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Abstract — In this paper, we propose an analytical expression 

for estimating byte loss probability at a single server queue with 
multifractal traffic arrivals. The obtained expression is robust, 
stable and accurate in comparison with some existing methods in 
literature. Next we evaluate the potentiality of applying the 
proposed method in connection admission control by comparing 
with some other widely used admission control approaches. 
Finally we present a dynamic bandwidth allocation mechanism 
based on our multifractal based loss probability estimation 
method. Extensive experimental tests validate the efficiency and 
accuracy of the proposed loss probability estimation approach, 
its superior performance for admission control and link resource 
allocation applications with respect to some well-known 
approaches suggested in the literature. 
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I. INTRODUCTION 
The research on network traffic involving the theory of 

fractals has intensified after the publication of the work of 
Leland et al [1]. Experimentally it has been found fractal 
properties of real traffic such as self-similarity and long-range 
dependence (LRD). Long-range dependence has strong 
influence on network performance [2], and cannot be 
adequately modeled by Poisson processes or, more generically, 
Markov models. 

In contrast to the self-similar or monofractal behavior, 
some recent studies suggest that   the measured TCP/IP and 
WAN ATM traffic flows exhibit a more complex scaling 
behavior, which is consistent with multifractals [3] [4]. 
Multifractal based traffic modeling is more general than the 
monofractal based and provides a more accurate and detailed 
description of network traffic series in different time scales [5]. 

Even taking into account the influence of the long-range 
dependent characteristics, the expected queuing behavior in 
buffer still cannot be adequately modeled without considering 
the multifractal nature of traffic [6]. We believe that the 
efficiency of an admission control mechanism as well as 
dynamic bandwidth allocation highly depends on the accuracy 
of the description of such queuing behavior what justifies the 
use of multifractal traffic models.  

In this paper, we present a new approach for loss 
probability estimation in a single server link. We show how to 
get the estimates analytically once we assume multifractal 
input traffic. Based on this analytical method, we evaluate its 
potential applications for control admission and dynamic 
bandwidth allocation especially when networks traffic holds 
multifractal characteristics. 

The   paper   is   organized   as follows:  In Section II, we 
introduce the definition of multifractal processes, reviewing 
some concepts and analyze the characteristics of the second-
order statistical moments. In Section III, we present the 

derivation of the analytical expression for the loss probability 
estimation in a single server queue. In Section IV, we evaluate 
our loss probability estimation algorithm, potentiality of the 
derived analytical loss probability estimates for admission 
control and present a new approach for dynamics bandwidth 
allocation. Finally in Section V we present our conclusions. 

II. MULTIFRACTAL PROCESSES 
Definition 1: Let X(t) be the traffic rate at t. Then W(t) =

∫ X୲ (t)dt will be the arriving load up to t. Denote by 
V(t,∆t) = W(t + ∆t)− W(t). Assume the increment process 
is stationary, i.e., V(t,∆t) = ܸ(∆t).  The average traffic rate is 
λ = lim୲→ஶ(V(∆t)/∆t). Let ߤ and 	ߪଶ represent the mean the 
variance of V(t). 

Given T > 0, a accumulative process W(t) is said to be a 
multifractal process at time scale T if all of the following 
condition are satisfied: 

a) W(t) has a stationary increment at time scale T, i.e., 
(ܶ,ݐ)ܸ =  .(ݐ)ܸ

b) ܸ(ݐ) has a Pareto distribution density function with 
parameter ߙ and ݇: ௩݂(௧) = ୩ಉ

୴ಉశభ
; 

c) ߤ =   ;ܶߣ
d) There exist an integer ܯ > 0, a set ܣ = :(ܶ)ߚ} 0 <

(ܶ)ߚ < 1, ݅ ≤ a set Φ ,{ܯ = ൛߶(ܶ): 0 < ߶(ܶ) <
1, ݅ ≤ ∑,ܯ ߶(ܶ) = 1ୀଵ;ெ ൟ, and a small constant 
ߝ > 0 such that for any ߬ ∈ {߬:ܶ − ߝ < ߬ < ܶ + ,ߝ ߬ >
0} such that  

