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Abstract— This work evaluates the effects of scaling the syn-
drome former memory, lifting factor and window size on the

performance of spatially-coupled LDPC codes generated from
protographs decoded using a sliding window. The results give a
good insight on how these design parameters alter the trade-off
between computational complexity and error-correcting capacity.
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I. INTRODUCTION

The role of forward error correction (FEC) has become

of critical importance in fiber optic communications. More

specifically, soft-decision based FEC is considered an impor-

tant means to improve the reach performance of beyond 400

Gbit/s coherent communication system. Low-Density Parity-

Check block codes (LDPC-BC) were proposed by Gallager in

1962 [1]. At the time, their potential remained undiscovered

due to the lack of computational power to perform simulations.

At early 1990s, the first class of codes having bit error rates

performance near Shannon Limit, called Turbo Codes, was

proposed[2]. After that, the advances of iterative decoding

algorithms [3], [4], [5], now referred to as Belief Propagation

(BP) algorithms, revived interest in Gallager’s codes. In 2001,

a rate-1/2 irregular LDPC with frame length of 107 achieved a

bit error rate of 10−6, at 0.04 dB of the Shannon Limit for that

rate [6]. In the last years, by comparing ASIC implementations

of Turbo decoders [7] and LDPC decoders [8], it is evident

that LDPC is the most promising soft-decision based FEC for

high-capacity coherent optical transmission systems beyond

400 Gbit/s.

The convolutional correspondent of LDPC block codes were

first proposed in [9]. LDPC convolutional codes are also

defined by sparse parity-check matrices, which allow them

to be decoded using the same iterative message-passing algo-

rithms as LDPC-BC. Convolutional LDPC codes with small

syndrome former memory and large sub-matrices are often

referred to as spatially-coupled LDPC (SC-LDPC). Spatial

coupling is a very general concept and can be applied to

virtually any code with both hard and soft decision. SC-

LDPC codes have attracted significant attention because of

their good characteristics (thresholds approaching capacity

with BP decoding and low error floors). They have been suc-

cessfully applied in many areas of communications and signal

processing, such as, for example, relay [10], multiple access
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[11] and broadcast channels [12], channels with memory [13]

and is getting increasing attention on optical communication.

LDPC convolutional codes have been shown to be suitable for

practical implementation in many different scenarios, includ-

ing continuous transmission using left-terminated parity check

matrices, and block transmission using terminated parity-check

matrices, respectively [14]. They are also known for their

encoding simplicity, since code construction methods yield a

shift-register based systematic encoder for real time encoding

of continuous data. The structure of SC-LDPC parity-check

matrix allow the use of a hardware efficient windowed decod-

ing scheme [15] and is also a good candidate for developing

rate adaptive codes for future elastic optical networks [16],

[17].

LDPC block and spatially-coupled codes are known to

achieve capacity when the codeword is sufficiently large. It is

therefore natural to compare LDPC block codes with its convo-

lutional counterpart. In practice, however, the intricate relation

between performance, computational complexity and latency

has to be considered. Comparisons between block and spatially

coupled codes were performed in terms of computational and

hardware complexity, decoding delay, memory and very-large-

scale integration (VLSI) implementation requirements in [18],

[19] and showed that SC-LDPC codes perform better than their

block counterparts in various scenarios. Studies of the finite

length scaling properties of SC-LDPC over the binary erasure

channel were performed in [20], [21].

Focusing on the implementation of SC-LDPC codes, this

work is based on the study and discussion of the effects

of some construction parameters (syndrome former memory,

lifting factor and window size) on the overall performance,

decoding latency and computational complexity of regular

left-terminated spatially-coupled LDPC codes over AWGN

channel.

The rest of the paper is organized as follows. Section

II presents the mathematical notations used throughout this

work and the concept of LDPC codes as an introduction

to SC-LDPC codes presented in sec. III. Section IV depict

the relation between the design parameters and computational

complexity. Lastly, sec. V describes the simulations present

the comparison results between different constructions of left-

terminated SC-LDPC codes. Section VI concludes the paper.

II. LOW-DENSITY PARITY CHECK CODES

A binary code is a subset of {0, 1}n and is classified as

linear if it forms a vector space in GF (2), thus a linear code

can be described by a set of parity check equations which in
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turn can be represented as the nullspace of a matrix in GF (2),
called Parity-Check Matrix, i.e for any codeword v, H · vT is

satisfied. Low-Density Parity Check codes proposed by Robert

G. Gallager in [1] have very sparse parity check matrices H .

For regular codes with rate R = 1−dv/dc described by a full

rank parity-check matrix, each column of (H) contains exactly

dv non-zero entries and each row contains dc non-zero entries,

and they are called column and row weights (or variable

and check node degrees). For performance improvement, the

weight of each column can be optimized for a specific system

and the code becomes irregular [6], and this is not covered in

this work.

