to a threshold.

Note that, for a scenario with no noise, ZF is identical to
ML, since all channel interference is suppressed. However, ZF
leads to noise amplification in a noisy scenario, because H+n

is larger than n [10].

D. MMSE MIMO Detector

Trying to improve ZF detector performance, the minimum
mean square error (MMSE) detector for MIMO system have
been developed. The MMSE detector takes the noise term into
account, thus the performance can be improved [10]. Hence,
we define the (n +m) ×m extended channel matrix H and
the (n+m)× 1 extended receive vector x by

H =

[
H

σnIm

]
and x =

[
x

0m,1

]
, (9)

where 0i,j is a i× j matrix of zeros. Then, the output signal
from MIMO MMSE detector is:

s̃MMSE = (HTH+ σ2
nIm)−1HTx

= (HTH)−1HTx

= H+x.

(10)

Note that this equation has the same structure of (8), whereas
the vector signal and the channel matrix have been extended.

E. Ordered Successive Interference Cancellation (OSIC)
MIMO Detector

Evaluating the QR decomposition of the channel matrix H,
such that H = QR, the MIMO detection can be performed to
each layer successively, by taking:

s̃SIC = QHx = Rs+QHn. (11)
Since Q is an unitary matrix, the statistical properties of
the noise term QHn remain unchanged. Due to the upper
triangular structure of R, the n-th element of s̃SIC is totally
free of inter-antenna interference and can be used to estimate
sn after appropriate scaling by a factor 1/rn,n [11]. Removing
its interference from the received signal x, and assuming
that the estimated symbol is correct, the further symbols
can be detected as if there were no previous layers, in a
simpler equivalent system. However, if an error occur on
the first layers, it would be propagated until the end of the
algorithm, deteriorating its performance. Hence, a remarkable
performance improvement can be achieved detecting the most
reliable layers first. It can be done as shown in [11], by
evaluating the MMSE sorted QR decomposition (SQRD) of
the channel matrix, and performing the remainder of the
algorithm on the same way as described above.

F. Sphere Decoding (SD) MIMO detector
A detector similar to ML has been developed in the last

decade, namely the sphere decoding (SD) detector [4], [5].

As advantage, the SD detector results in a lower complexity1,
since it does not realize an exhaustive search on the entire
alphabet. SD solves (7) seeking the solution inside a hyper-
sphere of radius d:

||x−Hs||2 � d2. (12)
This radius is determined using the pruning technique, de-
scribed in [8], [12]. Moreover, in order to obtain candidate-
solution points inside the hyper-sphere without an exhaustive
search, the search is made taking advantage of the triangular
structure of the R matrix, given by the QR decomposition of
the channel matrix H, such that H = QR. Hence, the points
inside the hypersphere can be found layer-by-layer, starting
from the last row of R, from the partial Euclidean distances,
by evaluating:

||QTx−Rs||2 � d2 (13)
at that layer, and summing the previous. Then, enumerating the
points inside the hypersphere, the solution is the one closest
to the hypersphere centre QTx.

III. LATTICE REDUCTION AIDED MIMO DETECTION

As already mentioned, the channel matrix is not completely
orthogonal, and even in some practical scenarios of interest
can result in highly correlated matrices, which prejudices the
detection process and mainly deteriorates the MIMO system
performance. Hence, to circumvent this problem, we aim to
turn the channel matrix as near-orthogonal as possible, looking
for improve the MIMO detection process with a manageable
complexity increasing.

In the next, our main concern is to analyse the LR-aided
MIMO detectors under high number of antennas, higher order
modulation, and correlated channels scenarios.

A. LR-aided Detectors in Dense MIMO System
Using H̃ = HT and z = T−1s, the received signal vector

in (2) can be rewritten as
x = Hs+ n = HTT−1s+ n = H̃z+ n. (14)

Note that Hs and H̃z describe the same point in the lattice.
However H̃ = HT is usually much more near to the orthog-
onality than H. The domain of z is T−1Am, differently of s
which is Am. This difference can be seen as a transformation
applied to Am, i.e. the lattice points are resized and translated.
The T is an unimodular matrix, i.e., a square integer matrix
with determinant ±1, obtained from LR algorithm; note that
LLL algorithm [7] is adopted herein.

The idea of LR-aided detection in dense MIMO system
is to consider the system model in (14) and perform the
quantization on z instead of s with a large number of antennas.
For LR-aided ZF the output signal is written as:

z̃LR-ZF = T−1s̃ZF = H̃+x, (15)

where the multiplication by H̃+ usually causes less noise
amplification due to more orthogonal columns of the channel
matrix.

Similarly, the output signal of LR-aided MMSE is:

z̃LR-MMSE = T−1s̃MMSE = H̃
+

x. (16)

1Specially for medium and high SNR regions.
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Note that lattice reduction operations consists in scaling and
shifting of the lattice points, so it is necessary to introduce
re-scaling and re-shifting operations over the signal vectors
before the quantization [13], [14]. In [14], it is showed that
the estimate in the reduced lattice domain is performed by:

ẑ = 2

⌊
z̃− β′T−11

2

⌉
+ β′T−11, (17)

where 1 is a vector of ones, β′ is a parameter that depends
on the modulation format, being 1 + j for all M-QAM and 1
for pulse amplitude modulation (PAM) and binary phase shift
keying (BPSK) modulation; �.� denotes the rounding operator.