∑~ଶߪ																																					 ߶(ܶ)߬ଶఉ(்)ெ
ୀଵ .           (1) 

 
The expression (1) means there exists a probability 

measure for set A, and ߚ(ܶ) occurs with probability ߶(ܶ). 
The continuous version of (1) is 

∫~ଶߪ																									 ݂(்)
ାஶ
ିஶ

 (2)               ߚଶఉ݀߬(ߚ)
where ݂(்) denotes the probability density function of the 
scaling exponents ߚ(ܶ). This applies when infinitely many 
scaling exponents exist. Notice that the description of symbol 
“~” in (2) has the following interpretation: ()ݕ~()ݔ means 
lim௨→൫(ݑ)ݕ/(ݑ)ݔ൯ = ܿ, where 0 < ܿ < ∞ is a constant. 

A. Second-Order Moments of the Multi-Scaling processes 
For simplicity, we assume that the scaling exponents β(T) 

at time scale T of a traffic process follow a normal distribution 
N(α, σଶ) with mean α and variance σଶ. Here we omit the 
subscript T for α and σଶ.Therefore, the variance of the 
distribution ߪଶ of the traffic process at time scale T can be 
represented as: 

~ଶߪ                ∫ ଵ
√ଶగఙ

ݔ݁ ቂ− (ఈିఈ)మ

ଶఙమ
ቃܶଶఈ݀ߙஶ

ିஶ            (3) 
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Let ݖ = ܶଶఈ , then ߙ = (ݖ)݈݊ ൫2݈݊(ܶ)൯⁄  and ݀ߙ ⁄ݖ݀ =
ݖ݀ ⁄(ݖ(ܶ)2݈݊) . Then Equations (3) becomes 

~ଶߪ ∫ ݖ ଵ
√ଶగ(ଶ(்)ఙ)௭

ݔ݁ − ൫(௭)ି(ଶ(்)ఈ)൯మ

ଶ(ଶ(்)ఙ)మ
൨ ஶݖ݀

        (4) 

The right hand side of Equation (4) shows that ߪଶ simply 
has a lognormal distribution L(߱,θ) with parameters ߱ =
2ln(T)α and θ = (2ln(T)σ)ଶ. For the lognormal 
representation given by (4), a simple calculation can show that 
the mean µ and variance σଶ of the distribution of the multi-
scaling increment traffic process at time scale ܶ are related to 
߱ and θ as: 

ߤ = ߸)ݔ݁ + ଶߠ 2⁄ )                           (5) 
and 

ଶߪ    = ߸2)ݔ݁ + (ଶߠ)ݔ݁](ଶߠ + 1]              (6) 
Therefore, 

߱ = (ߤ)݈݊ − ଵ
ଶ
݈݊ ቀఙ

మ

ఓమ
+ 1ቁ			   (7)               

and  

ߠ = ට݈݊ ቀ ఙమ

ఓమାଵ
ቁ        (8) 

Under the lognormal distribution, it can be that shown 
immediately that  

ߙ(ܶ)2݈݊]ݔ݁~ଶߪ + [ଶ(ߪ(ܶ)݈݊)2 = ܶଶఈܶଶఙ(்)				(9) 

III. LOSS PROBABILITY ESTIMATION 
We now present the equation used to estimate the loss 

probability on a server considering multifractal traffic. 

Proposition 1: Let T > 0, W(t) be an accumulative 
multifractal process at time scale ܶ, with a stationary 
increment at time scale T and with Pareto distribution . The 
loss probability for a single server with rate ܥ and buffer size 
q is given by the following expressions: 

௦ܲ௧ௗ௬(ݐ) = ൬1 −
ߣ
ܥ
൰න

൫ܽ݁(ݐܾ)ݔ൯൬(ݐߣ) − ൫ܽ݁(ݐܾ)ݔ൯
ିଵ(ݐߣ)൰

௫(௧)