Another way to represent a linear code is by a Tanner graph.

It is a bipartite in which parity equations are represented by

check nodes, input bits (or matrix columns) are represented

by variable nodes, and each nonzero term of the parity check

matrix is represented by an edge connecting the corresponding

variable node and corresponding check node [22].

To better understand the code structure, we present a toy

example: consider an LDPC-BC with codewords (v) that

contain K = 5 information and N − K = 3 parity bits

leading to a code rate R = K/N = 5/8 and an overhead

(OH) of 1/R− 1. The bits in each block are submitted to the

following restrictions:

u(1) ⊕ u(3) ⊕ u(5) ⊕ p(1) = 0

u(2) ⊕ u(4) ⊕ u(5) ⊕ p(2) = 0

u(1) ⊕ u(2) ⊕ u(4) ⊕ p(3) = 0

(1)

where u =
[

u(1), u(2), ..., u(5)
]

are information and p =
[

p(1), p(2), p(3)
]

are check bits. As stated above, these restric-

tions can be represented by a matrix H such that v ·HT = 0,

where v = [u|p] and HT is given by (2).

HT =





1 0 1 0 1 1 0 0
0 1 0 1 1 0 1 0
1 1 0 1 0 0 0 1



 (2)

1) LDPC codes generated from protographs: Increasing

the block length while maintaining the code structure (rate,

node and variable degrees) improves the performance of LDPC

codes [1]. A good way of constructing large, structured parity-

check matrices is by applying a graph lifting operation to

protographs [23] as follows.

A protograph with design rate R = 1 − dv/dc is a

small parity-check matrix. The Tanner graph representing

a protograph-based LDPC-BC is obtained by M-lifting the

protograph. Graph lifting corresponds to replacing each non-

zero entry in a protograph (B) by a sum of
∏

ij random

permutation matrices of size M ×M and each zero entry

by the M×M all zero matrix. The resulting parity-check

matrix H is M times larger than the protograph and has the

same rate, degree distribution, and computation graphs as the

protograph. The process of M-lifting a (dv = 6, dc = 3)

protograph B in (3) results in the matrix shown on (4).

B =





1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



 (3)

HT =




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∏
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∏

26
∏
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∏
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∏
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∏
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∏

35

∏

36



 (4)

III. SPATIALLY COUPLED LOW-DENSITY PARITY CHECK

CODES

Increasing the codeword size of a LDPC block code tends

to improve the error correction performance. By the other

hand it increases the complexity of ASIC implementation, in

a fully parallel architecture, the decoder area tends to increase

linearly with the number of nodes of the tanner graph, and the

connecting each of these nodes is difficult task. The encoder

tends is straight forward since it not required to deal with

probabilities iteratively, the main limitation to LDPC block

encoding is that the parity check matrix must have some

structure in order to have linear complexity. One emerging

solution to address these limitations are SC-LDPC codes.

Instead of transmitting independent sequential blocks, spatially

coupling creates a virtually infinite codeword by adding a

dependence between a block and its neighbors.

2) Construction of SC-LDPC codes generated from pro-

tographs: A rate R = K/N binary, left-terminated SC-LDPC

code with syndrome former memory ms can be constructed

from a semi-infinite parity-check matrix HSC such that vSC ·
HT

SC
= 0, where this time vSC = [v0,v1,v2, . . .] is the

concatenation of codewords vt in time.

HSC =

































H0 0 . . .

H1 H0

. . .

... H1 H0

Hms

... H1

. . .

0 Hms

...
. . .

...
. . . Hms

. . .

. . .
. . .

































(5)

where dim(Hn) = M ×N are sparse binary parity-check

matrices generated from single- line protographs with dv =
⌈1/OH+1⌉ columns. Specific code rates can be achieved via

puncturing or shortening the parity-check matrix [16], [17].

