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Low-Complexity Integer Forcing for Block Fading
MIMO Multiple-Access Channels

Ricardo Bohaczuk Venturelli and Danilo Silva

Abstract— Integer forcing is an alternative approach to conven-
tional linear receivers in multiple-antenna systems. In the integer-
forcing scheme, the receivers try to extract integer combinations
of messages from the received matrix before recovering each
message individually. Recently, the integer-forcing approach was
generalized to a block fading scenario. Among the decoding
methods described, the one which achieves higher rates has the
drawback that no efficient algorithm to find the best choice of
integer linear combinations is known. In this paper, we propose
a sub-optimal scheme to find those combinations with a lower
complexity. Simulation results show that the proposed method
outperforms other existing low-complexity methods.
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I. INTRODUCTION

Integer-forcing (IF) receivers are an alternative to tradi-
tional methods of equalization, such as zero-forcing (ZF) and
minimum-mean-squared-error (MMSE) equalization [1] for
multiple-input and multiple-output (MIMO) channels. The IF
approach follows from the compute-and-forward framework
[2], [7] for relay networks, where the receivers attempt to
extract integer linear combinations of the transmitted messages
from the received signals, before recovering the messages
themselves.

Although joint maximum likelihood (ML) receivers achieve
the best performance of all methods, by searching all possible
codewords [3], their complexity is prohibitively high, since
it increases exponentially with the number of users. On the
other hand, IF receivers have a much lower complexity and
can approach the performance of ML in many situations [1].

The main results about IF consider static fading, where all
symbols of a codeword are subject to the same channel fading.
Note that in a practical situation, where a powerful code with
large block-length is used, it may not be realistic to assume
that all symbols of the codeword are subject to the same
channel fading. Therefore, channels that allow block fading
[4], where the channel fading can vary during the transmission
of a codeword, seem to be a more realistic model.

In a recent work, El Bakoury and Nazer [5] generalize
the IF approach to a block fading scenario. They described
two decoding methods for block fading, which are called AM
(arithmetic mean) and GM (geometric mean) decoding. The
AM-decoding method approximates the effective noise among
all block as static-fading effective noise. On the other hand,
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the GM decoding method attempts to extract the maximum
amount of information from each block independently.

Both decoding methods can achieve higher rates by opti-
mizing the choice of the linear combinations, with the GM
method always outperforming the AM method for the same
combination [5]. However, finding the best choice of linear
linear combinations for the GM method is too complex [6],
since no efficient algorithm is known [5].

Our contribution is a scheme to find a sub-optimal choice for
the integer linear combinations for the GM-decoding method.
The proposed scheme is based on a choice between two
possible candidates, one of them being the optimal solution
for the AM method. Simulation results show that the proposed
method can achieve higher rates than optimal AM while being
less complex than the optimal GM and ML.

In the remainder of this paper, we begin describing the
system model in Section II and then, in Section III a brief
review about integer forcing for static fading as well as
block fading. In Section IV we detail the proposed scheme.
Simulation results are shown in Section V and lastly, we
conclude in Section VI.

II. SYSTEM MODEL

We denote row-vectors as lowercase-bold letters (e.g. x) and
matrices as uppercase bold letters (e.g. X). Let the matrices
XT and X! be the transpose and inverse of X, respectively.
Let Z,, be the field of integers modulo p, where p is a prime.

We are interested in the scenario with Np single-antenna
transmitters and one Npg-antenna receiver. The information
data of the ¢-th transmitter, w, € ZF, is coded/modulated into
the codeword x; = [x¢[1] x¢[n]] € R™. The message
rate is defined as Ry 2 log, (p)% The vector transmitted
must satisfy the power constraint, i.e., 2 >, [xq[i] |2 < P. Let
X € RNTX" pe the matrix such that the ¢-th row of X is xy,
ie, X = [xlT X%T]

Let Y € RV2X" be the matrix such that the j-th row is
the signal received by the j-th antenna at the receiver, j =
1,...,Ngr. Let N be a strictly positive integer such that N
divides n. In the block fading scenario, the received matrix
can be written as Y = [Y(l) Y(N)] where

YO — gOX©® L 7@ (1)

H® € RVr*NT ig the channel matrix for the i-th block, X
is such that X = [X®) X)) and Z( is Gaussian
noise with i.i.d. entries of zero mean and variance Ng.