ݐܥ) + ௫(௧)ାଵ(ݍ ݐ݀
ஶ


 

     (10) 
or 

௦ܲ௧ௗ௬(ݐ) = ቀ1− ఒ

ቁ∫

(௫(௧)ାଶ)ቆ(ఒ௧)ቀೌೣ(್)శభ
ೌೣ(್)శమ

ቁቇ
ೌೣ(್)శమ

(௧ା)ೌೣ(್)శయ ஶݐ݀
  (11) 

Proof: We assume that the single queue is stable with buffer 
capacity sufficient to accommodate eventual traffic transient 
bursts. Then, the balance equation for queue occupation is 
Q(t) + V(t− t) = Q(t) + O(t − t), where Q(t) is the 
queue length at time t, V(t − t) = W(t) − W(t − t) is the 
cumulative traffic load over the period [t, t], and O(t − t) 
denotes the traffic load leaving on (t, t). Let O(t) =
C൫t − I(t)൯, where ܥ is the constant service rate and I(t) 
denotes the total server idle time of up to ݐ. Assume V(0) = 0 
and Q(0) = 0, then Q(t) = max(V(t) − O(t), 0) or Q(t) =
max(Y(t) + ∆t, 0), where Y(t) = V(t) − Ct  and ∆t = CI(t).  

Applying the law of total probability, the loss probability 
in queue can be calculated as: 

ܲ௦௦ = (ݐ)ܻ)ܲ > (ݍ + ܲ൫ܻ(ݐ) ≤ ݍ < (ݐ)ܻ +  ൯  (12)(ݐ)∆

The first term P(Y(t) > q) in (12) is called the absolute 
loss probability (Pୟୠୱ) and the second term P൫Y(t) ≤ q ≤
Δ(t)൯ the opportunistic loss probability	൫P୭୮୮൯. Assuming 
Q(T) stationary, letting ρ = 1 − η = 1− λ C⁄  and using the 
result derived by Benes [7 (Chapter 2)], the second term 
൫P୭୮୮൯ can be written as: 

ܲ(ݐ) = ܲ൫ܻ(ݐ) ≤ ݍ < (ݐ)ܻ +  ൯(ݐ)∆
= ∫ߩ ݂(௨)

௧


(߭)|ఔୀ௨ା݀(13)    ݑ 

Also, the absolute loss probability (Pୟୠୱ) can be written as 
an integral:  

ܲ௦(ݐ) = (ݐ)ܻ)ܲ > (ݍ = (ݐ)ܸ)ܲ > ݐܥ +   (ݍ
=∫ ݂(௨)

ஶ
௧ା

(߭)݀߭  (14) 

Thus, the fully characterized queuing behavior of 
eventually any traffic type in term of information loss is given 
by:  

ܲ௦௦(ݐ) = ∫ ݂(௧)
ஶ
௧ା

(߭)݀ܲ߭ + ∫ߩ ݂(௨)
௧


(߭)|ఔୀ௨ା݀ݑ		(15) 
For multifractal traffic process	ܸ(ݐ) with a Pareto 

distribution ݂(௧)(ݔ) = ఈഀ

௫ഀశభ	
	 for	ݔ > ݇, the mean µ and 

variance σ2 are related to the distribution parameters, k and α, 

as  µ = ୩
ିଵ

 and σଶ = ቀ ୩
ିଵ

ቁ
ଶ
ቀ 
ିଶ

ቁ, respectively. In other 
words, the mean and variance values can be numerically 
estimated directly from given input network traffic flows. 
Thus: 

α = ஜమ

మ
                        (16) 

and 
݇ = ߤ − ఙమఓ

ఓమ
    (17) 

or 
α = ஜమ

మ
+ 2                 (18) 

and 
݇ = ఓయାఙమఓ

ఓమାଶఙమ
     (19) 

 
Therefore, the first term on the right side of Eq. (14) can 

be further detailedly expressed as: 

ܲ௦(ݐ) = ∫ ݂(௧)
ஶ
௧ା

(߭)݀߭ = ቀ
௫
ቁ
ఈ

 para  ݔ ≥ ݇     (20)     