3) Windowed decoding of SC-LDPC codes: The structure

of spatially coupled codes imposes a constraint on the variable

nodes connected to the same parity-check equations, i.e. the

staircase pattern of the matrix leads to the fact that each parity

equation depends on a portion of the transmitted sequence of

length N · (ms + 1).
Thus, it is possible to derive a local decoding algorithm,

that in each iteration decides a block of N consecutive

bits. The information of every decided bits are updated for

posterior window steps. Gallager already noticed that using

log-likelihood ratios (LLR) would be more convenient for

decoding LDPC codes [1]. An advantage of using LLR

instead of probabilities is that the belief propagation can be

implemented using the so called Min-Sum algorithm [5], more
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suitable for hardware implementation since it does not require

multiplications or large lookup tables [24], [25].

Algorithm 1 is used for decoding SC-LDPC codes using a

LDPC block decoder. The matrix HBC is not left-terminated,

but the same result is achieved by adding zeros before the

codeword in line 3. Each iteration represents a window step,

the bits already decoded are left-shifted in line 7 and line

9 put a copy of the received symbols LLRs in the rest of

vector S. Line 12 uses a black box soft-input soft-output LDPC

block decoder, where HBC is a W ·N submatrix of HSC , and

includes the rows of HSC having no ones out of that columns

and nit is the maximum number of iterations performed by

the LDPC block decoder. Finally, each output bit is decided

based on the probability estimated by the previous decoding

steps.

Algorithm 1 SC-LDPC Decoding algorithm

1: procedure DECODELDPCSC

2: LLRi = log
(

P (yi|xi=0)
P (yi|xi=1)

)

∀i ∈ N

3: S ← 0 ⊲ Emulate left termination

4: for i← 1 to ∞ do

5: for j ← 0 to W ·M do

6: if j < M ·ms then

7: Sj ← Sj+M

8: else

9: Sj ← LLRi·M+(j−M·ms)

10: end if

11: end for

12: S = DecodeLDPC(S,HBC , nit)
13: for j ← 0 to M do

14: if Sj < 0 then

15: outputM·i+j ← 1
16: else

17: outputM·i+j ← 0
18: end if

19: end for

20: end for

21: end procedure

IV. ANALYSIS

By analyzing the methodology described in III to construct

regular left-terminated SC-LDPC codes, the crucial design

parameters are the syndrome former memory ms, the lifting

factor M and the decoding window size W . The encoding

complexity per bit is only affected by the rate and ms. The

decoder complexity depends on the number of ones in the

parity check matrix. By inspecting HBC in Alg. 1, it has

(N −ms) · (ms + 1) ones. The decoding latency is the time

required to receive all bits of the decoding window, W · N
bits, plus the decoding time.

4) Effect of windowed decoding: Another concern is about

what information is lost when using a small window for

decoding. Let dg be the distance in the tanner graph between

two variable nodes, and dt the distance of the corresponding

pair of bits in the transmission sequence. From the structure
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Fig. 1. Post-FEC BER versus SNR for N equal to 30000 and variable
window size.
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Fig. 2. Average number of decoding iterations per window step versus SNR
for N equal to 30000 and variable window size.

of HSC , we have the following relations:

⌊lt/N⌋ > ms ⇒ lg = 2 (6)

⌊lt/N⌋ > ms ⇒ lg > 2 (7)

Notice that the distance between two variable nodes is an

even number, since every edge in the graph connects a variable

node to a check node. The decoding window includes N ·ms

already decoded bits, N to be decoded in the current window

step, and (W −ms − 1) · N not required to be corrected in

the current window step. Thus the separation between a bit of

interest and an ignored bit is more than lt > (W−ms−1)·N .

Relation (8) is obtained by induction using (6) and (7). It

represents the distance between any bit of interest and any bit

ignored at a window step.

lg ≤ 2 · ⌊(W −ms − 1)/ms⌋ (8)

V. RESULTS

We performed simulations in order to give an insight on

how ms, M and W alter the overall performance, latency

and computational complexity of the resulting code. A BPSK

modulated signal is transmitted over an AWGN channel, and

iterative decoding is performed using the Min-Sum algorithm
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Fig. 3. Post-FEC BER versus SNR for N equal to 30000, window size equal
to 15 and variable syndrome former memory.
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Fig. 4. Average number of decoding iterations per window step versus SNR
for N equal to 30000, window size equal to 15 and variable syndrome former
memory.

[5]. The decoder finishes one window step after 50 iterations

or when all the parity equations involving the bits of interest

are satisfied. The default LDPC-SC code is constructed with

a lifting factor that results in N = 30000, syndrome former

memory ms = 2, and window size W = 15, and at each

simulation scenario one of the parameters M , ms, W was

varied. Bit error rate (BER) and the average number of

iterations executed by the decoder at each window step are

presented for codes with 20% (solid lines) and 30% (dashed

lines) overheads.