For convenience, the signal-to-noise ratio is defined as

A P
SNR = Ny 2)
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The decoder D(Y) = (W1,...,Wn,) tries to recover all
messages. We say that an outage occurs when W, # wy for
any ¢ and the outage probability for a given R, is defined
as Pout(Rmes) = P[(W1,...,Wn,) # (W1,...,wn,)]. For a
given outage probability p we define the outage rate R(p) =
Sup{Rmes * Pout (Rmes) < P}

III. INTEGER FORCING

In the integer-forcing approach, the decoder is interested in
recovering Nr linearly independent integer linear combina-
tions of messages U = AW mod p [1] where W € ZIJ,VTX”
is a matrix where each line correspond to the message wy and
A € ZNt*N7 jg the matrix with the integer coefficients of
the linear combinations.

Integer forcing considers that a lattice codebook is used
by all transmitters, i.e., all codewords are elements of the
same lattice [2]. Note that any integer linear combinations of
elements of a lattice is also in the lattice [2]. Moreover, there
must be a linear map ¢ from codewords to message space
such that p(X) = W. This means that if V = AX can be
decoded from the received matrix Y, then matrix U can be
recovered as (V) = U [1].

We first explain integer forcing for static fading, where N =
1. Then we show the necessary modifications for block fading,
where N > 2.

A. Static Fading

Consider the channel in (1) (the superscript will be omitted).
The receiver applies the equalization matrix B € RN7*Nr o
create an effective channel output

Y.s = BY = BHX + BZ
= AX + Ngg 3)

where
Neg = (BH — A)X + BZ @)

is the effective noise [1].
The variance of the m-th row of the effective noise is

02t = No (|[bnH = an||* SNR+ b)) )

where b, is the m-th row of the equalization matrix B and
a,, is the m-th row of matrix A.

It is intuitive and can be shown that minimizing the effective
noise variance maximizes the achievable rate [2]. The optimal
equalization matrix, for a given A, can be found using MMSE
estimation [1] and is given by

Bopt = SNRAH™ (I + SNRHH™) ! (6)

From now on we assume that the optimal equalization matrix
is used, i.e., B = Bgp. In this case, the variance of the
effective noise can be written as [7]

ol.m = No(amMay,) )

where
M= (SNR™'I+HTH) . 8)

Theorem 1: [1], [2] For any ¢ > 0 and n,p sufficiently
large, there is a scheme of encoders and decoders such that it
is possible to recover m integer linear combinations from the
channel (3) with outage probability at most € for any choice
of A if

Rmes < Rcomp (A) = min Rcomp(am) (9)

1 P
Z oo™
2 8 <O—§ff’m>

1. . ( SNR
7510g <amMa%)

and log™ () = max(log(-),0).

To choose the optimal matrix A we have to find a basis, with
minimal norm, of the lattice generated by M [1]. It is believed
that finding such basis is a NP-Hard problem [6], however
there are suboptimal algorithms that can find an approximation
in polynomial time, for example the LLL algorithm! [8].

Note that if A = T is chosen then the scheme reduces to
MMSE equalization [1].

where

Rcomp (am)

(10)

B. Block Fading

Assume that the channel equation is defined by (1). It is
possible to equalize each block independently using MMSE
estimation. The equalization matrix for each block, for a given
A, is

-1

B() = SNRA(H)T (I + SNRH® (H(i))T> (11)
The effective channel output is given by
Yég =BOY® — gOgOXx® L gz®
— AX® 4 N (12)

Note that matrix A must not change in each block [5]. That
is because v,, = a,, X should be an element of the lattice.
The variance of the effective noise, in each block, is

; . 2 NI
oZam = N (Hbﬁf}H@) _ aH SNR + Hb;? )
— N, (amM@aﬁ) (13)
where
. . . —1
M) = (SNR—11 + (H“))TH(’)) (14)

and the optimal equalization matrix is used.

It is shown in [5] that Theorem 1 is still valid in this case,
however the expression for Rcomp (@) changes depending on
the decoding method. The methods proposed in [5] are the
AM (arithmetic mean) and the GM (geometric mean) methods
discussed below.