ܲ௦(ݐ) → 0 for ݐ → ∞, then the loss probability under 
stationary states is:, 

௦ܲ௧ௗ௬(ݐ) = ܲ௦௦(ݐ)௧→ஶ
 = ߩ ቄ∫ ݂(௨)

௧


(߭)|ఔୀ௨ା݀ݑቅ
௧வ

ௌ௨
(21) 

or 

௦ܲ௧ௗ௬(ݐ) = ቀ1 − ఒ

ቁ ∫ ఈഀ

௫ഀశభ
|௫ୀ௨ା݀ݑ

ஶ
 	   (22) 

Note that for multifractal traffic series the variables ߙ and 
݇ can be calculated using equations (16) and (17) or (18) and 
(19), respectively. Substituting the relations given by the 
equations (16) and (17) into (22), the loss probability can be 
estimated by: 
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௦ܲ௧ௗ௬(ݐ) = ቀ1 − ఒ

ቁ ∫

൬ഋ
మ

మ
൰൬ఓି

మഋ
ഋమ

൰
ഋమ

మ

(௧ା)
ഋమ

మ
శభ

ஶݐ݀
       (23) 

Again, now substituting the relations given by the 
equations (18) and (19) into (22), the loss probability can be 
estimated by: 

௦ܲ௧ௗ௬(ݐ) = ቀ1 − ఒ

ቁ ∫

൬ഋ
మ

మ
ାଶ൰൬ഋ

యశమഋ
ഋమశమ

൰

ഋమ

మ
శమ

(௧ା)
ഋమ
మ

శయ
ஶݐ݀

      (24) 

 

where ߤ = ଶߪ and	ܶߣ = ܶଶఈܶଶఙ(்) .	 
Using an exponential function of the form ܽ݁ݔ(ܾܶ) to 

characterize the relation between the square mean and the 
variance under time scale ቀఓ

మ

ఙమ
≅  ቁ, we get the(ݔܾ)ݔ݁ܽ

expressions for the loss probability on a server considering 
multifractal traffic input. 

 

௦ܲ௧ௗ௬(ݐ) = ൬1 −
ߣ
ܥ
൰න

൫ܽ݁(ݐܾ)ݔ൯൬(ݐߣ) − ൫ܽ݁(ݐܾ)ݔ൯ିଵ(ݐߣ)൰
௫(௧)

ݐܥ) + ௫(௧)ାଵ(ݍ ݐ݀
ஶ


 

 
or 

௦ܲ௧ௗ௬(ݐ) = ቀ1− ఒ

ቁ∫

(௫(௧)ାଶ)ቆ(ఒ௧)ቀೌೣ(್)శభ
ೌೣ(್)శమ

ቁቇ
ೌೣ(್)శమ

(௧ା)ೌೣ(್)శయ ஶݐ݀
 □ 

IV. EXPERIMENTAL INVESTIGATIONS 
In this section we evaluate our approach for loss probability 

estimation, present our method for traffic admission control 
and dynamic resource allocation.  

Figure 1 shows how the loss probability changes in terms 
of buffer size for two loss probability estimation equation 
given by (10) and (11) for traffic lbl-tcp-3 [8], considering 
server capacity equals 1 x 10-5 Bytes/s. Clearly, two loss 
probability curves are very close. Thus, for this work we adopt 
Eq. (10) thereafter. 

A. Loss Probability Estimation 

In experimental test we use Simpson’s numerical method 
for solving the proposed expression to calculate the loss 
probability.   For  this,  we  used in  simulation  TCP/IP  traffic 
trace named  (lbl_pkt-5-10, dec-pkt-1-40, lbl-pkt-5). The 
traffic used in this study were taken from [8], the lbl-pkt-5-10 
traffic trace corresponds to lbl-pkt-5 at an aggregation scale 10 
milliseconds. Similarly, the dec-pkt-1-40 traffic trace comes of 
dec-pkt-1 at aggregation scale of 40 milliseconds. Table I 
summarizes the queuing system configuration (server capacity 
and buffer size) of the single server queue used in the 
simulation. 