Finally, the signal vector estimation in the original alphabet
is obtained applying the transformation x̂ = Tẑ.

IV. NUMERICAL RESULTS

In the sequel, the bit error rate (BER) versus Eb/N0 per-
formance analysis under perfect channel estimation, different
number of antennas, modulation order, as well as different
MIMO channel correlation indexes have been considered.
Important to determine the best complexity × performance,
in Section IV-B the computational complexity analysis for
all MIMO detectors considered in this work is carried out.
Specifically, three configurations for the equal number of
transmitted and received antennas, nT = nR, modulation
format M -QAM and channel correlation values ρ have been
considered.

A. Performance Analysis
Figure 2 shows the BER performance of the considered

detectors for a 64-QAM MIMO system with nT = nR = 4
antennas under correlated channels with coefficients perfectly
estimated; accordingly, Fig. 3 and 4 depict the BER perfor-
mance for 8× 8 16-QAM and 20× 20, 4-QAM, respectively.

As one can see from Fig. 2, 3 and 4, the three LR-aided
MIMO detectors achieve the full diversity degree, defined
as the asymptotic slope of the BER curve in high SNR
region, although its performance in low SNR region has
proved worse, specifically for the larger number of antennas.
The LR technique applied to the MIMO systems, specially
under large MIMO condition, makes them more sensitive to
noise, although being robust against the correlation between
antennas, what makes its BER performance improves consid-
erable at the high SNR region, where the additive noise is
negligible. Furthermore, for strongly correlated channels under
large number of antennas (tens or more), the MMSE OSIC
and the LR-MMSE OSIC MIMO detectors showed a poor
performance, as indicated in Fig. 3 and 4. It can be explained
by the inefficiency of the sorting procedure under large number
of strongly correlated MIMO channels condition, when the
columns of the channel matrix become more and more similar,
i.e. rank deficiency, and therefore causing propagation errors
in the serial detection process more often, what explains the
performance behavior in high SNR of the Fig. 3 and 4.
B. Complexity

According to [15], the algorithm complexity can be evalu-
ated in terms of the total number of floating-point operations
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Fig. 2. BER performance for the MIMO detectors considering 4×4 antennas,
64-QAM modulation under correlated channels: a) Weakly Correlated (ρ =

0.2); b) Medianly Correlated (ρ = 0.5); c) Strongly Correlated (ρ = 0.9).
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(flops), which one flop is defined as an addition, subtraction,
multiplication or division between two floating point numbers.
The complexity in terms of number of flops for the same
matrix operations can be found on [15], and LLL procedure
on [16]. Using this methodology, we calculate the complexity
of MIMO detectors showed in Table I, where N = nT = nR

is the number of antennas, and M is the modulation order in
M -QAM. The complexity of the SQRD from MMSE-OSIC
can be found in [11], while the parameters p1, p2, and p3
were determined from [16]. The complexity of SD detector
has been determined using results of [5].

TABLE I
MIMO DETECTORS COMPLEXITY.

Detector Total Complexity
ML MN (8N2 + 2N)

ZF 14/3N3 + 2N2

MMSE 26/3N3 + 4N2

MMSE-OSIC 40/3N3 + 13/3N2 + 25/6N

LR-ZF 14/3N3 + 2N2 + 2N3 +Np1 +
2Np2 + p3(7N + 1)

LR-MMSE 26/3N3 + 4N2 + 2N3 +Np1 +
2Np2 + p3(7N + 1)

LR-MMSE-OSIC 40/3N3+13/3N2+25/6N +2N3+
Np1 + 2Np2 + p3(7N + 1)−N3

SD (N2 +N + 1)2γN

The number of complex operations for all those considered
MIMO detectors according to the number of antennas and
modulation order has been drawn in Fig. 5. As mentioned
before, the ML and SD MIMO detectors present an ex-
ponential complexity regarding M and N . The ML-MIMO
detector requires a huge number of operations, what makes
it not feasible even for a low number of antennas. The
complexity of SD-MIMO detector depends primarily on the
SNR: under low SNRs, the SD complexity increases faster
(regarding the problem dimension, M and N ) than under high
SNRs regime. Besides, the SD complexity is also sensitive
to the MIMO correlation channel, aggregating a progressive
complexity overhead when channel correlation index ρ ≥ 0.5,
what justifies the fact that under high correlation MIMO
channels and number of antennas (Fig. 4.c), the SD algorithm
is not able to obtain candidate-solution points inside the hyper-
sphere, i.e. it is not able to achieve suitable BER performance.

V. CONCLUSIONS

Lattice reduction (LR) technique has been applied to im-
prove the MIMO detectors performance under correlated chan-
nel. Analysis of correlated channel effects over the MIMO
system performance equipped with different LR-aided detec-
tors has indicated its robustness. Besides, among the analysed
detectors, the LR-MMSE MIMO OSIC achieves the best
performance-complexity tradeoff. Furthermore, we have found
that the SD-MIMO detector is very sensitive to correlated
channel condition, increasing remarkably its complexity when
the MIMO channel becomes strongly correlated (ρ >> 0.5).
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