!For the 2 x 2 channel, it is possible to find the optimal basis in polynomial
time [6]. For large networks the use of LLL algorithm is recommended.
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1) AM Method: This decoding method considers that all
blocks are subject to the same variance of the effective noise
[5]. This variance is given by the arithmetic mean of the
variance of each block, i.e.,

1 & (i)
v = 2_; Ol - (15)
The computation rate that can be achieved is [5]
1, P

Reomp () = 5 log <azM,m>

1 SNR
=-logt [ ————— 16
2 o8 (amMAMa;fn> ( )

where

Mam = (I7)

1 (i)
N 2M

and M® is the same as (14).

2) GM Method: 1In this method, the decoder considers
the effective-noise variance of each block independently. The
computation rate that this method can achieve is [5]

Reomp(am) mln — Z log™ ( 5 )
Jeff m
Zl ( SNR )

T
M@al

P
Inln log (18)
UGM m
where MV is defined in (14) and
OoMm = (H Ot m ) (19)

Note that (19) is the geometric mean of the variance of the
effective noise in each block.

For the same matrix A, the GM decoder can achieve a
higher rate than the AM decoder since o0&, < 0%, due to
AM-GM inequality [9].

C. Choosing matrix A

For the AM decoder, finding the optimal A can be done in
the same way as for the static case, i.e, the LLL algorithm (or
similar) can be used to find a basis, with minimal norm, of
the lattice generated by Ma; (instead of M) in polynomial
time [5]. When the optimal A for the AM decoding method
is used, we refer to the scheme as the AM-IF method.

Of course, the identity matrix can also be used in the AM
decoder. In this case, we call this scheme the AM-MMSE
method.

Similarly, for the GM decoder, if the optimal matrix is used
then we refer to this scheme as the GM-IF method and if the
identity matrix is used we call it the GM-MMSE method.

Note that there is no known efficient method to find the
optimal matrix in the GM decoder due to the complexity of
the optimization problem in (18) [5].

IV. PROPOSED SCHEME

As an alternative to find the optimal matrix in the GM
decoder, we propose a sub-optimal choice for the matrix A.
In our proposed scheme the matrix A is chosen as either the
optimal matrix in the AM method or the identity matrix.

Note that, if the matrix chosen is the Aay; (the optimal
in the AM method) the proposed scheme can achieve higher
rates than the AM method. On the other hand, if the matrix
chosen is the identity then the proposed scheme is the same
as the GM-MMSE, and therefore achieves the same rate.

Below, in Algorithm 1, we summarize the procedure of the
proposed method.

Algorithm 1 Choosing matrix A for the proposed method
Input: HY . , SNR

I: Calculate MAM as (17)
Find matrix Ay using LLL algorithm (or similar)
Calculate Reomp(Aam) using (18).
Set Aymse = I;
Calculate Rcomp(Ammse) using (18).
if Rcomp(AAM) > Rcomp(AMMSE) then

Set A = AAM
else

9: Set A = AvMmse

10: end if
Output: Matrix A

o S I U i

The complexity of the proposed method is dominated by
that of finding the optimal matrix in the AM method (step 2
the algorithm), which can be done in polynomial time with
the LLL algorithm. Therefore the complexity is the same as
the AM-IF. The proposed method is more complex than the
GM-MMSE, but can potentially achieve higher rates as show
in the next section.

V. SIMULATION RESULTS

In this section we show some simulation results comparing
the proposed method to AM-IF and GM-MMSE in a real-
valued channel. In our simulations, we specify the outage
probability p = 0.01. In each scenario 10000 channel real-
izations was made. In each realization the channel coefficients
are draw randomly by Gaussian distribution with zero mean
and unit variance.

In Fig. 1 we show the comparison between the methods in a
2 x 2 real channel with 2 blocks. We include the ML decoder
as an upper bound. For comparison, we also include the outage
rate for V =1 for comparison as well as the GM-IF method.
The latter was obtained by an exhaustive search for all integer
vector such that the magnitude of each entry does not exceed
10.

As expected, the GM-IF has the higher outage rate between
the methods. The proposed method is outperformed by ap-
proximately 3 dB in high SNR in comparison with GM-IF.
It is interesting to note that the outage rate for the proposed
scheme is strictly higher than the maximum between the AM-
IF and GM-MMSE.
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Outage Rate for p,,; = 0.01, in a 2x2 real-channel with 2 blocks
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Fig. 1. Comparison of the outage rate for 2 blocks. For comparison, the

static case (IN = 1) is also included.

Outage Rate for p,,; = 0.01, in a 2x2 real-channel with N blocks
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Fig. 2. Outage rate for N = Nr = 2 when the number of block varies.