TABLE I. QUEUING SYSTEM CONFIGURATION 

Traffic Trace Server Capacity 
(Bytes/s) 

Buffer Size 
(Bytes) 

lbl_pkt_5 5.6 x 104 3 x 105 
lbl_pkt_5_10 1.3 x 104 3 x 104 

dec_pkt_1_40 12 x 105 3 x 105 

 

Fig.1. Differences between Equations 10 and 11 

Table II compares the loss probability estimates (in 
number of bytes) for these traffic traces feeding a single server 
queue scheme defined in Table I, under the following 
methodologies, namely: 

 Simulations: by simulations; 
 The Duffield: by Duffield’s method [9]; 
 Lognormal: the proposed exponential approach for 

variance with normal distribution and traffic having 
lognormal distribution;[10] 

 MSQ: Multiscale Queue [6] 
 CDTSQ: Critical Dyadic Time-Scale Queue [6].  
 Proposed: our approach proposed in this paper. 

Notice that Duffield method provides a lower bound of 
loss probability ܲ	(ܳ > 	ܾ) for self-similar processes. 
“Lognormal”, "MSQ" and "CDTSQ" are three multifractal 
analyses for network traffic with long-range dependence [6]. 
Clearly the proposed analytical method provides the most 
faithful estimate among them, as illustrated by Table II. Our 
proposed approach in this work can be viewed as an 
alternative and improved version for the Lognormal method 
proposed in [10]. 

TABLE II.  LOSS PROBABILITY ESTIMATES 
Traffic Trace lbl_pkt_5 lbl_pkt_5_10 dec_pkt_1_40 
Simulation 4.76x10-4 4.89x10-4 4.08x10-5 

Duffield 4.02x10-30 1.29x10-19 8.09x10-15 
Lognormal 1.49x10-4 1.87x10-4 4.32x10-5 

MSQ 7.22x10-8 4.28x10-7 1.20x10-7 
CDTSQ 1.72x10-8 1.80x10-7 7.20x10-8 

Proposed 2.20x10-4 4.18x10-4 4.19x10-5 
 

Figure 2 compare how loss probability estimates vary in 
function of buffer size, for the dec_pkt_1_40 traces. Again, 
the proposed approach provides considerably better 
performances. 

B. Admission Control for Multifractal Network Traffic 

In this section we evaluate the potential application of the 
proposed loss probability estimation method and compare its 
performance to some widely used admission control 
algorithms, taking into account the characteristics of 
multifractal modeled traffic traces.  
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Fig. 2. Loss Probability versus Size of Buffer for the traffic trace 

dec_pkt_1_40. 
 

The method consist of calculating the loss probability of 
input traffic data estimates at connections through Equation 10 
or 11 and then making decision of acceptance or rejection of 
requested connections based on the computed analytical loss 
probability 

The proposed admission control algorithm works as 
follows:  
 Given a traffic trace, calculate the statistical parameters, 

including (mean and variance); 
 We find the coefficients a and b of the exponential 

function used in the approximation of  the relation 
between the square mean and the variance under time 
scale; 

 We fixed the server setting to be used (the Server 
Capacity (C) and Buffer Size (q)); 

 We execute the Simpson method for calculating the loss 
probability given by Equation 10 or 11; 

 Then, we do the multiplexing of the initial series with 
another series of traffic with the same amount of samples 
and rerun the algorithm; 

 We multiplex a new traffic trace with others and run the 
algorithm for the loss probability to the value of be equal 
to 1; 

In our simulations, different types of traffic traces were 
used, including TCP / IP traffic, video traffic and synthetic 
multifractal traffic. For the two experiments show in this 
paper, some synthetic traffic traces were generated by using 
FRACLAB [11], a Matlab toolbox. Each synthetic traffic trace 
holds 16,384 packet samples.  