5) Variable Window Size: The window size W does not

affect the parity-check matrix defined in (5), and is a clear

example of how the decoding of LDPC-SC can be performed

on a flexible way. Figs 1 and 2 present, respectively, the post-

FEC BER and average number of iterations when decoding

with different window sizes. High error floors are observed

for both code rates when decoded with small window size.

Reducing W from 15 to 7 appears to have an impact similar

to reducing from 7 to 6, as can be seen from the inequality

(8), a decoder using W = 7 and ms = 2 ensures that every

variable node at distance lt ≤ 4 in the tanner graph is taken

into account, while W = 6 do not ensure that. Another

noticeable result is that, W = 10 and W = 15 have almost
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Fig. 5. Post-FEC BER versus SNR for syndrome former memory equal to
2, window size equal to 15 and variable N .
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Fig. 6. Average number of decoding iterations per window step versus SNR
for syndrome former memory equal to 2, window size equal to 15 and variable
N .

the same waterfall behavior. However, observing the required

iteration count in Fig. 2 at 2.4 dB for 20% overhead code, the

average number of iterations for W = 10 is almost twice as

large as the number of iterations required when decoding for

W = 15, meaning that less computational effort is required by

decoding with W = 15 than W = 10. On the other hand, using

W = 15 would result in larger latency, meaning that a system

employing SC-LDPC can vary the window size according to

the required number of iterations in order to save power.

6) Variable Syndrome Former Memory: The decoding com-

plexity of the constructed code is tightly connected to the

syndrome former memory, since it determines the number of

ones the Parity-Check Matrix has by column. Figure 4 shows

the average number of iterations executed by the underlying

LDPC block decoder, that is directly related to the distance of

the waterfall regions in these cases. Figure 3 shows the post-

FEC BER with different syndrome former memory values.

We see that increasing ms does not necessarily improve the

performance of this coding scheme. Syndrome former memory

equal to one leads to a very poor performance because bit

participates only in two parity check equations. The curves

for ms = 2, 3, 4 have the same waterfall behavior, but the

lowest threshold at BER = 10−7 is achieved with ms = 2
and the difference between ms = 2 and ms = 4 is higher
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than 0.15 dB. This behavior again can be explained by the

inequality (8) that indicates how far are the bits ignored from

the bits decided. This shows that increasing the lifting factor

in order to achieve better results is a costly option, since

in addition to increasing the parity-check matrix density it

requires increasing the decoding window length.

7) Variable Lifting Factor: Both dimensions of parity-

check sub-matrices Hn are directly proportional to the lifting

factor. Increasing M also increases the decoding latency and

complexity of a decoding iteration. Figures 5 and 6 shows

the bit error rate and average number of iterations executed

by the decoding algorithm per window step, respectively. It

is noticeable that reducing N by factor of eight results in a

coding gain difference of 0.2 dB at BER = 10−7, however

the number of required iterations to achieve such BER is near

to 50 for N = 30000, and reduces to 15 for N = 3750.

If reducing the coding gain is allowed, lowering the lifting

factor is a feasible implementation, since it does not produce

high error floors, and simultaneously reduces code latency,

decoder iteration complexity, and number of iterations required

to achieve the same post-FEC BER.

VI. CONCLUSION

We performed simulations to asses the effects of scaling

the syndrome former memory, window size and lifting factor

on the performance of spatially coupled LDPC codes with

20% and 30% overheads over the AWGN channel. From the

results we can observe how the parameters of SC-LDPC codes

affect the post-FEC BER, obtained using a particular code

construction and decoding algorithm.

We conclude that the same code (and thus the same encoder)

provides some flexibility concerning the decoder window size

that can be exploited by flexible decoders to reduce power

consumption by dynamically selecting the optimal window

size.

Among the design parameters it is preferable to optimize

the lifting factor and keep the syndrome former memory

low, e.g. ms = 2. Higher values of lifting factor increase

the complexity (power consumption) for both encoding and

decoding. In Addition, it requires a larger window size in order

to ensure that the same neighborhood of the variable nodes

of interest in the tanner graph is considered by the decoder,

increasing the number of terms participating in each parity

check equation. Higher values of lifting factor M increases

both the encoder and decoder complexity linearly, because it

preserves the column and row degrees. Reducing the window

size leads to higher error floors, requiring the concatenation

with a more complex hard-decision FEC scheme to achieve

error-free operation.
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