In Fig. 2 we plot the outage rate as the number of blocks
varies in a 2 x 2 real channel. In this and following figures
we do not include the GM-IF method, since it has higher rates
than any other method. We also do not include the AM-MMSE
method because its rates is always inferior than both AM-IF
and GM-MMSE. Note that, as the number of blocks increases
the GM-MMSE method can achieve higher rates than the AM-
IF. On the other hand, the proposed scheme achieves higher
rates than both GM-MMSE and AM-IF, as expected.

In Fig. 3 we show the comparison between the methods
for 2 blocks in a real channel, varying the number of users
(the number of antennas at the receiver always matches with
the number of users). In this case, the situation is reversed:
AM-IF achieves higher rates than GM-IF. Again, the proposed

Outage Rate for p,,; = 0.01, in a NpxNp real-channel with 2 blocks
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Fig. 3.  Outage rate for N = 2 when the number of users varies (and
considering that N7 = NRg).
TABLE I
OUTAGE PROBABILITY OVER A 2 X 2 CHANNEL WITH N = 2 BLOCKS AND
SNR = 9.3 DB.
AM-IF
Outage | Success
Outage | 7.25% | 4.64%
CM-MMSE —1ccess | 4.65% | 83.46%
Outage | Success
[ Proposed method 5.69% | 94.31%

method achieves rates higher than those of both methods.

We can better understand the superior performance of the
proposed method by noticing that it can succeed even when
both AM-IF and GM-MMSE fail. Table I shows the outage
probability for AM-IF and GM-MMSE over a 2 x 2 real-valued
channel, with N = 2 blocks, Ry,es = 0.5 and SNR = 9.3 dB.
This value of SNR was chosen so that both methods have
the same outage probability, about 11.9%. In principle, one
would expect the proposed method to fail whenever both AM-
IF and GM-MMSE fail simultaneously, which occurs with
probability 7.25%. However, the outage probability of the
proposed method is even smaller, only 5.69%. This can be
explained by the fact that, for the same matrix A, the GM
decoder has always better performance than the AM decoder.
Thus, the proposed method can exploit the same improved
matrix A as the AM-IF decoder, but without being limited by
its achievable rates.

Lastly, in Fig. 4 we show the frame-error rate (FER) in a
scenario where a root-LDPC code [10] is used with a BPSK
modulation. The root-LDPC code is a rate 1/2, regular (3, 6)-
code of length 2000 constructed using a PEG-based technique
[11]. The LLR (log-likelihood ratio) used in the root-LDPC
decoder was computed by approximating the effective noise
distribution with a Gaussian distribution. We also plot the
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FER for 2x2 real-channel with 2 blocks
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Fig. 4. FER (and outage probability) in a 2 X 2 real channel with a LDPC
code.

theoretical outage probability for comparison. It can be seen
that the proposed method can achieve better performance than
the AM-IF and GM-MMSE. Moreover, the proposed method
has a loss of only about 4 dB for an FER of 1% in comparison
to its theoretical outage probability. This loss is the same as
that of the GM-MMSE and lower than that of the AM-IF
(5 dB).

It is important to note that the highest code rate for a
root-LDPC code is 1/N, where N is the number of blocks
[10]. Therefore, in order to improve the Res, it would be
necessary spectral efficiency lattice-codes designed for block
fading, which to the best of our knowledge is still an open
problem.

VI. CONCLUSIONS

In this paper, we proposed a new sub-optimal scheme for
decoding in a block fading scenario using a GM-type decoder.
For a large number of users, using GM-MMSE does not seem
advantageous since AM-IF outperforms it. However if there
is a large number of blocks, the GM-MMSE can achieve
higher rates than the AM-IF. The proposed method uses the
best matrix A between those two methods in a GM-type
decoder. As shown by simulation results, the proposed method
achieves computational rates strictly higher than both GM-
MMSE and AM-IF, regardless of the number of blocks and
users. Moreover, it achieves higher rates than the maximum
between GM-MMSE and AM-IF, while being only sightly
more complex than the GM-MMSE.

It was also shown that when a root-LDPC code is used, the
proposed method can outperform GM-MMSE and AM-IF, as
well. These results imply that much of the performance gains
promised by integer forcing can be realized in practice with
low complexity, even in a block fading channel.
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