Table III shows the settings of the connection 
configuration adopted for each performed experiment. In each 
experiment, we varied the input traffic flow by aggregating a 
number of traffic traces. The main purpose of this 
manipulation is to determine the degree of quality of service, 
in terms of the loss probability, a connection can be granted to 
a traffic flow obtained from aggregating a number of distinct 
individual traffic traces. The number of traffic series involved 
in the aggregation varies from 1 to 10. 

Figures 3 and 4 are related to the following traffic traces, 
respectively:  synthetic   fBm ,   synthetic   multifractal.    The 

TABLE III  INPUT TRAFFIC TYPE AND QUEUING SYSTEM CONFIGURATION 
Traffic Trace  Server Capacity 

(Bytes/s) 
Buffer Size 

(Bytes) 
Synthetic Multifractal  1 x104 4 x104 

Synthetic fBm  2 x104 4 x104 
 

figures show the amount of aggregate series versus the loss 
probability. In order to verify the validity of the proposed 
method, we perform experimental tests in a comparison with 
three other methods in the literature (“MVA”, “Virtual Loss” 
and “Lognormal” strategies). The MVA model is an admission 
control algorithm based on maximum variance approaches, 
assuming that traffic has Gaussian characteristics [12]. Loss 
Virtual describe in [13] is an admission control strategy based 
on ratio of excess traffic and traffic load (see [13] for detail). 
Lognormal describe in [10] used an exponential 
approximation to model the second-order moment and 
assumes that the input traffic has a lognormal distribution. 

Each figure shows how the loss probability changes in 
function of number of aggregated traffic series; that is, number 
of traffic series (i) denotes that the input traffic flow at queue 
was obtained from aggregating i traffic traces, which in most 
cases they are distinct. Remarkably the loss probabilities 
estimated from the proposed calculation faithfully follow to 
those obtained from the simulation, considerably much more 
than those obtained from applying the MVA, Virtual Loss and 
Lognormal methods. Mostly important, this result is observed 
for both experiments that involved different types of traffic 
data. 

 
Fig. 3. Performance comparison for aggregated synthetic monofractal (fBm) 

traffic traces with varying long range dependences. 

 
Fig. 4. Performance comparison for aggregated synthetic Multifractal traffic 

traces with varying statistical characteristics 
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C. Dynamic Bandwidth Allocation 

The dynamic bandwidth allocation mechanism proposed 
here consists of determining the necessary bandwidth through 
the expression (10), which relates the QoS in terms of loss 
probability in function of transmission rate. In other words, for 
transmitting the traffic data on the time window ( ܹାଵ) we 
make use of traffic information derived from the traffic data of 
the previous time window ( ܹ) such that the predefined 
connection QoS can be satisfied. Notice that it may happen 
that two adjacent windows overlap.  

For comparison   purposes, we   also    implemented:    (a)     
a Virtual   Loss [13]   based   dynamic    resource    allocation 
mechanism; (b) a numerical algorithm that determines 
precisely the minimum bandwidth for transmitting traffic data 
for each window and (c) the lognormal [10] based dynamic 
resource allocation mechanism. (d) The proposed dynamic 
resource allocation mechanism. Figure 5 shows the necessary 
transmission rate for transmitting a video traffic (Jurassic) [14] 
with 750 samples on each time window. Also included in 
Figure 5 the following additional information: (e) the average 
traffic rate (for each window); (f) the peak traffic rate (for 
each window). Similarly, Figure 6 compares the different 
dynamic resource allocation mechanism for Internet traffic 
BC_pAug89 [8]. 

 
Fig. 5. Comparison among transmission rates estimated from different 

dynamic allocation strategies for an video traffic trace (Jurassic). 
 

 
Fig. 6. Comparison among transmission rates estimated from different 

dynamic allocation strategies for an Internet traffic trace (BC_pAug89). 

V. CONCLUSION 
In this paper we present a new approach for calculating the 

loss probability for network traffic traces that have 
multifractal characteristics.  

Initially, we address the definition concerning multifractal 
processes, assuming the processes have Pareto distribution. 
Using the queueing theory and some multifractal properties 
we are able to derive an expression to estimate the loss 
probability of the data in connections. 

We compare the performance of the proposed approach 
with some other relevant approaches (e.g., monofractal based 
methods, Lognormal, MSQ and CDTSQ using real traffic 
traces.  

Further, through the equation proposed was possible to 
propose an admission control scheme, which can be applied to 
various contexts of networks to ensure that flows meet loss 
requirements. Finally we present a dynamic bandwidth 
allocation mechanism based on our multifractal based loss 
probability.   

The experimental results showed that the proposed 
estimation of loss probability is simple and accurate and we 
observed that the results obtained by admission control 
scheme proposed scheme as well dynamic bandwidth 
allocation mechanism is more robust and efficient in different 
situations compared to several existing methods in the 
literature. 

REFERENCES 
[1] Leland, W.; Taqqu, M.; Willinger, W.; Wilson, D. On The Self-Similar 

Nature of Ethernet Traffic (extended version), IEEE/ACM Transactions 
on Networking, v.2,n.1, pp 1-15, Feb 1994. 

[2] Norros, I. A Storage Model with Self-Similar Input, Queueing Systems, 
16,  pp.387-396, 1994. 

[3] Feldmann, A.; Gilbert, A.; Willinger, W.; Kurtz, T. G. The Changing 
Nature of Network Traffic: Scaling Phenomena.  ACM Computer 
Communication Review, v.28, p.5-29. Group, Tech.1 Rep.Disas-STP-
93-30. 1998. 

[4] Riedi, R. H.; Véhel, J. L. Multifractal Properties of TCP Traffic: A Numerical 
Study. Technical Report 3129, INRIA Rocquencourt, March 1997.[14] 

[5] Taqqu, M. S.; Teverovsky, V.; Willinger, W. Is Network Traffic Self-Similar 
or Multifractal?, Fractals, vol. 5, pp. 63-74, 1997. 

[6] Ribeiro, V. J.; Riedi, R. H.; Crouse, M. S.; Baraniuk, R. G. Multiscale 
Queueing Analysis of Long-Range-Dependent Network Traffic. IEEE 
INFOCOM 2000, pp. 1026-1035.,Tel Aviv, Israel. 

[7] Benes, V. General Stochastic Processes in Theory of Queues.Reading, MA: 
Addison Wesley,1963. 

[8] http://ita.ee.lbl.gov/html/traces.html. (Retrieved: April, 2013). 
[9] Duffield, N.G.; O’Connell, N. Large Deviations and Overflow Probabilities 

for the General Singles-Server Queue, with Applications. Dublin Institute for 
Advanced Studies-applied Probability.  

[10] Stenico, J.W.G; Lee.L.L. A Multifractal Based Dynamic Bandwidth 
Allocation Approach for Network Traffic Flows, IEEE ICC2010 – 
International Conference on Communications 23-27 may 2010 – Cape Town, 
South Africa. 

[11] http://fraclab.saclay.inria.fr/ (Retrieved: April, 2013). 
[12] Knightly, E.; Shroff, N. Admission Control for Statistical QoS: Theory and 

Practice. IEEE Network, 13(2), pp. 20–29, 1999. 
[13] Murase, T.; Suzuki, H.; Sato, S.; Takeuchi, T. A Call Admission Control 

Scheme for ATM Networks Using a Simple Quality Estimate. IEEE JSAC, 
vol. 9, n°9, pp.1461-1470, December 1991. 

[14] http://www.cs.columbia.edu/~hgs/internet/traces.html (Retrieved: April, 
2013). 

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time

Tr
an

sm
is

si
on

 R
at

e

 

 
Windowed Minimum Bandwidth
Lognormal Dynamic Approach
Virtual Loss Approach
Windowed Average Rate
Windowed Peak Rate
Proposed Dynamic Approach

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000

Time

Tr
an

sm
is

si
on

 R
at

e

 

 
Windowed Minimum Bandwidth
Lognormal Dynamic Approach
Virtual Loss Approach
Windowed Average Rate
Windowed Peak Rate
Proposed Dynamic Approach


